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The absorption spectrum of trifluoromethane has been recorded between 900 and 14 000 cm™

1

with resolutions between 0.004 and 0.5 cm ™! (pressure broadened). 22 bands were assigned as

arising from the interacting CH stretching and bending manifolds, which account for most of the
absorption in the overtone region. The results can be understood quantitatively with an effective,
tridiagonal many-level Fermi resonance Hamiltonian. The experimental and theoretical results

are summarized in Table II. The Hamiltonian is given in Table III and shows a very large
stretching—bending interaction constant |k, | = 106 cm ™!, which is even larger than the
diagonal anharmonic constant for the stretching vibration |x | = 62 cm . This leads to
extensive vibrational redistribution between stretching and bending motions at high levels of
excitation. The time dependent redistribution is calculated with the spectroscopic Hamiltonian.
A rotational analysis is presented for some of the bands involved in the Fermi resonance. The
effect of the Fermi resonance on hot bands is investigated using the same Hamiltonian in
comparison with experiment. The results are discussed in relation to the universal local dynamics
of the isolated alkyl CH-stretching chromophore and in relation to the vibrational dynamics of
highly excited polyatomic molecules as a function of certain elements of molecular structure.

I. INTRODUCTION

Intramolecular vibrational coupling in polyatomic
molecules and the time dependent flow of energy between
the rovibrational degrees of freedom is among the central
questions in spectroscopy and unimolecular reaction dy-
namics.'~ This problem has been addressed recently using a
variety of experimental®® and theoretical®'? techniques.
The main questions are: (i) To what extent can the IR funda-
mental and overtone absorptions be interpreted by localized
initial excitations (local mode'* or chromophore* states)? (ii)
On which time scale and under which conditions is there
intramolecular rovibrational redistribution corresponding
spectroscopically to “global”'® vibrational eigenstates? (iii)
Can one identify relationships between structural elements
in molecules and the corresponding vibrational dynamics?
This implies the possible aim of tailoring molecules suitable
for either statistical or mode selective chemistry.

One obvious experimental approach to answer these
questions is the study of the high resolution rovibrational
spectra of polyatomic molecules in order to obtain from this
the rovibronic Hamiltonian and the related intramolecular
dynamics. In spite of a large body of spectroscopic data, the
number of systematic investigations with the specific aims
mentioned above seems to be rather limited (see Refs. 1-5 for
reviews). We have therefore initiated, some time ago,'* a sys-
tematic study of the spectra and dynamics of the isolated CH
chromophore. We give in the present paper the first detailed
account of our results on an extensive redistribution occur-
ring in the form of a tridiagonal Fermi resonance system in
CF;H. It turns out that this redistribution is a universal phe-
nomenon of the isolated alkyl CH chromophore and some
preliminary results have already been presented'® with de-
tails on (CF;);CH,"” CD,H,'® and further systems'® being
reported separately.
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CF;H is an ideal model system for demonstrating the
general features of this tridiagonal Fermi coupling and redis-
tribution. It is a highly volatile substance of good isotopic
purity. The CH transitions are particularly intense!* and
have a well defined polarization in this symmetric top mole-
cule. Due to the mass ratios the local and normal mode mo-
tions coincide approximately. There is considerable spectro-
scopic ground work available.”>*> One should mention in
particular the high resolution studies of the fundamentals
v6(508 cm ™, E)and v,(700 cm !, 4,)*° and of v,(v,, hereaf-
ter, 1378 cm ™!, E),*' the recent work on the coupled CF;-
stretching fundamentals v,(4,) and v(E ),? and finally the
strongly perturbed fundamental v,(v, hereafter, 3035
cm™ !, 4,).” Much of the early work under moderate resolu-
tion can be found discussed in the paper by Ruoff et 2/.%° and
there are a number of further relevant papers?-2® also con-
cerning the molecular constants for the vibrational ground
state?® and excited states.*'*> Furthermore, CF,H has
been investigated recently for vibrational energy transfer in
collisions with protons.>?

Most important for our present work was in fact the
early paper by Bernstein and Herzberg on the overtone spec-
tra in the photographic infrared and visible regions.?* These
authors have already discovered some bands exhibiting a
resonance between the stretching overtones |v;) and the
stretch-bend combinations |v, — 1, v, =2), which was
then interpreted as a classic two-level Fermi resonance.* In
order to obtain a more complete understanding in terms of
many-level interactions and the global, dominant coupling
of the CH-stretching and bending vibrations we have mea-
sured the complete spectrum of CF;H between the mid-IR,
starting at 900 cm ', and the red part of the visible spectrum
at 14000 cm ™', with resolutions corresponding to band-
widths (FWHM) between 0.004 cm ™! (apodized) and 0.5
cm ™! (pressure broadened). It turns out that almost all of the
major bands in the overtone region can be understood on the
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basis of a rather simple, effective Hamiltonian which pro-
vides us with a considerable insight into the nature of the
coupling of the CH-stretching and bending vibrations.

Il. EXPERIMENTAL

All spectra have been recorded on our BOMEM
DA.002 interferometric Fourier transform spectrometer
system. The Michelson interferometer has a maximum mir-
ror displacement of 1.25 m and correspondingly an instru-
ment function with an apodized lowest bandwidth (FWHM)
of 0.004 cm ~* (best unapodized resolution 0.0024 cm ™%, re-
solving power R = #/6¥ > 10°). For the IR work a mercury
cadmium telluride detector and an indium antimonide de-
tector were used in conjunction with KBr and CaF, beam
splitters. For the near IR and visible spectral regions a
quartz beam splitter was used together with a Si detector,
The signal to noise ratios were greatly improved by the use of
narrow band interference filters. A globar and a bright Phi-
lips lamp were used as light sources. Fundamentals and
some overtone transitions were measured with single pass
cells of Iengths between 0.1 and 0.17 m. These were also used
for absolute band strength measurements. In order to reduce
the pressure broadening, most overtone spectra were taken
with a multipass cell using White optics,** which allows for
variable optical path lengths up to about 20 m. The effective
optical path length of this cell was calibrated for intensity
measurements by means of the integrated band strength of
the overtone of (CF,);CH at 5880 cm™’, whose absolute in-
tensity has been measured previously.'* Where the necessary
calibrations were not possible, only relative intensity values
are reported. In all intensity measurements the ratio of the
pressure broadening width to the experimental bandwidth of
the spectrometer was sufficiently large (>>5) that direct inte-
gration of the spectra was possible. The frequency calibra-
tion was obtained by reference to the wavelength of a single-
mode He—Ne laser used for measuring interferometrically
the relative optical displacement of the fixed and moving
mirrors of the Michelson interferometer. Minor misalign-
ments of the IR light with respect to the He-Ne laser beam
generally may lead to small frequency errors of the order of
the bandwidth of the measurement. Where possible, more
accurate calibration was therefore obtained by means of the
wave number tables in Ref. 36 and with CO, water, and
methane lines in the overtone region.*® The narrow ab-
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sorption lines from the calibration measurements have also
been used to check for the actual experimental bandwidth of
the instrument function, which often depends upon the aper-
ture and alignment conditions, due to self-apodization (mini-
mum apertures of 0.5 mm diameter.were used in our mea-
surements).

2CF,H was obtained from Merck-Darmstadt. Its
identity was obvious from the spectra and neither the gas
chromatogram nor the IR spectra showed substantial im-
purities apart from the natural *C isotope content. Where
necessary the absence of air was ensured by degassing in
several freeze-pump~thaw cycles before use. Some water is
always present in the long path absorption measurements.
This accounts for a negligible fraction of the integrated ab-
sorption and partial pressure for our conditions, although
the narrow lines are often pronounced and easily visible. No
attempt at excessive drying has been made because these
lines are helpful for calibration purposes.

i1l. RESULTS AND DISCUSSION

A. Survey of multiple Fermi resonances

Figure 1 shows a survey transmission spectrum
between 4000 and 9000 cm ™ for 5 X 10* Pa of CF,H and an
optical path of 22.5 m. Under these conditions, one easily
recognizes three groups of strong transitions, one below
6000 cm ™!, corresponding to the first overtone CH-stretch-
ing system, one around 7000 cm !, corresponding to a com-
bination of this with one quantum of the CH bending, and
one between about 8000 and 9000 cm ™, originating from
the second overtone of the CH-stretching vibration. The two
bands at 8792 and 8589 cm ! have already been discussed by
Bernstein and Herzberg as the Fermi dyad arising from the
resonance between |v, = 3,v, =0) and |v, =2,v, =2).
However, under the conditions used for the spectrum in Fig.
1, two further bands are clearly visible, one at 8286 cm™!
and a very weak one with a line like Q branch at 7890 cm ™.
As we shall see below, these arise from complementing the
simple Fermi dyad with the further interacting states
lv; = 1, v, = 4) and |v, =0, v, = 6). This results in a four-
level Fermi polyad extending over a frequency range of 1000
cm ! in this case. The band systems around 7000 cm ™' and
below 6000 cm~! find a similarly simple interpretation by

| |

FIG. 1. The vapor phase transmission spec-
-2 trum of CF;H, survey between 4000 and
= CFH 9000 cm~". (P=0.5X10° Pa, /=225 m,
d 3 resolution 1 cm ™!, the base line is not quite

\ flat over such a large spectral range.)
0 2 1 '
4000 5000 6000 7000 8000 9000
Srem™?
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means of Fermi polyads of the strongly interacting CH-
stretching and bending vibrational modes.

B. Effective Hamiitonian for the tridiagonal Fermi
resonance systems

In order to provide a rational, quantitative description
of our experimental observations we define the diagonal ele-
ments of an effective spectroscopic Hamiltonian by means of
the usual low order term formula,' which can be derived by

perturbation theory**2
T, =Zi}jvj +22xiivivj +zzgijlilj' (1)
j 1 j»i T j>i

We restrict our attention to the stretching (s) and bending ()
vibrations of CH and define a chromophore quantum num-
ber:

N=vy, +,. (2)
For theisolated alkyl CH vibrations the N + 1 (or 1/2) states
with a common N are members of a polyad and have about
the same energy to within some bandwidth. They corre-

spond to one chromophore “level.” The diagonal matrix ele-
ments are given in cm ™! units:

Hy =, 4+ Vv, + X002 + X503 + X50,0, + 813 (3)
The quantum number /, gives the vibrational angular mo-
mentum for the degenerate two-dimensional, approximately
isotropic bending oscillator. In our spectra two values of /,

are important. For /, = 0 we have polyads with N + 1 states
of 4, vibronic symmetry in C,,(2N = even):

|0, 0, I, = 0):(|N, 0,0), [N —1,2,0),..., |0, 2N, 0)}. (4)

For I, = 1 we have polyads with N + } states of E vibronic
symmetry in C,, (2N = odd):

v, v, L, = 1):{|[N—1/2, 1, 1),

|N —3/2,3,1),..,|0, 2N, 1)}.
(5)
The vibrational Hamiltonian is assumed to be diagonal in /,
and block diagonal in V. Each block for a given N is a tridia-
gonal, symmetric matrix with off-diagonal elements:

HN = (vx’ vb’lblk:bbqsqilv;’ U;,l,’,). (6)

vophyvgoil
In the normal mode approximation the g are dimensionless
reduced normal coordinates,*® with the relationship for the
bending vibration (two degrees of freedom 1 and 2):

9 = g1 + G52 {7)
ks is the corresponding effective cubic potential constant in
cm ™' for the term ¢, 47 in the Taylor expansion of the poten-
tial function, including the 1/3! factor. The selection rules
for the matrix elements in Eq. (6) are:

Kopp #0, (8a)
v=v,t1, (8b)
v, =v, Or v, + 2, {8¢c)
1, =1,. (8d)

The assumption of the block-diagonal structure allows us to
define the resonance part of the coupling matrix:

HN
vplpvs — 1), (vp + 2), I
= (v,, U, Ib|ksbbqsqlz’|vs — Lo, +2,1,)

= —tkop - [40s05 — 1 + 200, +1, +2)]”2~ %)
In these equations we have made use of Eq. (7) and of the
harmonic oscillator matrix elements in Ref. 41. Diagonaliz-

ing each block H" of H one obtains the eigenvalues E ¥ and
the eigenvector matrix Z,,,*’

Z H"Z, = Diag(EY..E™). (10)
When there is strong mixing even an approximate assign-
ment of states by the v, and v, quantum numbers is impossi-
ble and we label the states by the symbol (¥ );, standing for
the jth eigenstate of the N th block. The quantum number ;
orders the eigenvalues in descending order (the notation is
similar to the J_ notation for asymmetric top rotational
eigenvalues; however, & is a good quantum number only in
the framework of our approximations, not exactly}.

The absolute squares of the electric dipole transition
moments satisfy the relationships

Mg,p,,l,,ooo(a) = <U_\,, Vs Iy 'ﬁa |0v 0,0), (11)
Mﬂ(a)N = <1V] ,iaa ,0’ 01 0)7 (12)
> My =Y [Mgla)y|* (13)
AN} £N}

The sums are extended over all the states of one polyad and
£, = fi,,,, , is one component of the electric dipole operator
A. If only one zero order state, namely |v,, v, =0, [, = 0) or
|v,, v, = 1,1, = 1) has a nonvanishing |M$ |2 one can cal-
culate the relative intensity for one polyad transition by
means of the simplified equation (14):

gj = |le|2,
zg:, = z 'ZUI2= I-
J J

This approximation is quite good for the overtone transi-
tions, better for the 4, polyads than for the E polyads. We
shall compare the theoretical model results with experimen-
tal relative intensities defined by Eq. (15):

£ =G,/ 2 G,. (15)
polyad
The experimental G value is obtained from the high resolu-
tion absorptions cross section o{#) by means of Eq. (16):
G=| oLl wuynas, (e
band / Vol Jvandy

(14a)

(14b)

v

¥, is the band center, ¢ the concentration of the absorber, /
the absorption path, and J, and I the incident and transmit-
ted intensities. G is related to the vibrational transition mo-
ment for nondegencrate bands by Eq. (17) (cgs system):

=Ml (17)

The effective spectroscopic Hamiltonian defined above
is consistent with the approximate treatment of Nielsen.*?
We have suppressed on purpose all higher order corrections
both in the diagonal elements [Eq. (3)] and the off-diagonal
elements,* in order to minimize the number of parameters
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to be determined experimentally (seven in the present mod-
el). As we shall see below, the Hamiltonian describes the
experimental data very well (22 band positions and intensi-
ties), as we have also found for other molecules. A few words
may be useful concerning the approximations involved.
Equation (1) is derived in a standard way*’ in the normal
mode approximation, with separable kinetic energy and re-
taining anharmonic corrections by low order perturbation
theory. The diagonal elements in Eq. (3) contain the primed
constants ¥’ and x’ because we choose in this model to retain
terms arising from k&, through resonance interaction expli-
citly by diagonalization. We have found for the analogous
acetylene compounds, where the resonance does not occur,
that the higher order terms beyond Eqgs. (1) and (3) are mea-
surable, but small, indeed, of the order of the deviations we
obtain below when comparing experiment and theory. To
the extent that the harmonic normal mode basis states are
good representations of the states giving the term formula
[Eq. (1)] the off-diagonal elements find a simple interpreta-
tion by means of the anharmonic potential constant K,
again neglecting contributions from other terms in the po-
tential. It is clear, however, that even for the diagonal part of
H the deviations from harmonic basis states may become
important. Furthermore, a curvilinear description for the
large amplitude bending mo’t\ion may be more appropriate,
giving a reinterpretation of H, = k,,,4.4; in terms of both
kinetic and potential energy coupling. This point has been
discussed by Sibert, Hynes, and Reinhardt.** On the level of
approximation used here this does nor change the form of H.
Because of our use of dimensionless g one has only to change
the definition of k,, in Eq. (9).

The effective Hamiltonian can be interpreted in yet an-
other way, which provides physical insight. Following our
discussion of the CH-overtone spectra in substituted acety-
lenes R-C=CH,* where the Fermi resonance does not oc-
cur, we can derive the diagonal partAof the Hamiltonian ma-
trix from a vibrationally adiabatic H, with

Ho, = E%ton, (18)
gm = ¢n (b’ s)gnm (b ) (19)

The ¢,, are solutions of the “clamped b ”” Schrédinger equa-
tion (neglecting the bending kinetic energy):
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The V,, (b ) are the effective potentials for the bending coordi-
nate for each quantum number n = v, of the “high frequen-
¢y’ stretching vibration. The adiabatic solution for both co-
ordinates is given by Eq. (21), reintroducing now the kinetic
energy 7, in the bending vibration

This solution gives the diagonal part of the Hamiltonian and
is an immediate justification why in Eq. (3) the term x,v,v,
appears, which is nondiagonal in the quantum numbers v,
and v, : The quantity (¥, + x/,v,) is the bending frequency
for the effective potential ¥, with stretching quantum num-
ber n = v,. This term would not appear if a completely sep-
arable basis were chosen for the diagonal part of H. In the
vibrationally adiabatic approximation the off-diagonal cou-
pling in Eq. (9) arises from the neglect of the kinetic energy in
the bending vibration [Eqgs. (18)—20)]. It is clear that, quanti-
tatively, the vibrationally adiabatic approximation for two
degrees of freedom with just a factor of 2 difference in the
characteristic frequency is poor and will break down com-
pletely as demonstrated by the resonance structure in the
observed spectra. Of course, subsequent diagonalization of
H remedies this deficiency of the approximation.

An approximation which remains, even after the dia-
gonalization of the resonance blocks, is the neglect of the
interpolyad coupling of different blocks, which is possible by
means of allowed vibrational matrix elements, if the blocks
have the same vibronic symmetry. The energy separation of
the blocks is, however, more than a factor of five to ten larger
than the coupling matrix elements, which makes the approx-
imation practically useful although not quantitatively per-
fect. Finally, local rovibrational and vibrational resonances
and perturbations due to the interactions with other modes
have been neglected in the model Hamiltonian. We have
seen such perturbations in numerous places in the spectra
but they are much smaller than the effects considered here
and can be neglected on the relevant time and energy scales.

C. The N = 3 resonance polyad

In order to illustrate the discussion in Sec. III B we pre-
sent here the detailed results for the N = 3-4,-polyad, which
is the highest one for which all expected bands have been

Hb, ), (b, 5)=V,(b)8, (b, 5). {(20)  accessible to observation, so far. The basis states are
204 A f X8 8
= /
o Lo W W
= c F3 H
c FIG. 2. Survey spectrum of the ¥ = 3
T R P e e Fermi resonance polyad in CF;H. The
1.0 7880 7900 8260 8310 inserts are magnified portions from the
same survey spectrum (P = 0.5X10°
- B8 Pa, resolution 1 cm~'.)
0 a - ' ,.JL\ . )/J V\ J/*J
8000 8200 8400 - 8600 8800
Viem-!
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TABLE 1. Comparison of the tridiagonal Fermi resonance model with experiment for the ¥ = 3 polyad of

fluoroform.
Model Experiment
j {’j/Cm—l gj {;j/cm_l g;xpt.
1 8792.20 0.529 8792.70 0.52
2 8589.28 0.431 8589.28 0.45
3 8285.53 0.039 8286.0 0.03
4 7887.75 0.001 7890 <0.01

13,0,0), [2,2,0), |1, 4,0), and |0, 6,0). Figure 2 shows the
four parallel bands of very different intensity, which are ex-
pected for the given frequency range. The assignment can be
established without doubt due to the rotational structure
and the agreement between the observed and calculated
band positions and intensities, which are shown in Table L.

The Hamiltonian was not adjusted to these few bands but is
the one from the global fit given in the next section. Its struc-
ture is illustrated in Fig. 3. From the matrix elements in
cm™ ! shown in Fig. 3(b) one can see that the coupling matrix
elements are large, of the order of the zero order energy dif-
ferences. This leads to very extensive mixing and vibrational
redistribution between all four states. On the other hand, the
matrix elements are substantially smaller than the separa-
tion from the other polyads. This allows us to neglect the
interpolyad coupling at least at this level of excitation (the
approximation gets worse, the higher the energy).

D. Analysis of the vibrational spectrum up to 14 000
cm™?

The band centers and relative intensities for 22 bands
which could be assigned to the CH stretching and bending
system, between 1370 and 14 000 cm ™! are collected in Ta-
ble II (column “observed”). These data have been used in a
global least squares fit using Marquardt’s algorithm*® with
seven parameters of the effective Hamiltonian. The best fit
parameters are shown in Table III. The agreement of the
model predictions and the experiment can be seen from the
relevant columns in Table II. The root mean square devi-
ation is 1.9 cm™". Although this is much larger than the
possible experimental error, it is an outstandingly good fit in
view of the simplicity of the model and the large frequency
range considered. Small corrections by the introduction of
higher order terms would bring the fit to the experimental
accuracy, but we do not attach much significance to the
higher order parameters and we thererefore present here
only the results for the simple model.

The values of the anharmonic stretching oscillator con-
stants ¥; and x/, have been repeatedly evaluated before with-
out taking the Fermi resonances into account. It is quite
clear that the present, reliable values are quite different from
these previous determinations. The bending frequency ¥; is
in essential agreement with the result of Ref. 21, when one
takes into account the different definitions of the constants
and the fact that a parameter from such a global fit has a
somewhat different meaning from the parameter determined
from just one band. The value of x_, is interestingly similar to

the values found for the acetylenes.*® It can be simply related
to a decrease of the effective bending frequency with increas-
ing CH-bond extension or vibrational excitation in the adia-
batic picture.'®*¢ It must be stressed that without a global
understanding of the complete Fermi resonance system
there would be no way to determine this parameter correctly
from an individual sum or difference or hot band transition
involving v, and v,. The absolute values of x;, and g;, are
small and therefore relatively less accurate, whereas [k, |
again is very large, indeed. Its sign is not available from the
fit, but can be fixed by means of qualitative considerations.
In the case of CD;H, the sign is available from ab initio cal-
culations.'®

The Fermi resonance parameter k,,, is central for the
present model. It is related to the Fermi resonance matrix

element for the N = 1dyad through |W,,,| = |k, |/y2 =75

1300> 220> 140> 060>
(
W Wk 0 0 ) 1300
3
H 3 Nk Hay kg O 12205
0 -2 W - 3y 140>
sbb 3 V2 sbb g
0 0 -k H 1060
V2" "sbb VA "
\ J
4 N
8684 +130 0 0
+130 8526  +213 0
0 +213 8310 +226
0 0 +226 8036
. J

FIG. 3. Structure of the Fermi resonance Hamiltonian for the N = 3 po-
lyad. (a) General form. (b) Numerical values in cm ~! units from the best fit.

J. Chem. Phys., Vol. 81, No. 9, 1 November 1984



3784 H. Dubal and M. Quack: Tridiagonal Fermi resonance in CF,H

TABLE II. Comparison between experiment and the tridiagonal Fermi resonance model.

State Observed Calculated
N j /em! Notes v/cm™! glexpt) glcalc) Weight
(A) A, Polyads
1 1 30355 a 30364 0.954 0.944 1.0
2 27102 b 27111 0.046 0.056 1.0
2 1 5959.4 c 5961.5 0.6 0.81 1.0
2 57104 d 5709.5 0.4 0.18 1.0
3 5337 5339.2 weak 0.01 0.5
3 1 8792.7 e 8792.2 0.52 0.53 1.0
2 8589.3 f §589.3 0.45 0.43 1.0
3 82860 82855 0.03 0.04 1.0
4 7 890 7 887.7 weak 0.001 1.0
4 1 11 563 g 11563.2 0.18 0.17 1.0
2 11 347 h 113445 0.66 0.63 1.0
3 11 109 i 11 107.7 0.16 0.19 1.0
4 10 774.1 0.01
5 10 358.8 0.0002
5 2 14 002.8 j 14 009.0 weak 0.35 0.5
(B) E Polyads
{1/2) 1 1377.85 k 1375.8 1.0 1.0 1.0
(372) 1 4 400 4 400.3 0.99 0.90 1.0
2 4044 40443 (0.01) 0.10 0.5
(5/2) 1 7322 713206 0.75 0.72 1.0
2 7018 7020.9 0.25 0.27 1.0
3 66320 0.01
(172) 1 10155.9 101533 0.45 0.44 1.0
2 9 881.9 9 883.1 0.49 048 1.0
3 9 550.0 9551.8 0.06 0.08 1.0
4 91415 0.003
9/2) 2 12 639.6 j 12 637.4 weak 0.54 0.5

*See Ref. 23; we find G = 0.132 (pm}? for this band.

b Reference 25 has 2710.2 and Ref. 57 gives 2710.26.

*Reference 26 gives 5959.46 and Ref. 24 gave 5978 cm ', We find G = (2 + 0.4) X 10~* (pm})? for this band.
¢ Reference 24 gave 5728 cm .

*Reference 24 gave 8792.75 cm™!; we find G = (3 + 1)x 107> (pm)* for this band.
fReference 24 gave 8589.3 cm™".

s Reference 24 gave 11 563.4cm™".

b Reference 24 gave 11 347.2 cm™"; we find G = (2.4 + 1)X 10™° (pm)’ for this band.
iReference 24 gave 11 109.2cm ™",

iPreferred value taken from Ref. 24.

k Preferred value taken from Ref. 21.

!For one component in each band system absolute values of G are given in the notes.

cm™ ' from the present results. This matrix element had been G((1),) = (0.132 £ 0.02)(pm)?,
determined previously?® as 111 cm™!. This is much too G((1),) 2
0.0063 + 0.002)(pm
large, due to the fact that in this estimate the unknown zero (1) = * )pm)~
order position of 2v, (4,) was involved. As was pointed out 9 L
already in Ref. 23 a somewhat better approach is possible by \m. s *’Y”Y“‘
using the band intensities of the Fermi dyad and assuming F 08 W m (mw
that the zero order intensity of the bending overtone is small. k=)
We have measured B 06 |
fg - %
TABLE III. Parameters of the Fermi resonance model. > 04 [ L
2 B
v —  30798cm’ g 02 [ CFaH 1
¥ = 1377.8 cm~" g | N=1 .
x,=  —6l7cm™! o L 1=2 i
Xl = ~28.6cm™} JFINEE TN T (N TS WO U [N U TN N O U U U VN
vo=  _6som! 2000 206 2008 712 26 2T
8 = 45cm™! v /'Zm-.|
Ko = (% )" 106.1cm™ FIG. 4, Central portion of the raw FTIR spectrum of the (1), band (P = 260
Pa, / =7 m, resolution 0.02 cm™~?). The hot band at 2707.5 cm™! is dis-
*See discussion in the text for the sign, which cannot be determined directly. cussed in Sec. IIT F.
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FIG. 5. Central portion of the raw FTIR spectrum of the (2), band (P = 1.4
kPa, / = 14.5 m, resolution 0.03 cm ™). The hot band at 5708 cm ™" is dis-
cussed in Sec. III F.

From these values one estimates || = 68 cm ™, in better
agreement with the global fit. In order to judge the accuracy
of the result for k_,, in the global fit, we have chosen several
fixed values for k,, adjusting all the other parameters in a
least squares fit. It is found that a change of &, by

+ 15cm ™! leads to poor model predictions. These boundar-
ies can be considered to specify the limits within which phy-
sically reasonable values for &,,, may be possible. This result
is also established by using fits involving higher order terms
in the Hamiltonian. Figure 4 shows the central portion of the
(1), component at moderate resolution, which shows a hot
band and otherwise largely unperturbed rotational J struc-
ture.

The two strong components of the N = 2 polyad are
shown in Figs. 5 and 6. The rotational structure will be
further discussed below. The intensities of these two bands
have been measured to be

G((2);) = (2 + 0.4)X 10~ *(pm)?,

G((2),) = (1.3 +£ 0.3) X 10~ *(pm)*.
Compared to the model prediction in Table II the intensity
ratio is rather surprising and is explained by an appreciable
zero order intensity of the |1, 2,0) state. The third very weak

component at 5337 cm ™~ could be identified by means of the
model prediction.
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FIG. 6. The spectrum of the (2), band (conditions as in Fig. 5). Note the
perturbations for the low J lines in the P and R branches. The hot band is
hidden in the @ branch.
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FIG. 7. Survey spectrum of the N = 4 polyad (P = 0.87X 10° Pa, / = 22.5
m). See the discussion in the text.

1000 11100

Figure 7 shows as a last example a survey spectrum of
the three prominent parallel band members (4),, (4),, (4) of
the N = 4 polyad. This figure illustrates that at this level the
most intense band in the system is no longer at the high
frequency end but rather in the middle. This effect can be
understood with the model parameters of Table III and the
graphical representation of the diagonal part of the Hamil-
tonian of the 4, polyads in Fig. 8. This figure shows how the
zero order energies of the excited bending vibrational states
move upwards compared to the pure stretching state, be-
cause of its larger anharmonicity. (The zero of energy has

-0-600 | T ¥ ' T T 1 T T
- CRH
400 A, - polyades
- (zero-order - states)
+200 F 16,20>
1540>
- i 14602
€ 16402  152p> 1380>
S—
o, Op------------- 14205~ == = - ~
=2 13205 1380> 2100>
| 13202 |4 05
1220>
-200 1120> 1280>
1020> 12402 160> 120>
400 - 140> 100>
1160>1180>
R 1040> 1040>
-600 - 1060> 10120>
L 10,80>1000>
L 1 1 1 ] 1 1 1
1 2 3 4L S5 6 7
N

FIG. 8. Reduced energy plot for the zero order states |v,, v,, I, ). The zero
of energy is redefined at each NV to be the energy of the |v,, 0, 0) state, which

is not shown explicitly. The coupled states for one polyad appear as one
column with a given V.
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FIG. 9. Survey of vibrational band positions and intensities (heights of the
sticks) predicted from the model Hamiltonian for polyads with N between 1
and 8. The zero of the energy for each polyad is given by the number (cm ™!
units) shown as insert. Note the different energy scales for the polyads with
N<4and N> 4.

been set at the pure stretching states.) At some value of N the
zero order energy of |N,0,0) is smaller than that of
|N — 1, 2, 0), which qualitatively accounts for the intensity
distribution. More quantitatively the predicted trends in vi-
brational band intensities with increasing N are shown in
Fig. 9 for bands up to 20 000 cm~". The switchover at N = 4
and the complete redistribution for even higher energies is
easily visualized. These trends are also observed in
(CF,),CH, where bands with N up to 6 were observed.'” In
the case of CF;H only one band with N = 5 is so far available
from Ref. 24, which can be assigned as (5), at 14 002.8cm™".
The bands shown in Fig. 9 can be taken as predictions from
the model for future studies by more sensitive spectroscopic
techniques, such as photoacoustic laser spectroscopy.” In
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FIG. 10. Survey spectrum of the N = (7/2) polyad (P=0.87X10° Pa,
I=15.5m).
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the case of (CF,),CH'” and CD,H"® the model was found to
give good predictions for higher energy overtones beyond
the values observed in the infrared.

The bands of the E polyads (half integral N ) can be as-
signed because of their characteristic perpendicular struc-
ture with the well established value &, = 0.985 for the Cor-
iolis coupling constant.>’ The band structures with
$s= — 0.806%°?° and {5 = 0.733 (estimated from the sum
rule® in our work before the recent accurate experimental
value of 0.718 was available??) are significantly different
from the E-bending polyad bands. Figure 10 shows a survey
spectrum of the N = 7/2 polyad, in which three bands with
& = 0.985 appear. The fourth expected band at 9141.5 cm ™!
is too weak for observation, at present. The assignment of the
polyad bands is established beyond doubt from the model
prediction [see Table II B] and the rotational analysis given
below. There appear two further weak bands in Fig. 10
which show a perpendicular band structure corresponding
to {5 = 0.72. The appearance of weak combination bands
with the CF,; stretching vibration is not entirely unexpected
but nevertheless interesting. The bands are tentatively as-
signed as (3), + (v2/v5) at 9730 cm ! and as (3), + (v,/vs) at
9940 cm ! {v,/v5 occurs as a Coriolis coupled pair of bands).

The analysis and assignment of further bands in the E-
polyade systems proceeds similarly and will not be discussed
in detail here. Rather we shall present some examples of the
detailed rotational analyses of the high resolution spectra,
which are an important piece of evidence for the definite
assignments of the polyad bands.

E. Sample rotational analyses

The complete rotational analysis of 22 bands, which
often show many local rovibrational perturbations, is a con-
siderable task, which has not yet been completed in the four
years our study has been underway. We shall present here
just a few examples at higher resolution, which show how
our assignments have been backed by the rotational struc-
ture of the bands and which give some additional insight in
the molecular parameters for the bands involved in the Fer-
mi resonance.
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FIG. 11. Portion of the P branch of the (1), band (P =1 kPa, /= 5.75 m,
effective resolution 0.014 cm™!). The lower curve is the simulated, the up-
per curve the experimental spectrum (see also the detailed discussion in the
text).
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TABLE IV. Least squares parameters for the (1), component.”

Fit(i)* Fit (i)
Constant Ground state* (1}, Ground state (1),
Vo/cm™! 0 2710.210 0 2710.210
C/cm™! 0.189 25 0.189 055 6(8)
B/cm™! 0.345 20105 0.344 515 1(6) 0.345 194(10) 0.344 507(10)
D;/em™! 3.779% 1077 3.808(3)x 1077 3.77(7)x 1077 3.80(7)x 107
Dy /em™! — 6.0375x1077 — 6.057(5)x 10”7 — 6.2(4)x 1077 — 6.3(4)x 1077
Dy /em™! 3.72x 1077 3.691(5)x 10~7
{AC—A4B) /cm™! 4.92(1)x 1073
(Dx —Dg)/em™! —3.1(5)x10™°

*For the ground state constants see Refs. 21 and 29-32.

*The numbers in parenthesis give the standard deviations in units of the last digit.

‘AB=B'—-B",AC=C'—-C",
9 Ground state constants fixed.
¢ Ground state constants adjusted in the fit.

Figure 4 shows the central portion of the parallel band
corresponding to the (1), component, which shows essential-
ly unperturbed PQR structure, with unresolved K structure
at this resolution. This band has also been recorded at an
effective resolution of 0.014 cm ™", without pressure broad-
ening, where the X structure could be largely resolved. Fig-
ure 11 shows a part of the Pbranch. The spectrum was calcu-
lated using the term formula including some of the higher
order terms for both the ground and excited states:

F(v,J,K)=%+B-JJ+1)+(C—B)K?
=D, JUJ + 1)
— D, JJ+ 1)K —D.K* (22)

A total of 448 lines was assigned and introduced in two non-
weighted least squares fits. In fit (i) the ground state con-
stants were fixed at the values known from microwave spec-
troscopy, in fit (ii) all constants entering the relevant
equations for transition energies were adjusted to a best fit.
The standard deviation of both fits was 1.6 X103 cm ",
approximately a tenth of the resolution. The lines with
K = 30t0 32 were all found to be weakly perturbed. Table IV
summarizes the constants obtained from the two fits. The

TABLE V. Summary of rotational constants and band centers.

uncertainty in the band center at (2710.210 + 0.006)cm ™' is
mainly due to the uncertainty in the calibration lines of HCI
(4 0.006 cm~").>¢ Our data are more accurate but consis-
tent with the values of v, = 2710.23cm~'and B’ = 0.344 49
cm ™! determined from lower resolution data by Costain.>!

The fine structure of the two strong components (2),
and (2), at 5959 and 5710 cm ™' shows some interesting ef-
fects (see Figs. 5 and 6 for intermediate resolutions traces).
The K structure in both bands in Pand R branches is strong-
ly blue shaded, due to the large value of
[(([C'—C")—(B'— B")]. The2, band shows a perturbation
for the low J values. These seem to be “missing” in Fig. 6
(compare Fig. 5), because up toJ ” = 9 each line is split into
two components. This may indicate an additional very weak
Fermi resonance, which is tuned out of resonance as J in-
creases because of the different rotational constants of the
states involved in the resonance. Such perturbations are fair-
ly typical but they do not, of course, in any substantial way
affect the analysis of the very strong resonances. A least
squares analysis does not lead to very well determined cen-
trifugal distortion constants, which are given as preliminary
values in Table V. An analysis of further, very high resolu-
tion spectra of these bands is in progress.'®

State Band center ¥,/cm ™! C/cm™! B/cm™! Remarks
1, 2710.210 0.1890556 0.344 5151 see Table IV
2, 5959.443 0.189 1 0.344 75 this work®
2, 5959.46 0.344 89 Ref. 50

2, 5710.487 0.189 62 0.344 65 this work®
3, 8 792.70 0.344 315 this work®
3, 8792.75 0.344 40 Ref. 24

3, 8 589.28 0.344 23 Ref. 24
(7/2), 10155.9 0.188 25 0.343 6 this work
(7/72), 9 881.9 0.189 00 0.3410 this work
* Preliminary centrifugal constants:

D, =367x10"7em™ Y, D)y = —2.9%X1077ecm~ !, Dy = —3.1x 10~ "cm™".

*D, =27%x10""em ™, Dy = —8.7%10""ecm™}, Dy =7.7X 10~ cm™ .

°D, =3.69%10""cm™".
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FIG. 12. Spectrum of the (7/2), band (P = 0.87 X 10° Pa, / = 15.5 m, resolu-
tion 0.05 cm ™). The upper curve is calculated with £ = 0.985 and the other
constants as discussed in the text.

Figures 12 and 13 show examples from the E-band sys-
tems, (7/2), and (7/2), under pressure broadened conditions
(about 0.4 cm—! FWHM for 0.85 X 10° Pa from the fit to the
spectra). These spectra were fitted with the low order term
formula for degenerate vibrational states:

F(¥,J,K) =¥, +BJWJ + 1)+ (C— B)K?* + 2CZK.
(23)

The appearance of the bands depends importantly upon §.
The bands can be well fitted with { = 0.985, as determined
for v,.>! In the fit the upper state rotational constants were
adjusted as well and each line was convoluted with a Lorent-
zian of 0.4 cm ™' width for the pressure broadening. The
band at 9882 cm ™! had been observed and assigned by Bern-
stein and Herzberg.”* The data from the rotational analyses
are collected in Table V, including also some previous re-
sults. It should be clear from the examples that the band
assignment can be made without ambiguity using the rota-
tional structure and the predictions from the Fermi reso-
nance model. More details about the rotational structure
and constants, which are consistent with the Fermi reso-
nance model, will be presented elsewhere.'®

F. Hot bands in Fermi resonance

Numerous hot-band, sum and difference transitions are
observed in the IR spectra of CF,H between 900 and 14 000
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FIG. 13. Spectrum of the (7/2), band (see Fig. 12 and the text for details).
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TABLE VI. Summary of approximate anharmonicity constants.

Constant x/cm~!
X1 = X4 —61.7
X4 =Xl —28.6
X3 —1.6
X24 —1.1
X6 -2

X33 —0.42
X35 —~55
X36 —0.14*
Xig = Xpp — 6.5
Xa6 —1.25
X5 —8

Xeo —0.15*

® Accurate values from Ref. 20.

cm™!. Table VI gives a summary of anharmonic constants
(approximate values only, because in most cases accurate
band centers have not been determined from a detailed rota-
tional least squares fit). We shall discuss here in more detail
only one aspect, namely how the position of certain hot
bands is affected by the Fermi resonance between v, =v, and
v, =v,. Two examples are chosen: (i) The hot bands arising
from the separate, low frequency fundamental v, = 508
cm ™!, which acts as a “spectator” in transitions with the v,
v, polyades. (ii) The hot bands arising from the “active par-
ticipant” v, within this Fermi resonance system.

We have noted the occurrence of hot bands with v, in
our discussion of several spectra in Sec. III D (see Figs. 4, 5,
and 7). They have an intensity of about 17% of the cold
bands at room temperature. Table VII gives a summary of
the observed transitions in terms of the frequency shift with
respect to the cold band. Using the diagonal elements of the
Hamiltonian in Eq. (3) with x;4~0 cm ™' and x,g~ — 1.25
cm ™!, one can calculate the positions of the hot bands, as-
suming that the Fermi resonance matrix elements are in first
order unaffected by the excitation of v,. The results of such a
model are shown in the column 47, . Although the agree-
ment does not seem to be too good, one must remember that
we are considering now small shifts, using a Hamiltonian
which was found to be accurate only on the scale of the large
displacements observed in the Fermi resonance. More inter-
esting than the small deviations between experiment and
theory, which are caused in some cases by identified, al-
though not assigned local perturbations, are the trends com-
pared to the zero order shifts Av°, which are calculated just
from the diagonal part of the Hamiltonian in Eq. (3), without
diagonalizing the Fermi resonance. One can clearly see how
the Fermi resonance tends to mix the anharmonic shifts.
This mixing of anharmonic shifts involving a spectator low
frequency vibration can be understood on very similar
grotinds as the mixing of rotational constants in Fermi reso-
nance.'? A more detailed discussion is hampered at present
by the lack of relative accuracy in the experimental data for
the hot bands of v and by the relatively large influence of
local perturbations on such small shifts.

The hot bands arising from v, = v,, show much larger
shifts and are therefore not subject to the difficulties men-
tioned above. These bands have an intensity of about 0.3% of
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TABLE VIL. Shifts for hot bands in Fermi resonance involving v, as lower state of the transition.

Hot band
{spectroscopic Shift of hot band minus cold band
notation)

Cold band AV /cm™! AV, /em™! 4V /cm~!
2ve+ v — ¥ (1), —25 —2.5 —-25
2v, v — v 2}, (small)® ~-04 0.0
Vo + 2V, + Vs — v 2}, —2.75* —24 —-25
v+ vg— v (3) —12 -~ 1.3 0.0
v, + 2v, + Ve — ¥ (3% —3.25 —-27 —2.5
v+ 4V + ve— Vg {35 -~ 50 —4.6 —50
6V, + vs— Vg (3)e —5.0 —~6.8 -175
v, + v — v 4), -3 -29 0
3v, + 2y, + vg — v (4), {small) —-22 —25
2y, + 4y, + v — v (4} —45 -~ 4.3 —50
* Additional perturbation see Sec. III E.
the cold bands at room temperature and can thus be mea- Ult) = exp( — 2miHt /h). (24)

sured if they occur in not too crowded regions of the spec-
trum. However, they can also be obtained very accurately
from combination differences. Table VIII gives a compari-
son of the v, hot band shifts with shifts calculated from the
Fermi resonance model and from the zero order Hamilton-
ian, Eq. (3). Our Fermi resonance notation replaces here the
approximate spectroscopic notation, for example (3/2},—(1/
2);, corresponds to (v, + v, — v,), etc. Although the abso-
lute errors in the calculated shifts still are of the order of a
couple of cm™!, the relative errors are now meaningfully
small, indicating the essential agreement of the model with
experiment. On the other hand, the calculated zero order
shifts A7° have no obvious relationship to experiment, apart
from an accidental coincidence for the (3), band. As we have
already pointed out elsewhere, the proper understanding of
the homogeneous (e.g., Fermi resonance} and inhomogen-
eous (e.g., hot band} vibrational structure in the infrared ab-
sorption of polyatomic molecules is of considerable interest
for the theory of IR-laser excitation of polyatomic mole-
cules.!5!

G. Effective Hamiltonian and time-dependent
vibrational dynamics for the Fermi resonance

Having established the Hamiltonian for the coupled
CH-stretching and bending vibrations experimentally (Ta-
bie ITI), we can calculate the desired time evolution for vibra-
tional motion in the absence of external perturbations using
the time evolution matrix (for each block of H, represented
here in energy units):

U solves the time dependent Schrodinger equation for the
amplitude vector b, the Liouville-von Neumann equation
for the density matrix P, or the Heisenberg equations of mo-
tion for the matrix representation Q of an observable (opera-
tor) according to Eqs. (25) to (27):

biz ) = Uz }b{0), (25)
P(t) = Ut )POU* (), (26)
Q(r) = U™ (r)PO)U(r). (27)

As an example we show in Fig. 14 the time evolution of the
populations |b, |* of spectroscopic zero order states, when
initially the state |v, =3, v, =0, /, = 0) is populated (i.e.,
the Hamiltonian applies to the N = 3 polyad). The experi-
mental preparation of this state should be possible, in princi-
ple, although not easily so in practice, by extremely wide
band, short pulse excitation (~0.01 ps) of this polyad disre-
garding weak features and absorptions in the wings of the
spectral profile of the pulse. Figure 14 illustrates how the
state |1) = |v, =3,v, =0,/, = 0) rapidly decays within
about 0.1 ps, the states |2) = v, =2,v, =2,/, =0) and
I3 =|v, =1,v, =4,1, =0) being populated to about
70% and 40% during this period. Even the state
|4) = |0, 6, 0) is populated with a few percent in this energy
redistribution. This shows how extensively energy can flow
between the CH-stretching and bending degrees of freedom
due to the tridiagonal Fermi resonance. The initial popula-
tion of the states |2), |3), and |4) occurs sequentially, as
suggested by the coupling matrix. On the other hand, the

TABLE VIIL. Shifts for hot bands involving v, as lower state (Fermi resonance notation see the text).

Shift of hot band minus cold band

Hot band Cold band 4%, /cm™! Ay /em™! 4¥%/cm™!
(3/2),4172), (1), —129 —119 —286
(3/2),41/2), (1), —436 — 426 —260
(5/2),-1/2), 2), —1438 ~16.6 —572
(5/2,1/2), 2), —69.8 —64.4 —54.6
1/2),~1/2), ), —13.7 — 147 —85.8
(1/2),1/2), (3}, —84.8 — 820 832
(1/2,+1/2), 3), 1134 ~109.5 —80.6
(8/21,1/2), ), —84.8 — 829 ~ 1118
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FIG. 14. Time evolution for the populations of states interacting in the
N = 3 polyad calculated with the spectroscopic Fermi resonance Hamilton-
ian and the initial condition p(|3, 0, 0)) = 1. See also the text for the detailed
discussions.

times of substantial redistribution are about equal ( < 0.1 ps)
for all three states. The time evolution is oscillatory because
of the few states which are effectively coupled on this short
time scale.>? There are strong selection rules, which allow
one quantum jumps for the stretching vibration and two
quantum jumps for the bending vibration. Finally, our Ha-
miltonian gives a correct description of the short time evolu-
tion only. In order to predict the evolution for longer times
(31 ps) a more detailed understanding of the small perturba-
tions in the spectra at high resolution is necessary.

IV. CONCLUSIONS

(1) In the CH-overtone spectrum of CF,H a complex
vibrational multiplet of bands appears, instead of one band
which might naively be expected for a single local or normal
mode state. This observation by itself is important for the
often suggested, simple interpretation of overtone spectra of
molecules with several different CH oscillators in terms of
local mode models disregarding the true multiplet structure
even for one mode.>’

(ii) The observed structures can be explained by means
of a tridiagonal Fermi resonance Hamiltonian, which ac-
counts quantitatively for the intensities and positions of the
numerous (22) observed bands. The assignments can be
made unambiguously, making use of the rotational structure
of the bands. A few further, weaker bands arise from combi-
nation with the CF,; stretching vibrations. The Hamiltonian
has been used to predict the structure of the high overtone
spectra in the visible which are measurable by photoacoustic
Spectroscopy.

(iii) The tridiagonal, multiple Fermi resonance reported
here for the CF,H molecule is by no means accidental, but
seems to be a universal dynamical property of the isolated
alkyl-CH chromophore. We have evaluated this in detail al-
ready for (CF,),CH,'*"’, CD,;H'®** and further molecules. '’
It can be established also by ab initio calculations.'® There
are also several instances in the literature, where two level
Fermi resonances have been invoked, where, however, there
seems to be definite evidence from reconsideration of the
published data that the tridiagonal resonance occurs {for ex-
ample, in CHCl; and CHBr;.>) It seems to us that the rel-
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evant couplings are also of great importance in spectra
which do not involve the isolated CH chromophore, but sev-
eral coupled CH oscillators, although these spectra are more
difficult to interpret.*¢

The present, unambiguous proof of the occurrence of a
tridiagonal Fermi resonance structure may perhaps be rel-
evant also in relation to the theoretical interpretation of the
overtone linewidths in benzene given by Sibert, Reinhardt,
and Hynes."' These authors have invoked Fermi-coupled
states as doorway states for the final decay giving widths of
the order of 100 cm™'. As no definite structure from the
Fermi resonances can as yet be assigned in these broad
bands, the interpretation must remain conjectural.

(iv) The tridiagonal Fermi resonance Hamiltonian can
be used to describe the time dependent flow of energy
between CH stretching and bending vibrational modes.
Rather complete oscillatory redistribution is observed for
high levels of excitation on time scales of 0.1 ps. This implies
a complete breakdown of the vibrationally adiabatic approx-
imation for the isolated alkyl-CH-chromophore, in contrast
to the acetylenic CH chromophore, where the adiabatic de-
coupling between the stretching and bending motions was
found to hold up to high levels of excitation.*® We have thus
a well defined structural element, in which the relationship
between molecular structure and vibrational redistribution
has been identified and understood on the basis of a simple
Hamiltonian.
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