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Abstract

Hydrogen peroxide (H–O–O–H) is among the simplest prototype molecules showing a chiral equilibrium geometry with the possibility
of fast quantum stereomutation in the low barrier limit. We report full dimensional quantum dynamical tunneling calculations on a semi-
global fully six-dimensional empirically adjusted potential hypersurface for H2O2, which is realistically close to spectroscopic and ther-
mochemical accuracy (B. Kuhn, T.R. Rizzo, D. Luckhaus, M. Quack, M.A. Suhm, J. Chem. Phys. 111 (1999) 2565). Solutions of the
time independent Schrödinger equation lead to levels of well defined parity (but undefined chirality), which compare well with available
spectroscopic results and provide numerous predictions. Solutions of the time dependent Schrödinger equation with initial conditions of
well defined chirality for P and M enantiomers show the time dependent wavepacket motion and periodic change of chirality for time
scales between picoseconds and hundreds of picoseconds. Complete six-dimensional dynamics and adiabatic separation of the torsional
mode from the high-frequency modes leads to essentially identical results for the stereomutation dynamics in terms of the relevant time
dependence. Mode selective inhibition and catalysis of stereomutation by exciting various vibrationally excited levels are reported and
discussed in relation to the concept of quasiadiabatic above barrier tunneling. The transition to relaxation behaviour and racemisation is
demonstrated with quasithermal wavepackets and analysed in terms of a simple statistical model. At 3000 K the racemisation relaxation
time is calculated to be 30 fs. We also discuss the results in the context of recent results on hydrogen peroxide as a prototype system for
parity violation in chiral molecules.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time dependent quantum wavepacket motion in rela-
tion to intramolecular dynamics has a long and rich history
going back to the origins of quantum mechanics ([1–6] and
references therein). Particularly after the discovery [7–9]
and theoretical description [10–13] of isotope selective
coherent infrared multiphoton excitation and laser chemis-
try of polyatomic molecules and subsequently also the
advent of ‘‘Femtosecond Chemistry’’ [14,15] there has been
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much interest in what has been called in a variety of con-
texts either ‘‘mode selective chemistry’’ [16,17] or reaction
control [18–21] including chiral molecules [22,23]. This
question has been addressed from a variety of points of
view, and Jörn Manz and his group have been early players
in the field, including both bimolecular and unimolecular
reactions [24–26]. Mode selective chemistry has been dis-
cussed for some very simple systems such as O3 [27] and
H2O isotopomers as well as other examples [28–33].
Among the important early developments we may mention
also the demonstration, on the basis of fs wavepackets
derived from high resolution spectroscopic experiment, of
mode selective intramolecular vibrational redistribution
as a primary process in chemical kinetics [34,35]. Later,
femtochemistry has provided experimental examples for
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one-dimensional quantum wavepackets [36,37] as well as
multidimensional kinetics of polyatomic molecules in isola-
tion and under condensed phase condition, a development
which was well honored as time proceeded [38–41].

It is probably fair to say that much of the impressive
progress in this general field was either based on experi-
mental, largely empirical results with little theoretical anal-
ysis, or else on very approximate, quantum theoretical
analysis, and highly simplified theoretical models. Alterna-
tively there exist accurate quantum theoretical calculations,
but in a space of substantially reduced dimensionality,
compared to the complete dynamical problem. In a few
cases full dimensional quantum calculations on appropri-
ate potential hypersurfaces exist for six-dimensional (4-
atom) and nine-dimensional (5-atom) systems. Only classi-
cal molecular dynamics of either the empirical force field
[42] or the Car–Parrinello type [43] has been able to provide
accurate theory for really high dimensional systems, but
then with the limitations of the classical approximation
for the nuclear degrees of freedom. The possible inclusion
of quantum effects in high dimensional simulations has
been reviewed recently [44,45].

We have, in recent years, embarked on a study of a few
prototypical reaction systems, for which accurate spectro-
scopic and ab initio results are obtainable as well as a full
dimensional quantum dynamical treatment. We may men-
tion in this context as examples on the one hand hydrogen
bond dynamics in isotopomers of hydrogen fluoride dimers
[46–50] and inversion in Ammonia isotopomers [51–55]
and on the other hand stereomutation dynamics in hydro-
gen peroxide and related systems [56–64]. Hydrogen perox-
ide in its equilibrium geometry exists in two enantiomeric
forms separated by a low torsional barrier (of about
360 cm�1) conventionally labelled the P and M enantio-
mers (see Fig. 1).
Fig. 1. H2O2 in its two enantiomeric equilibrium geometries, P-enantio-
mer on the left-hand side, M-enantiomer on the right-hand side.
The torsional tunneling is conventionally and quite eas-
ily treated in a one-dimensional torsional potential with a
low trans-barrier (about 360 cm�1) and a much higher
cis-barrier. For this system we have derived some time
ago a semiglobal fully six-dimensional potential energy
hyperface in a collaboration of the Lausanne and Zurich
groups [56] and we have already presented some quantum
dynamical results on this hypersurface [57,64]. The surface
has also been used by others for stationary state calcula-
tions [65,66]. We may mention here as well that stereomu-
tation tunneling in hydrogen peroxide has also been
investigated in relation to the fundamental phenomenon
of parity violation in chiral molecules [67–69]. Indeed,
hydrogen peroxide has been a prototype molecule for the-
oretical calculations of molecular parity violating poten-
tials (see [67–71] and the reviews [72,73] for further
references). We have discussed the importance of the inter-
play of parity violation with tunneling dynamics in this
context [58–63,72,73].

The aim of the present paper is to provide a more com-
plete report of our results on the time dependent multidi-
mensional quantum tunneling wavepackets dynamics. We
shall address the following main questions in this context:

1. How is the stereomutation tunneling visible in multi-
dimensional wavepackets and how is it affected by
excitation of various vibrational modes in the multidi-
mensional space, perhaps in a mode selective or a statis-
tical fashion?

2. What is the nature of the wavepacket motion in quasi-
adiabatic above barrier tunneling?

3. Are there useful approximations of reduced dimension-
ality, which provide an adequate description in relation
to the full dimensional quantum dynamical results?

4. How can one understand the emergence of relaxation
and racemisation in thermal systems as opposed to peri-
odic tunneling stereomutation?

2. The potential hypersurface and theoretical methods

We summarize here only briefly the main methods used
in our work, as the potential hypersurface and numerical
methods have been described in some detail before
[56,57,64,74]. The potential hypersurface used here is the
PCPSDE function derived in [56]. It provides an analytical
description of the potential V as a function of the bond
lengths R = ROO, r1 ¼ rO1H1

and r2 ¼ rO2H2
with obvious

notation for the two hydrogen atoms numbered H1 and
H2 and the two oxygen atoms numbered O1 and O2. The
three angles used are h1 as angle between the bonds H1–
O1–O2 and h2 between the extended O1–O2 vector and
O2–H2 bond. The particularly important torsional angle s
is given by the angle between the H1–O1–O2 plane and
the O1–O2–H2 plane. The potential hypersurface was
derived from a set of pointwise ab initio calculations and
then adjusted to a selected set of experimental data, which
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included structural parameters and the torsional barrier
(360 cm�1 for the lower trans-barrier) and the dissociation
energies D0 for the simple bond fission H2O2! 2OH (giv-
ing De = 19,039 cm�1) as well as a number of other data.
While the surface was not fitted to spectroscopic accuracy
in [56], it describes many important properties of H2O2

within reasonable accuracy (see [56] for a detailed discus-
sion). For the present study it is particularly relevant that
the experimental ground state tunneling splitting was accu-
rately described already by fully six-dimensional quantum
Monte Carlo calculations for the three isotopomers
HOOH, HOOD and DOOD in the original adjustment
of the surface, and subsequently confirmed by several fully
six-dimensional discrete variable representation (DVR) cal-
culations [56,57,64–66]. Also the interaction of tunneling
with various vibrational excitations is well described, as
far as comparison to experiment is possible [57]. We may
note that the analytical semiglobal PCPSDE potential
hypersurface was in part based on a set of ab initio points
calculated at an intermediate level of accuracy (CASPT2,
etc.), to start with. A balanced choice of quantum chemical
methods was necessary in order to describe large portions of
the hypersurface including bond extensions corresponding
to high overtone excitations and dissociation channels.
For a detailed discussion of the philosophy used in deriving
such a semiglobal hypersurface we refer to [56]. A somewhat
different strategy was used in the work of Koput, Carter and
Handy [75,76], where higher level quantum chemical calcu-
lations were used (CCSD(T)) to derive a more local force
field, accurate for amplitudes of motion corresponding to
low energies [75,76]. While higher accuracy has been claimed
for this low energy part of the surface [76], the differences are
actually not very large and the local surface does not give an
accurate description of high excitation energies.

In order to describe the time dependent dynamics on the
surface we have followed a two step procedure, by first
solving the time independent Schrödinger equation numer-
ically (exactly)

Ĥwnðq1; q2; q3; q4; q5; q6Þ ¼ Enwnðq1; q2; q3; q4; q5; q6Þ ð1Þ

in a discrete variable representation (DVR). We used the
generalized coordinate DVR described in detail in [64]. In
terms of generalized vibrational coordinates qk and their
conjugate momenta p̂k ¼ �i�ho=oqk the Hamilton operator
Ĥ is given by Eq. (2):

Ĥ=ðhcÞ ¼ 1

2hc

X6

k;l¼1

p̂kGk;lp̂l

 !
þ V ðq1; q2; q3; q4; q5; q6Þ; ð2Þ

V(q1,q2,q3,q4,q5,q6) is the effective potential energy includ-
ing contributions from the mass-dependent pseudopoten-
tial [74]. The Gk,l are generalized Wilson G-matrix
elements, which one might call ‘‘effective inverse reduced
masses’’. An important feature of the generalized DVR
approach [64] is the completely numerical evaluation of
all terms arising in Eq. (2) including the Gk,l and the
pseudopotential. The Hamiltonian is diagonalized in a
Chebychev DVR obtained by mapping the generalized
coordinates qk onto equidistant grids. This mapping leads
to additional contributions to the Gk,l [64]. In the present
work, we have used the valence coordinates mentioned
above, usually with linear mappings except for the treat-
ment of very high OH stretching excitations, where nonlin-
ear mappings of the two OH bond lengths allowed to
account for large bond elongations without unduly increas-
ing the number of grid points [64]. Appropriate truncation
of the full rectangular grid leads to a DVR-Hamiltonian
with about 10 million basis functions. Extensive successive
truncation [64,74,77] in all six degrees of freedom allows
for the efficient computation of the lowest few hundred
eigenvalues with adequate accuracy. For a more detailed
discussion of the DVR calculations and their convergence
we refer to [57,64] as well as to comparison with subsequent
results by other groups [65,66,78].

We can expect sufficient accuracy of these calculations as
well as the underlying potential surface to be able to claim
essentially quantitative validity to within reasonable exper-
imental accuracy for the wavepacket results reported below.
The level of accuracy reached can be judged from compar-
ison with spectroscopic experiment, where available.

In addition to the full-dimensional numerical DVR-
solution of the time independent problem, we have also
used an approximate adiabatic separation of the torsional
degree of freedom [57,64,74]. In essence we use a quasiadi-
abatic channel reaction path Hamiltonian (RPH) approach
with the reaction path coordinate q being described by a
torsional motion with the angle s. This defines a Hamilto-
nian operator Ĥqðp̂; qÞ, which depends upon q and the con-
jugate momentum p̂. The full Hamiltonian is approximated
by including a second term with a parametric dependence
upon q following Eq. (3):

Ĥðp̂; q;P;QÞ ¼ ĤQðP;Q; qÞ þ Ĥqðp̂; qÞ: ð3Þ
The Q and P describe all coordinates and momenta in the
set of 3N � 7 remaining degrees of freedom. The wavefunc-
tion is approximately given by the product wavefunction in
Eq. (4):

Wn
mðQ; qÞ ¼ vn

mðqÞ/nðQ; qÞ; ð4Þ
where the vn

mðqÞ are the eigenfunctions associated with the
adiabatic channel n

ðenðqÞ þ h/njĤqj/ni � En
mÞvn

mðqÞ ¼ 0: ð5Þ
In the quasiharmonic, quasiadiabatic approximation the /n

are furthermore approximated by a product of harmonic
oscillator functions b

/nðQ; qÞ ¼
Y3N�7

k¼1

bnk
k ðQq; qÞ: ð6Þ

However, more generally the /n(Q;q) may be anharmonic
vibrational wavefunctions. We have described details of
the theory and methods before [57,64,74]. The technique
follows closely the work of Miller, Handy and Adams
[79], which itself can be related to earlier models using
vibrationally adiabatic separations (see [80–87] and refer-
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ences cited therein). An important modification in our work
is the elimination of non-physical avoided crossings of
channels by a strictly speaking ‘‘diabatic’’ (hence ‘‘quasiadi-
abatic’’) approach. The physical idea behind this is to gen-
erate quasiadiabatic channel wavefunctions which behave
smoothly along the reaction path thus allowing for real
crossings instead of avoided crossing. The spirit is very sim-
ilar to the allowance for such physically motivated crossings
in the adiabatic channel model [84]. This can be realized
simply by a sequence of ‘‘2 · 2 diabatic rotations’’ [57]. As
a reference point for the diabatic rotations we choose the
channel energies at the equilibrium value of the torsional
angle (about 110�, see also [64]). Fig. 2 illustrates the conse-
quences of this procedure for the 150 lowest channels for
H2O2: On the left-hand side we show the strictly adiabatic
channels and on the right-hand side (s P 180�) the corre-
sponding quasiadiabatic channels after 20,000 diabatic
rotations. One can very nicely see the important effect of
this procedure, which in practice allows for generating an
efficient and quite good approximation for the total wave-
functions and relative energies (in particular tunneling split-
tings). As is clear from Fig. 2 the effect on RPH results will
be very small for the lowest channels in the case of H2O2,
but for higher excitations (Fig. 5) strictly adiabatic results
without diabatic rotations would be unphysical. Fig. 2 also
a

Fig. 2. The effect of diabatic rotations on the torsional channel potentials. The
the torsional angle s in degrees. For s 6 180� we show the strictly adiabatic cha
the quasiadiabatic channels resulting after 20,000 diabatic rotations. (a) The low
the OH stretching fundamentals (bold lines) surrounded by other channels.
overtone levels (bold lines) embedded in numerous other channels.
illustrates the rather large density of channels for even a
small molecule such as H2O2. Fig. 3 shows as a further illus-
tration the torsional wavefunctions supported by the adia-
batic channel corresponding to the antisymmetric bending
fundamental m6 (within the RPH model).

Finally, we have obtained solutions of the time depen-
dent Schrödinger equation in the eigenstate basis, hence

i�h
oWðq1; q2; q3; q4; q5; q6; tÞ

ot
¼ ĤWðq1; q2; q3; q4; q5; q6; tÞ

ð7Þ
with the time evolution operator Ûðt; t0Þ
Wðq1; q2; q3; q4; q5; q6; tÞ ¼ Ûðt; t0ÞWðq1; q2; q3; q4; q5; q6; t0Þ;

ð8Þ
W(q1,q2,q3,q4,q5,q6,t0) was chosen to satisfy certain
predefined initial conditions, such as well defined chiral-
ity, implying strict localization in a subspace of s. Of
course, in the eigenstate basis W(q1,q2,q3,q4,q5,q6,t) can
be equivalently generated from the eigenfunctions of Ĥ

Wðq1; q2; q3; q4; q5; q6; tÞ ¼
X1
n¼0

cnwnðq1; q2; q3; q4; q5; q6Þ

� expð�2piEnt=hÞ: ð9Þ
The initial condition in this representation simply defines
the time independent coefficients cn. As we have discussed
c

b

ordinate scale gives the potential energies E/hc, in cm�1, the abscissa gives
nnel potentials. For the symmetrically equivalent space s P 180� we show
est 150 channels for H2O2. (b) Detail of the two channels corresponding to

(c) Detail of the three channels corresponding to the first OH stretching
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Fig. 3. The lowest torsional wavefunctions supported by the adiabatic channel corresponding to the antisymmetric bending fundamental m6 (calculated
with the RPH model). Full lines: Wavefunctions of positive parity (+). Dotted lines: Wavefunctions of negative parity (�). The ordinate axis labels refer to
the energies E/(hc cm�1), the wavefunctions are shown without scale for illustration, centered at the positions of the corresponding energy levels.
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elsewhere, this approach has obvious advantages, when
deriving dynamics from high resolution spectroscopy,
where the wn and En are needed anyway in the adjustment
to experimental data. The approach has also advantages
for the treatment of multiphoton excitation with coherent
monochromatic radiation, as long as the coupling to the
coherent radiation field is not too strong (see [10–13] for a
discussion). In the present work we restrict our attention
to purely intramolecular non radiative short time dynamics.

Finally, for graphical illustration of the results we have
calculated the probability density in the torsional coordi-
nate s by explicit representation of the wavefunction in
the internal coordinates and integration over the complete
space for all coordinates except s. hence

jWðs; tÞj2

¼
Z
� � �
Z
jWðr1; r2;R; h1; h2; s; tÞj2 dr1 dr2 dR dh1 dh2:

ð10Þ

where we use the common ‘‘Podolski weighting’’ of the
wave functions.

3. Results and discussion

3.1. Eigenstate spectrum, tunneling splittings and times

Table 1 summarizes results for vibrational fundamen-
tals, tunneling splittings hc D~m� ¼ DE� and tunneling times
sk!q with excitation of the corresponding fundamentals.
The tunneling times were calculated with the usual two
level equation

sk!q ¼
h

2DE�
¼ 1

2cDm�
; ð11Þ

where DE± is the separation of levels of positive and nega-
tive parity supported on the channel with a given funda-
mental excitation mi, as shown for the example of m6 in
Fig. 3. For experimental results or exact DVR results one
would simply take the splittings from appropriately
assigned adjacent vibrational levels of different parity and
we shall discuss the physical significance in more detail in
Section 3.2.

The tunneling splittings as a function of vibrational exci-
tation in H2O2 have found recent attention using a variety
of methods and potentials. Several authors used in fact the
PCPSDE potential from our work. Table 2 summarizes
these results for convenience, to show the overall consis-
tency, when the same potential is used, but also some dif-
ferences when using different potentials. The general
agreement is actually quite good.

Fig. 4 shows the tunneling splittings for fundamentals
and combination tones as a function of vibrational energy
up to about 4000 cm�1. At first sight these generate the
impression of an almost random distribution scattered in
the range between about 4 cm�1 and 50 cm�1 around the
ground state tunneling splitting of about 11 cm�1, and we
shall return to this point in Section 3.3. The apparently
‘‘random’’ distribution in Fig. 4 arises fairly systematically
by combining the effects from catalyzing and inhibiting
modes. The only mode strongly catalyzing tunneling ste-
reomutation is the antisymmetric O–O–H bending m6 and
from the assignments one sees the effects of increasing exci-
tation in m6, which defines an almost straight line as a func-
tion of v6 in the upper part of the figure, and from the
combination with other modes. The mode m3 is an almost
inactive ‘‘spectator’’ mode, which leaves tunneling
unchanged, except for a slightly catalyzing effect at higher
excitation. This leads to two slightly increasing sets of split-
tings with energy for the series 31, 32, 33, 34 and 3161, 3261,
3361 in Fig. 4, where we have used the vibrational symbol
convention of [94].

All other modes are, in fact, inhibiting stereomutation
tunneling. The most strongly inhibiting mode is the sym-
metric OOH bending mode m2. Increasing its excitation
leads to a systematic decrease of the tunneling splitting.
Combining m2 and m6 excitation in 2161 one finds almost
complete compensation of the inhibiting and the catalyzing



Table 2
Tunneling splittings Dmi for H2O2 derived by various dynamical approximations and potentials for vibrational fundamentals mi

Mode mi FLQa RPHa (4 + 2)Db GCDVRc CMGd PIAe Hf

m0 11.0 11.1 11.3 11.0 11.0 11.3 11.2
m1 7.6 8.4 (7.7) 7.6 7.6 9.4 10.2
m2 6.1 5.0 6.6 6.4 6.1 6.3 6.3
m3 11.1 10.8 11.3 11.1 11.0 11.6 11.6
m4 118 120 120.4 118.9 118.9 115.8 –
m5 7.4 7.4 (7.7) 7.4 7.3 8.7 8.7
m6 20.8 21.8 21.5 20.8 20.75 21.2 19.3

The results in columns 2–6 are all based on the PCPSDE surface of Ref. [56], whereas columns 7 and 8 give results from independent calculations on
different potentials.

a Ref. [57].
b Ref. [56].
c Ref. [64].
d Ref. [65].
e Perturbative instanton approach [78].
f Ref. [93].
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Fig. 4. Calculated torsional tunneling splittings D~mT as a function of vibrational excitation in the other modes (m1,m2,m3,m5,m6) obtained from the exact six-
dimensional DVR calculations. The abscissa gives the average excitation above the ground level m = (m+ + m�)/2 for each tunneling pair. Open symbols
refer to fundamentals, full symbols to combinations and overtones. Circles are for levels with A-symmetry, squares for levels with B-symmetry. The
assignment of the level is described by giving the mode X with its vibrational quantum vX as right index. Modes in the ground level are not indicated. Thus
213161 implies one quantum of vibration in each of the modes m2, m3 and m6 and zero quantum in all other modes (see [94] for this convention). The position
of the ground state tunneling splitting is given by a dashed line marked 00 for the ground state.

Table 1
Energy levels and tunneling times for various fundamental excitations in H2O2 on the PCPSDE surface of [56]

i xi (cm�1) ~mi (cm�1) D~mi (cm�1)

Expa 6D Expa 6D RPH sk!q (ps) (6D)

0 [5786] [5691.7] 11.4 11.0 11.1 1.5
1 3778 3609.8 (3605?) 3617.7 8.2 7.6 8.4 2.2
2 1453 1395.9 1392.0 (2.4?) 6.1 5.0 2.7
3 889 865.9 850.5 12.0 11.1 10.8 1.5
4 392 254.6 259.3 116. 118 120. 0.14
5 3762 3610.7 3605.8 8.2 7.4 7.4 2.0
6 1297 1264.6 1236.5 20.5 20.8 21.8 0.8

a Experimental data from [88–93]. Note that in [57] the labels of m1 and m5 were interchanged.
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effects. The results shown in Fig. 4 can thus rather easily be
rationalized by a combination of catalyzing and inhibiting
effects from the different vibrational modes. It should be
made clear that all results discussed in Fig. 4 correspond



Table 3
Spectrum of the torsional mode in the (5 + 1) adiabatic approximation
and quantum numbers in both low(l) and high(h) barrier notation (first and
second columns)

vT(l) vT(h) C ~ma (cm�1) ð~m� m0Þa (cm�1) ð~m� m0Þb (cm�1)

0 0 A+ 175.8 0 0
1 0 A� 186.9 11.1 11.0
2 1 A+ 435.4 259.6 259.3
3 1 A� 554.8 379.0 378.2
4 2 A+ 758.3 582.5 580.9
5 2 A� 971.8 796.1 792.8
6 3 A+ 1204.4 1028.6 1023.7
7 3 A� 1447.8 1272.0 1225.0
8 4 A+ 1697.2 1521.4 1513.7
9 4 A� 1950.6 1774.9 1761.2

10 5 A+ 2192.5 2016.7 2005.1
11 5 A� 2454.3 2278.5 2262.0
12 6 A+ 2612.1 2436.3 2423.9
13 6 A� 2967.5 2791.7 2766.8
14 7 A+ 3000.5 2824.7 2797.8
15 7 A� 3541.3 3365.5 3326.4
16 8 A+ 3543.7 3367.9 3318.0
17 8 A� 4204.2 4028.4 3962.1

a The wavenumber ~m is given with respect to the minimum of the lowest
adiabatic channel. This minimum is 5516 cm�1 above the minimum of the
potential hypersurface. The trans-barrier in the channel is at 5913.4 cm�1

(397.3 cm�1 above its minimum). The total zero point energy is
5691.9 cm�1 in the (5 + 1)-dimensional adiabatic approximation
(5691.7 cm�1 exact six dimensional).

b Six-dimensional result.
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to the torsional ground level doublet. If the torsional mode
itself is further excited, then the splitting increases much
more strongly, beyond the range shown in Fig. 4. One
might also note that in a strictly separable picture all results
in Fig. 4 would fall on a line parallel to the abscissa with
the ground state splittings, which is indicated as a dashed
line in the figure (marked 00). The effects result from a
quasiadiabatic interaction of the torsional doublet with
the various modes.

Both of the two OH stretching modes m1 and m5 are
inhibiting tunneling. A further question thus refers to the
systematic decrease of the tunneling splitting with increas-
ing OH stretching excitation to very high energies. This has
found experimental interest for quite some time, and has
also been addressed theoretically by us before [56,64].
Fig. 5 shows the results for various OH stretching polyad
levels, where N = v1 + v5 is the polyad quantum number.
One sees the dramatic decrease of the stereomutation rate
s�1 = DE/h, demonstrating the inhibiting character of
OH stretching.

We conclude this section by giving the results for the
spectrum of the torsional mode itself in the (5 + 1)-dimen-
sional adiabatic calculation, which singles out this coordi-
nate as reaction coordinate, and thus allows the
assignment of torsional levels, in Table 3. While for the
lowest levels the (5 + 1)-dimensional results are accurate,
within 0.1 cm�1 of the six-dimensional results, for higher
excitation the error increases to 10 cm�1 and even several
10 cm�1 at the highest levels. One observes the convergence
to the free rotor degeneracy at the highest levels. The
approximate (5 + 1)-dimensional calculations have some
merit in formulating a consistent transition state approxi-
mation (see Section 3.3).

The reversal of the (vT(h) = 7, A�, vT(l) = 15) and the
(vT(h) = 8, A+, vT(l) = 16) state energies in the fully cou-
pled six-dimensional result compared with the adiabatic
calculations corresponds to an overlap of the vT(h) = 7
and 8 tunneling pairs. This can be the result of a local res-
Fig. 5. Stereomutation period s (represented as s�1 / tunneling splitting)
as a function of the OH stretching excitation, calculated from an adiabatic
approximation. Circles show results using a basis with pure OH stretching
excitation (v2 = v3 = v4 = v6 = 0). Triangles show results including some
OH bending excitation in the basis functions (v3 = v4 = 0 and
0 6 v2 + v6 6 2). ~m is the excitation wavenumber above the zero point level.
onance, which is an inherently non-adiabatic effect. In prin-
ciple, such effects are not too surprising, as the (A�/A+)
splitting is less than the inverse vibrational density of states
at this energy since we are close here to the limit of almost
free rotation, where vT(h) = 7, A� becomes almost degener-
ate with vT(h) = 8, A+ (see Table 3). Fig. 6 gives a graphical
survey of the lowest adiabatic channel potential related to
the torsional level positions from the (5 + 1)-dimensional
adiabatic channel calculations up to the energy of the
trans-barrier.
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Fig. 6. Lowest adiabatic channel potential and torsional levels from the
(5 + 1)-dimensional adiabatic channel calculations.
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Fig. 7. Six-dimensional wavepacket evolution in H2O2. |W|2 ds shows the
time dependent probability as a function of the torsional coordinate,
integrating the probability density over all other coordinates as defined by
Eq. 10. (a) Shows the first 5 ps with an initial distribution localized on one
side of the torsional barrier (0 6 s 6 180�) at the ground state energy,
roughly corresponding to a superposition of the lowest A+ and A�

tunneling levels. (b) The time range 100–105 ps with the initial condition at
t = 0 as in (a).

a

b

Fig. 8. Six-dimensional wavepacket dynamics in H2O2 from exact six-
dimensional DVR results with an initial condition including excitation
with one quantum of the catalyzing antisymmetric OOH bending mode
(v6 = 1), otherwise as in Figs. 6 and 7.
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3.2. Results on stereomutation wavepackets

The most common spectroscopic analysis of tunneling,
indeed, relates observed 2-level splittings to periodic inter-
conversion rate processes by means of Eq. (11). There is an
implicit assumption in such an analysis, which is not
always clearly appreciated or stated: The wavefunction
associated with the two levels showing the observed split-
ting DE must be such that the motion described by the
two term approximation applied to Eq. (9) corresponds
to the process for which one wishes to infer the rate. In
fact, any chosen pair of levels in the sum of Eq. (9) will
exhibit a periodic time evolution given by Eq. (11), how-
ever, usually with some physics very different from, say, a
process of stereomutation. This question relates to the
problem of the proper spectroscopic (or theoretical) assign-

ment of the observed pair of levels, which really implies the
proper understanding of the molecular wavefunctions asso-
ciated with the levels. For ground state tunneling splittings
such an assignment and at least a qualitative understanding
of the associated wavefunctions is usually straightforward,
although even there one may have exceptions to the rule
and some pitfalls. For excited states the corresponding
problem can be highly nontrivial and in particular for
above barrier tunneling to be discussed below, the wave-
functions might be very complicated and not correspond
to a simple process. For example the adiabatic channel
for v6 = 1 shown in Fig. 3 supports two ‘‘tunneling wave-
functions’’ highly above the barrier of the lowest quasiadi-
abatic channel, which it exceeds by more than 1000 cm�1.
If the quasiadiabatic channel RPH picture shown in
Fig. 3 is correct, then indeed the two lowest wavefunctions
shown there are associated with a tunneling splitting which
gives a simple stereomutation process. More generally, a
multidimensional wavepacket analysis is necessary to
obtain firm conclusions and we shall present here such an
analysis in an exemplary fashion.

Fig. 7 shows such a result for a multidimensional time
dependent probability density, represented in one dimen-
sion following Eq. (10), at the ground state energy. The ini-
tial wavepacket at t = 0 was strictly localized on one side of
the barrier (at s < 180�) and then propagated following Eq.
(8). One finds, indeed, the expected periodic wavepacket
motion with a period of about 3 ps, which continues for
hundreds of picoseconds in an essentially unperturbed
manner as shown. In the vapor phase at atmospheric pres-
sure collisions will interfere after about 1 ns and at low
pressure thermal background radiation will interrupt the
process at much longer times.

Fig. 8 shows the time dependent wavepacket result with
an initially strictly localized, chiral wavepacket (for
s 6 180� only at t = 0) and at the same time one quantum
of vibrational excitation in the antisymmetric O–O–H
bending mode m6 at 1236 cm�1. Given a torsional trans-bar-
rier at 360 cm�1 its excitation is well above the energy
needed for almost free internal rotation. However, while
the period of motion is reduced by about a factor of two,
its structure in the six-dimensional space at energies high
above the barrier remains that of an essentially periodic
tunneling wavepacket, very similar to the ground state tun-
neling well below the barrier. Of course this is anticipated
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from the good validity of the quasiadiabatic channel RPH
approximation, which was not used for the results in Fig. 8
which shows the numerical DVR solution for the fully cou-
pled six-dimensional Hamiltonian. This phenomenon of
quasiadiabatic above barrier tunneling is fairly ubiquitous
and provides the basis for the spectroscopic analysis of
mode selective tunneling dynamics [46–55]. In the present
example OOH bending is a ‘‘catalyzing mode’’, whose exci-
tation speeds up the tunneling process, but other modes
slow down the stereomutation by quasiadiabatic above
barrier tunneling, in the case of OH stretching very much
so, as we have seen above. One notes in Fig. 8 that for very
long times of 100 ps the changes in the wavepacket are
somewhat larger than for ground state tunneling in
Fig. 6, but they remain rather unimportant.

Fig. 9 provides an interesting test for the use of the
quasiadiabatic channel RPH approximation in solving
the time dependent Schrödinger equation for multidimen-
sional tunneling. The close similarity of the results in Figs.
9 and 8 show the RPH model to be excellent for this exam-
ple, and Table 1 suggests that it is of similar quality for
other excitations in H2O2. This is excellent news for treat-
ing multidimensional tunneling in molecules similar to
H2O2 but possibly also much more complex systems such
as Aniline (and its isotopomers, in particular the chiral
isotopomers C6H5NHD), where we have already applied
the approach to spectroscopic results from our work
[74,95].

Fig. 10 shows snapshots of two-dimensional probability
densities obtained from the full six-dimensional densities
by integration over all coordinates except torsion and
OOH bending. Here one can compare the ground state
and excited state v6 = 1 wavepackets. Essentially in the sec-
a

b

Fig. 9. Six-dimensional wavepacket dynamics in H2O2 calculated with the
quasiadiabatic channel RPH approximation and one quantum of OOH
bending (v6 = 1), conditions otherwise as in Figs. 7 and 8. There is only a
slight phase shift visible compared to Fig. 8.
ond case one has a quasistationary excited state density
(for v6 = 1) which is propagated in the torsional coordinate
by the quasiadiabatic above barrier tunneling.

One notes again the increased tunneling rate in v6 = 1
compared with the ground state, which is a peculiarity of
m6, whereas m1, m2 and m5 excitation would slow down the
tunneling process. We refrain here from showing these
and other examples as the conclusions are similar and fairly
obvious. In all these excitations tunneling proceeds with
increased or reduced rate but otherwise almost unper-
turbed, very similar to ground state tunneling, by a process
which may be justly called quasiadiabatic above barrier
tunneling because of the effective vibrationally adiabatic
separation of these vibrational modes from torsion.

3.3. Stereomutation wavepackets and multistate

racemisation with random, quasithermal initial conditions

After we have discussed in the previous sections results
for tunneling and wavepacket motion with certain selected
initial excitations involving few states we turn now to wave-
packets with ‘‘random’’ initial excitations, involving very
many states, in order to illustrate the situation correspond-
ing to a thermal reaction. The initial state vector at t = 0 in
Eq. (9) is chosen in such a way, that it is always localized
on one side of the potential barrier (0 6 s 6 180�) and that
the populations pn = jcnj2 are randomly drawn from a
Boltzmann distribution at some temperature T and with
the complex phase angles an in cn = jcnjexp(ian) being
drawn randomly from the interval 0 6 an 6 2p. For a
detailed discussion for such ‘‘quasithermal quantum
mechanical trajections’’ we refer to [96,97]. One may phys-
ically think of randomly drawing a single H2O2 molecule
from a thermal ensemble, but with the localized initial con-
ditions as specified above.

Fig. 11 shows results for the time evolution of the prob-
ability density as a function of the torsional angle s and as
a function of time with initial conditions simulating vibra-
tional–torsional temperatures of 298 K and 700 K for
H2O2 (without rotation, see below). One can clearly see
the damping out of the oscillations at higher temperatures,
corresponding to increasingly ‘‘random’’ motion of the
probability density.

One can analyse the wavepacket motion in terms of
another even more coarse grained variable instead of the
detailed probability density jW(s, t)j2: the probability of
finding either a ‘‘left handed’’ chiral structure P(M) or a
‘‘right handed’’ structure P(P). Clearly the probabilities
are just the integrals over the appropriate part of space

PðMÞ ¼
Z p

0

jWðs; tÞj2 ds ¼ 1� P ðP Þ: ð12Þ

Such a result is shown in Fig. 12. It shows the transition
from a purely oscillatory stereomutation tunneling at
T = 0 K to an increasingly damped oscillation. The ordi-
nate in Fig. 12 actually presents what one might call the
chiral observable ‘‘chirality’’ of the wavepacket



Fig. 10. Six-dimensional wavepacket dynamics in H2O2 from exact six-dimensional DVR results. The initial condition is as in Figs. 6 and 7. The ordinate
(z) shows the probability density |W|2 integrated over four degrees of freedom as snapshots for certain times as indicated (0–1.5 ps) and as a function of the
torsional angle s (x-axis) and the OOH bending angle (y-axis). Left-hand side for (v6 = 0), right-hand side for (v6 = 1).
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v ¼ P ðMÞ � PðP Þ ð13Þ
which is identical to the frequently used enantiomeric
excess (with concentrations C)

ee ¼ v ¼ P ðMÞ � PðP Þ
P ðMÞ þ PðP Þ ¼

CðMÞ � CðP Þ
CðMÞ þ CðP Þ : ð14Þ

Of course, one could as well calculate other chiral observ-
ables from the full six-dimensional probability density,
such as optical activity or optical rotatory power, circular
dichroism or vibrational circular dichroism or Raman opti-
cal activity, whose behaviour can be related to the time
dependent wavefunctions and probability densities by the
appropriate time dependent expectation values. Under
completely thermalized collisional conditions one would
expect simple relaxation towards an equilibrium with
v = 0 (neglecting parity violation). While this is not
observed for the collision free random ensemble, the long
term oscillation is increasingly damped with increasing
temperature and Figs. 13 and 14 show how such a simple
relaxation behaviour is approached at a vibrational tem-
perature of T = 3000 K where one has a relaxation time
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Fig. 11. Six-dimensional wavepacket dynamics in H2O2 for initial states
with a quasithermal population of levels: (a) for 298 K, (b) for 700 K (see
also captions of previous figures and text for a detailed discussion).

a

b

Fig. 12. Chirality v or enantiomeric excess, Eq. (13), for the wavepackets
of Fig. 10 as a function of time (a) initial evolution, full line T = 298 K,
dashed line T = 400 K, dotted line T = 700 K (b) long time evolution for
298 K.
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Fig. 13. Evolution of chirality v as a function of time for quasithermal
vibrational–torsional (J = 0) wavepackets at 298 K (dashed), 1000 K (full
line) and 3000 K (dotted). The sharp peaks result from the limited number
of computed timepoints and are thus only a graphical artifact (see also
caption to Fig. 12 and text).
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Fig. 14. Detail for short times of Fig. 12 (but T = 1000 K, full line,
T = 2000 K, dotted, and T = 3000 K, dashed line).
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sR of about 30 fs. One should note that the physical signif-
icance of this time is quite different from a high pressure
unimolecular relaxation time
sR;uni1 ¼
1

kf1 þ kb1
’ 1

2kf1
: ð15Þ

Rather one has here a randomly sampled collision free
ensemble. Nevertheless, if the distributions become compa-
rable then also the relaxation times become comparable. Of
course, in order to reach such a collisional high pressure
limit relaxation enormous pressures (p > 10 kbar) would
be needed, which makes the physical situation comparable
to the ‘‘high pressure limiting relaxation measured at low
pressures’’ and we refer to [98] for a discussion of some
of the related fundamental concepts.

We have also calculated approximately the effect of add-
ing rotational motion by approximating the wavefunction
roughly as a product of the vibrational wavefunction with
a symmetric top wavefunction of appropriate moments
of inertia. The rovibrational energies are thus given
by E(v,J,K) = E(v, 0,0) + (Bz � Bx)K2 + BxJ(J + 1), where
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Fig. 15. Chirality calculated from wavepackets at J = 0 (3000) and with
adding rotational states up to J < 6 (see text).
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Fig. 16. The effect of adding rotational levels when calculating time
dependent probability densities in quasithermal ensembles (a) T = 700 K,
J = 0 (b) T = 700 K, with rotational levels up to J < 11 (see also captions
to Fig. 10 and text).
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E(v, 0,0) are the eigenvalues for the Hamiltonian with
J = 0, Eq. (2) and Bx and Bz are effective rotational con-
stants. We chose Bx = 0.85 cm�1 and Bz = 10.9 cm�1.
Fig. 15 shows the resulting slight damping of oscillations
with states up to J < 6 included. The relaxation time at
3000 K is essentially unaffected. Of course, with explicit full
dimensional rotation–vibration coupling the effects may be
larger, but such a calculation is still difficult to converge at
present.

Fig. 16 finally shows the effect of ‘‘smoothing’’ the prob-
ability densities by adding rotational levels. Fig. 16a is a
vibrational wavepacket with J = 0 randomly sampled at
700 K. Fig. 16b shows the much ‘‘smoother’’ probability
densities when including rotational states up to J < 11. In
agreement with our previous discussions there is very fast
transfer of probability from the initial chiral form to its
enantiomeric structure within less than 100 fs in both cases,
which is much faster than for any of the wavepackets with
torsional ground level doublets only. Of course, in the
ensembles discussed here, torsional excitation is now
included and plays a dominant role. Fig. 17 shows similar
results for 298 K, which demonstrates that at this lower
temperature the time scales are dominated by low energy
tunneling (about 1–2 ps).

One might consider analytical representations for relax-
ation behaviour in chiral molecules under conditions simi-
lar to the ones discussed here. Indeed very simple random
relaxation models can be formulated for statistical distribu-
tions of tunneling splittings [99]. If a set of splittings D such
as those represented in Fig. 4 were to be represented by a
rectangular distribution G(D) with constant values for
�Dmax 6 D 6 + Dmax and G(D) = 0 outside this range
one finds an oscillatory relaxation for, say P(M)

P ðMÞ ¼ 1

2
1� sinðDmaxtÞ

Dmaxt

� �
: ð16Þ

If on the other hand one has a Lorentzian distribution for
G(D), say GL(D), one obtains, indeed an exponential relax-
ation with
P ðMÞ ¼ 1

2
½1� expð�DLtÞ�; ð17Þ

where DL is the half width at half maximum (HWHM) of
the Lorentzian distribution.

One might, of course, now proceed to analyse the spec-
trum of hydrogen peroxide and derive the real distribution
function and relaxation behaviour for thermal ensembles
of H2O2. However, because of the difficulty of an exact
treatment of coupling rotation and tunneling-vibration at
very high angular momenta, this is still quite difficult.
One might also note that much of the reaction at high tem-
peratures proceeds via torsional excitation above the
barrier. In fact, one might compare here to a rough transi-
tion state estimate for the rate constants and relaxation
times and finds without any tunneling (and obvious nota-
tions [94,109]):

sR ¼
1

2kðT Þ ¼
h

2kBT
q

q 6¼
expðDE0=kT Þ: ð18Þ

Writing the partition functions of the molecule q and the
transition state q5 in the usual way as a product of func-
tions qi from the various degrees of freedom and cancelling
the partition functions qi for all degrees of freedom except
for torsion with qT one has thus very simply

sR ’
h

2kBT
qT expðDE0=kT Þ; ð19Þ
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Fig. 17. Probability densities as in Fig. 15, but for 298 K (a) J = 0 (b) up
to J < 11 included.
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where DE0 is the effective threshold energy measured from
the zero point level. With DE0 = 221.5hc cm�1 from the
lowest adiabatic channel and taking the classical limit with
~mT ¼ 260 cm�1 this results in about sR = 90 fs at 3000 K,
which is largely dominated by the torsional frequency
and is of the order of magnitude of the result expected from
the accurate quantum calculations. Larger deviations are,
of course, found at lower temperatures. With the obvious
limitations, which such rough estimates have, we see at
least that after appreciable averaging and at high tempera-
tures many of the features of the mode selective tunneling
quantum dynamics are washed out and the average relaxa-
tion times can, indeed, be estimated by the crudest of
models.

While this result is not entirely unexpected, we note
nevertheless that it relies on the averaging of highly mode
specific stereomutation processes and not on fast intramo-
lecular vibrational redistribution, which is unimportant for
H2O2 under the conditions shown here. Thus the relatively
close agreement between the very simple result from transi-
tion state theory and the state averaged quantum wavepac-
ket calculations does not demonstrate the validity of the
fundamental assumption of intramolecular quasiequilibri-
um in transition state theory. In fact, as we have shown
explicitly here, this assumption is not fulfilled. We might
mention here the wavepacket calculations on ammonia
isotopomer inversion, where IVR plays a more important
role [52,53]. Also, one might view our (5 + 1)-dimensional
quasiadiabatic channel results as a more sophisticated,
generalized form of transition state theory [84] and
then the agreement between this ‘‘quasiadiabatic channel
transition state theory’’ and the exact results would be very
good.

4. Conclusions

Hydrogen peroxide stereomutation is among the sim-
plest isomerization reactions, which we have studied here
for the isolated molecule by full six-dimensional quantum
dynamics on a semiglobal potential energy hypersurface
[56], including all vibrational–torsional degrees of freedom.
Solutions to the time independent Schrödinger equations
provide energy levels and wavefunctions of well defined
parity, neglecting the very weak effects from parity violat-
ing potentials [67–69,99,100]. This implies that in spite of
the chiral nonplanar equilibrium geometry, the energy lev-
els observed by high resolution spectroscopy correspond to
effectively achiral states that are describable by superposi-
tions of ‘‘left handed’’ and ‘‘right handed’’ (P and M) enan-
tiomers. The large tunneling splittings of about
DE± = 11 cm�1 (hc) compared to the difference of the par-
ity violating potentials of the enantiomers DPVE ’
4 · 10�14 cm�1 (hc) show that any chiral mixing into the
pure parity states would be quite negligible (of the order
of (DE±/DPVE)�2). This situation is anticipated for mole-
cules with tunneling in the ‘‘low barrier limit’’ and is quite
common in the spectroscopy of such molecules. The levels
can be grouped, however, in pairs of levels of different par-
ity separated by a splitting that is small compared with the
vibrational fundamental spacings. The splitting can be
associated with the stereomutation time for appropriate
chiral superposition states. This shows a high degree of
mode selectivity [57,64–66,78] when exciting different vibra-
tional fundamentals and generates an interesting system-
atic behaviour for various combination and overtone
levels, in spite of superficially ‘‘random’’ overall appear-
ance. We have discussed that a more proper understanding
of the real stereomutation dynamics requires a detailed
investigation of the time dependent wavefunctions with
an initially chiral state. In relation to the questions
addressed in the introduction, our investigation along these
lines has provided the following main conclusions.

1. The multidimensional wavepackets, indeed, confirm the
high degree of mode selectivity in catalyzing or inhibit-
ing stereomutation when exciting various vibrational
modes other than torsion. The antisymmetric O–O–H
bending mode m6 is a strongly catalyzing mode, whereas
the symmetric bending mode m2 and the stretching
modes m1 and m5 are inhibiting modes. The O–O stretch-
ing mode m3 is an almost inactive spectator mode. The
wavepacket results shown here in an exemplary manner
for the mode m6 confirm what would have been inferred
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from the various previous eigenstate analyses. This
might have been expected, but is not a priori guaran-
teed. This behaviour is related to the results discussed
in the following conclusions.

2. The nature of the wavepacket motion at energies high
above the trans-barrier for stereomutation (only about
360 cm�1, less than all the vibrational fundamentals
except torsion) is governed by quasiadiabatic above bar-
rier tunneling. The wavepacket behaviour is qualita-
tively similar to the ground state wavepacket below
the barrier, only its period of motion is changed. The
periodic stereomutation process is essentially main-
tained for long times of at least 100 ps. Quasiadiabatic
above barrier tunneling complements the first discussion
of the tunnel effect of chiral molecules in the ground
state as discovered by Hund 8 decades ago [110].

3. The quasiadiabatic channel RPH approximation is very
successful in describing both the energy level spectrum
and eigenfunctions as well as the time dependent wave-
packet motion in the ground state and in the quasiadia-
batic above barrier tunneling discussed above.
Differences to the exact results remain small up to ener-
gies of 4000 cm�1, where exact calculations are avail-
able. Approximate results for very high OH stretching
polyads seem to indicate effectively quasiadiabatic above
barrier tunneling up to energies near the lowest dissoci-
ation limit corresponding to the N = 5 and N = 6 poly-
ads (15,000–20,000 cm�1) with a consistently and
strongly decreasing tunneling rate with increasing OH
stretching excitation. This result is of interest in princi-
ple, by showing the possibility of using the inverse
superposition scheme with tunneling switching to study
parity violation in molecules of the general type similar
to H2O2 [63,99,101,102], although H2O2 itself is clearly
unsuitable for such experiments because of the much
too large tunneling splittings at all energies.

4. Choosing initial conditions of localized chiral wavepac-
kets drawn from a random quasithermal ensemble one
finds an increasing tendency towards relaxation-like
behaviour, which can be qualitatively understood by
simple models and may show either oscillatory or expo-
nential relaxation. Such relaxation and racemisation for
stereomutation in the low barrier limit can be compared
to femtosecond wavepacket racemisation by intramolec-
ular vibrational redistribution (IVR) in molecules that
are achiral at the equilibrium geometry but may have
an initial wavepacket state that is chiral [103,111,112].
One can also compare to coupled IVR and tunneling
in ammonia [51,52]. The relaxation times of the quasi-
thermal wavepackets at high temperatures are only
weakly temperature dependent on the order of 30 fs at
1000–3000 K. One can compare these times with transi-
tion state approximations that are used in reaction
dynamics. The quasiadiabatic channel RPH approxima-
tion can be considered to be a generalized transition
state model with tunneling and as it describes even the
mode selective wavepacket results accurately, it will also
describe the torsional relaxation rates with similar accu-
racy. However, the most commonly used quasiharmonic
transition state theory without tunneling, using
harmonic frequencies for the equilibrium geometries
and transition state geometries to calculate partition
functions, will give reasonable results only at high
temperatures (3000 K with kT exceeding the barrier by
more than a factor of 5) and fails at low temperature.
Anharmonic corrections (without tunneling) will not
change this conclusion. A similar conclusion can be
drawn by inference for classical trajectory results: While
they may be adequate for thermal rates at high temper-
atures, they will fail for low temperatures. While such a
conclusion might have been anticipated by some, it is
certainly not widely appreciated in applications to
similar reaction systems. Interestingly, the acceptable
validity at high temperatures arises here from averaging,
not from fast mode–mode coupling (IVR). While we
have also studied approximately the role of rotation,
accurate results on this will have to be derived in future
work.

We can also draw some conclusions of a more general
nature. The time dependent wavefunctions and probability
densities discussed in the present work can be translated
into other time dependent chiral observables such as opti-
cal activity, circular dichroism or Raman optical activity.
By this, we can relate our results also to more ordinary
kinetic experiments, where, indeed, time dependent optical
activity was the first observable studied in quantitative
kinetic experiments [6,104] and might be conceptually
related today to the possible femtosecond observation of
optical activity in reactions of chiral molecules. Indeed,
there has been much recent interest in ‘‘direct’’ time depen-
dent observation of tunneling processes on very short time
scales [105,106] (see also [107]). We would claim that our
results provide the basis for a ‘‘high resolution spectro-
scopic’’ approach to short time stereomutation tunneling
dynamics in H2O2. This is true to the extent that the Ham-
iltonian is spectroscopically adjusted [108]. The time reso-
lution that one can claim for such an approach is
Dt > 1=ð4pcD~mÞ. If we take the limit of accurate analysis
in the present work on H2O2 to be about 5000 cm�1, then
this corresponds to a time resolution for general vibra-
tional–torsional-tunneling dynamics of Dt > 530 attosec-
onds (as). Approximate extension of the analysis to
20,000 cm�1 leads to Dt > 130 as, which is comparable to
the best ‘‘direct’’ time resolved results.
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[71] R. Berger, C. van Wüllen, J. Chem. Phys. 122 (2005) 134316.
[72] M. Quack, J. Stohner, Chimia 59 (2005) 712.
[73] M. Quack, in: K.J. Naidoo, J. Brady, M.J. Field, J. Gao, M. Hann

(Eds.), Modelling Molecular Structure and Reactivity in Biological
Systems, Proc. 7th WATOC Congress, Cape Town January 2005,
Royal Society of Chemistry, Cambridge, 2006, p. 3.

[74] B. Fehrensen, D. Luckhaus, M. Quack, Z. Phys. Chem. 209 (1999)
1.

[75] J. Koput, S. Carter, N.C. Handy, J. Phys. Chem. A 102 (1998) 6325.
[76] J. Koput, S. Carter, N.C. Handy, J. Chem. Phys. 115 (2001) 8345.
[77] D. Luckhaus, M. Quack, Chem. Phys. Lett. 190 (1992) 581.
[78] V.A. Benderskii, I.S. Irgibaeva, E.V. Vetoshkin, H.P. Trommsdorff,

Chem. Phys. 262 (2000) 369.
[79] W.H. Miller, N.C. Handy, J.E. Adams, J. Chem. Phys. 72 (1980) 99.
[80] L. Hofacker, Z. Naturforsch. A 18 (1963) 607.
[81] R.A. Marcus, J. Chem. Phys. 43 (1965) 1598.
[82] J.T. Hougen, P.R. Bunker, J.W.C. Johns, J. Mol. Spectrosc. 34

(1970) 136.
[83] M. Quack, J. Troe, Ber. Bunsenges. Phys. Chem. 78 (1974) 240.



B. Fehrensen et al. / Chemical Physics 338 (2007) 90–105 105
[84] M. Quack, J. Troe, in: P. von Ragué Schleyer, N. Allinger, T. Clark,
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