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Abstract

Oligomeric aggregates of hydrogen fluoride are important prototype molecules for a detailed understanding of the structure,
energetics, spectroscopy and dynamics of hydrogen bonding. The pairwise additive description of these oligomers is known to
be inadequate. We have sampled the three-body potential for HF at 3000 (HF); configurations selected by various classical and
quantum sampling techniques, including dynamic sampling based on Voronoi step representation. The counterpoise-corrected
Mgller-Plesset second-order three-body energies using a double zeta Gaussian basis set with polarization functions
(DZP + MP2) at these configurations are fitted by analytical 12-dimensional potentials. Cooperative effects are found to be
sizeable and predominantly stabilizing in hydrogen fluoride ring aggregates. Test calculations with larger basis sets and for
larger HF aggregates show that in combination with available high quality pair potentials, the analytical three-body terms give
an excellent description of the (HF); surface in the hydrogen bonding region and a good approximation for clusters up to at least
the hexamer. Multidimensional vibrational quantum Monte Carlo calculations indicate that degenerate HF stretch excitation in
(HF); (3712 cm ") is in close coincidence with (HF); — 3HF dissociation channels at low HF angular momentum, whereas
degenerate DF stretch excitation in (DF); (2725 cm ) falls slightly below any (DF); — (DF), + DF dissociation channels. The
(HF); potential surface, its stationary points, possible interconversion tunneling pathways, zero point energies, adiabatic
channels, unusual isotope effects, fully centrifugal rotational states and the harmonic infrared spectrum are discussed in detail
and compared to ab initio calculations and experiment. The applicability of the (1 + 2 + 3)-body approach for larger oligomers
(3 < n < 8)isinvestigated with special emphasis on structure, energetics, infrared and microwave spectra, and predissociation.
Neglect of four- and higher-body contributions and hydrogen exchange symmetry is found to affect some properties signifi-
cantly, but the preference for simple ring structures remains pronounced. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

High resolution spectroscopic investigations have

* This paper is dedicated to Professor Alfred Bauder in apprecia- contributed fundamentally to our understanding of the
tion of his significant contributions to the field of microwave weak binding and interaction potentials of closed shell
Spectroscopy. molecules (see Refs. [1-5] for just a few outstanding

* Corresponding author. Tel.: +41-1-632-4421; fax: +41-1-632- .
1001, examples from microwave spectroscopy). Hydrogen

E-mail  addresses:  martin@quackch (M.  Quack), fluoride clusters and in particular (HF), have played
msuhm@gwdg.de (M.A. Suhm). an important role in this context as prototypes for

0022-2860/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0022-2860(01)00825-0



382 M. Quack et al. / Journal of Molecular Structure 599 (2001) 381-425

hydrogen bonding from the very start of this field, begin-
ning again with microwave spectra [6], continued by
mid-infrared spectra [7—12], far-infrared spectra [13—
17] and finally near-infrared spectra [18-23]. Such
investigations continue to flourish including higher clus-
ters [24,25] and the references given provide only exam-
ples, with fairly complete reviews being available for
the (HF)-cluster work [26,27]. Among the most impor-
tant applications of this wealth of accurate spectroscopic
data one can certainly name the constraints placed on
possible formulations of potential energy hypersurfaces
characterizing the various interactions between the
monomers bound together in these clusters. Such inter-
actions are at the heart of the vast and quickly devel-
oping fields of molecular recognition and
‘supramolecular chemistry’ as well as of the transition
from the chemistry of quasi isolated molecules in the gas
phase to the chemistry of condensed phases.

While many investigations of the structure and
dynamics of molecular clusters and condensed matter
are still based on pairwise interactions between the
constituents, the potential importance of irreducible
three- and higher-body contributions for many proper-
ties and classes of substances has been known for a
long time [28-34] and is currently being elucidated
by spectroscopic and theoretical techniques [35—-48].
Historically, the long-range Axilrod—Teller or triple-
dipole dispersion term [49] for non-polar species at
long range is among the most systematically studied
three-body interactions, mainly because of the rela-
tively high accuracy of available rare-gas pair poten-
tials. In practice, however, three body interactions
play a much more significant role in the intermediate
and short range potential of ionic and highly polar
substances [50-52]. The cooperative phenomena
observed in hydrogen bonded networks suggest parti-
cularly pronounced effects [38,53-58]. Hydrogen
fluoride is therefore a well-suited model candidate
for the systematic study of non-pairwise interactions,
although the water system has received considerably
more attention, due to its omnipresence.

The fundamental prerequisite for the study of non-
pairwise forces between molecules is a detailed knowl-
edge of the pair potential. For properly defined mole-
cular boundaries, this is the dominant contribution to the
overall interaction energy. Accurate pair potentials are
only recently becoming available for hydrogen bonded
systems in general and for the simplest prototype HF in

particular [59-64]. These ‘true’ pair potentials, which
are obtained from experimental dimer data and ab initio
calculations, should be distinguished from effective pair
potentials [65,66], which have been very popular in the
simulation of liquids and which try to mimic many-body
interactions by modified pair interactions, based on
adjustment to experimental bulk phase data. Whenever
nonadditive interactions are significant, such effective
approaches may fail outside the property range to which
they have been adjusted. For example, they predict the
wrong binding energy for dimers, where molecular
many-body interactions are absent by definition.

A successful way for introducing important three-
and higher body contributions to the energy of polar
systems is via polarization terms [38,51,67—70]. Such
self consistent polarizable models contain usually
only a few adjustable parameters (the polarizability
a and perhaps its anisotropy) and appear to work
well where second and higher order induction is the
dominant three-body contribution (such as in liquid
HCI [68,71]), although they can be computationally
quite demanding in terms of CPU time and memory.
However, for first row hydride aggregates the situa-
tion is probably more complex. While classical polar-
ization is an important and for large distances the
dominant three-body contribution, other non-additive
effects such as restrictions from the Pauli exclusion
principle to polarization and more general exchange
interactions come into play [72,73] at the short and
intermediate distances relevant for the hydrogen bond
dynamics in clusters and liquids. For the water
system, ab initio calculations have been used in a
systematic way to check and improve the range of
applicability of simple three-body potentials for quite
some time. The finding was that a simple first order
polarization model based on atomic charges could
reproduce ab initio three-body energies at long and
intermediate water—water distances reasonably well,
once some adjustments in functional form and polariz-
ability parameters were applied [53,74,75]. It is now
clear that such a model is too simple near equilibrium
[73,76], whereas more refined treatments of the polar-
ization effects have been quite successful [69,77].

The goal of our investigations is to obtain a three-
body potential energy hypersurface for hydrogen
fluoride with an accuracy that is useful for spectro-
scopy, kinetics and thermochemistry of hydrogen
fluoride clusters. Based on the continuously
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improving and now very accurate monomer and pair
potential for this prototype system [59-63], such a
three-body potential can be rigorously tested by
comparison with experimental data for HF trimer.
The appropriate ab initio methods are well established
[73,78—-81] including studies of the HF trimer [78,81].
The study in Ref. [78] provides decomposed energies
for 10 exploratory (HF); configurations and firmly
establishes a striking insensitivity of the ab initio
three-body energy to basis size, correlation level and
to some extent even basis set superposition error
(BSSE) [33]. These findings, confirmed in the present
work, are extremely encouraging for the task of scan-
ning the 12-dimensional three-body surface of the 30
electron system (HF);. The configurational scanning
technique in high dimensional space deserves careful
consideration. A systematic grid scan is not practical.
In view of our purpose to study the quantum hydrogen
bond dynamics in HF clusters and ultimately in
condensed phases, iterative scanning strategies
based on diffusion quantum Monte Carlo and other
Monte Carlo methods were employed and found to
be very useful. They are described together with the
electronic ab initio approach and analytical represen-
tations in Section 3. Analytical formulations can be
both tedious and biased for multidimensional poten-
tial energy hypersurfaces. An alternative representa-
tion based on Voronoi polyhedra built around discrete
configurations [82,83] turns out to be helpful in this
context and is also outlined in Section 3.

The most immediate application of an analytical or
Voronoi-represented three-body potential of HF is to
calculate the structural properties and fully anhar-
monic vibrational dynamics of (HF); (Section 4) and
higher oligomers (Section 5). Comparison with avail-
able harmonic vibrational frequencies from ab initio
calculations [78,79,81,84—89], with the vibrational
dynamics in empirical potentials [35,38,89-92] and
with the growing experimental information on HF
trimer and oligomers (Refs. [26,27] and references
cited therein) will be possible. Examination of the
many-body expansion convergence for HF clusters
and of the analytical potential representations will
show whether reliable applications to the structure
and dynamics of liquid, solid and supercritical HF
[38,65,93—-101] are already in sight. A preliminary
account of the present theoretical investigations has
been given at the 1992 EUCMOS 21 conference

[102]. Some key results have been used and referred
to in Refs. [26,27,103—-106]. Several predictions have
already triggered experimental progress for the trimer
species [107,108] and for higher oligomers [109-
111]. A recent, brilliant experimental investigation
[25] supports the assignments proposed in Refs.
[109—111], thus providing evidence for the usefulness
of these potentials for spectroscopy. An important
motivation for the present paper is to make the derived
analytical three-body potential energy surfaces gener-
ally available (see Appendix A).

2. n-Body decomposition of hydrogen fluoride
potentials

We partition the potential energy Vj;,., of a
system consisting of n particles (in this case HF
monomers, note that the concept often refers to atomic
fragments, instead [112,113]) with indices i
(k=1,2,...,n) into a sum of m-body contributions
0 <m=mn) V., fromm-tuples {j}, which form
an ordered subset of {i;} :
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In particular, one obtains the conventional two-
body (pair potential) and three-body terms (m in V"
is used here as an extra upper index, not an exponent
for power):

Vh=Vh—-Vi—V, 3)

Vig=Vip =V —Via—Vp+Vs+V,+V, 4

Higher terms can also be computed recursively
using Eq. (1). Note that V}";,.; has to vanish for
configurations in which at least one of the monomers
Jx is completely separated from the others. For a given
m-body term, a total of 2" — 1 ab initio calculations
have to be performed at each configuration, if
symmetry does not make some of the contributions
equal. In order to compensate in a consistent way for
the basis set superposition error (BSSE) using the
counterpoise method [114], all these calculations
have to be carried out in the full basis of the m-body
system, even though 2" — 2 only involve a subset of
the m particles. Thus, the computational effort grows
exponentially with m. This may raise doubts about
advantages of the m-body expansion over a direct
approach, which needs one calculation without, or
m + 1 calculations with counterpoise correction for
each configuration. We want to illustrate such
advantages for the case of the three-body HF poten-
tial, although they remain valid for the next few
higher-body terms, provided they contribute signifi-
cantly to the dynamics of HF-oligomers (see also
Section 5).

Depending on the symmetry of an HF trimer
configuration, 3—7 ab initio calculations of trimer
basis set size are needed to obtain the three-body
term. As discussed in detail in Ref. [78] and confirmed
here (see Section 3), the electronic interactions which
contribute to this three-body term are much less basis
set and correlation dependent than the two- and one-
body interactions. An apparently strong correlation
dependence of three- and four-body terms in the
related water clusters [76] is mostly a consequence
of comparing different stationary point geometries.
Electron correlation enhances the two-body attraction.
This leads to a contraction of the cluster minimum
geometry, where three- and higher-body terms are
larger. Since the one- and two-body interactions

have already been characterized at high levels of ab
initio theory [59,63] and have been refined empiri-
cally using the large body of experimental informa-
tion on HF monomer and dimer [61,63], it would be
wasteful (and very difficult) to perform systematic full
(HF); calculations whose one- and two-body compo-
nents approach the available potentials in quality.
This conclusion remains valid in spite of the up to
sevenfold effort for the evaluation of a counterpoise
corrected three-body energy versus a simple trimer
energy, even when we include correlation at the
MP2 level and use a DZP basis set for safety at
configurations far away from equilibrium, where no
systematic tests of correlation and basis set
dependence have been reported in the literature, so
far.

A further advantage of the many-body expansion
relates to the analytical fitting procedure, which is a
critical and certainly the most laborious step in high
dimensional configuration space. By partitioning the
potential into terms which anticorrelate importance
and dimensionality, as in the many-body expansion
of well behaved molecular aggregates, a minimum
of fitting effort and bias is achieved. Furthermore,
the resulting ‘portability’ of the separate terms
makes further improvements easier to incorporate.
A potential disadvantage of such a portable parti-
tioning scheme should be mentioned: The severe
problem of fitting artifacts (‘holes’) becomes harder
to diagnose, since an apparent hole in the m-body
term may in fact be no artifact at all in the full
potential via compensation by k-body terms with
k < m. However, careful analytical design and
configuration sampling can reduce this problem
considerably.

Convergence and modularity of the truncated
n-body expansion, favourable ab initio aspects of
the three-body term for polar systems and iterative
stochastic quantum sampling of the multidimen-
sional configuration space are the three principles
on which our procedure is based. These principles
are fairly general and can be applied to other
cooperative  systems. The following sections
describe the details of an application to HF clusters.
Here, the effects are pronounced and the available
experimental data base can be used to explore the
strengths and limitations of the approach and its
analytical parameterization.
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3. Computational details and analytical potential
surfaces

3.1. Ab initio calculations

Electronic calculations, mostly at the correlated
level of second order Mgller-Plesset perturbation
theory (MP2) have largely been performed with the
Cray version of CADPAC [115] and with a DEC
Alpha workstation implementation of GAUSSIAN 92
[116]. In order to select a suitable basis set, we have
performed a number of test calculations on monomer,
dimer and trimer properties. The largest basis used
consists of 53 basis functions per monomer subunit.
For hydrogen, we used (10s3p) contracted to [6s3p],
and for fluorine we used (13s8p2d) contracted to
[8s6p2d] [117,118]. This basis gives good results for
most HF monomer properties, but the perpendicular
polarizability component is somewhat too small
(o, = 3.7(47760518)), also compared to other large
basis sets employed [59,79]. Geometries of all
stationary points were fully optimized, harmonic
vibrational frequencies and intensities have been
determined at the MP2 level.

Counterpoise (CP) correction of optimized
stationary point energies is less straightforward than
for the m-body decomposition scheme [119]. We
include monomer relaxation (MR) contributions
[120] and in some cases we reoptimize the structure
on the BSSE-corrected surface to avoid overcorrec-
tion. For the basis sizes employed in this work, BSSE-
correction is likely to lead to underestimated binding
energies, since only a fraction of the correlation
energy is recovered. Uncorrected binding energies
thus profit from error compensation. In Ref. [102],
the monomer relaxation term was subtracted from,
rather than added to the BSSE, thus also leading to
partial error compensation. Scaling to experimental
results for a given cluster size can also be helpful in
reducing errors due to insufficient basis size or elec-
tron correlation treatment [88]. Some of these
methods are described and used in Section 4. We
emphasize that the m-body decomposition scheme
advocated in this work solves the BSSE problem in
the pair potential via empirical refinement of the ab
initio data, while the small BSSE in the three-body
potential appears mostly at the SCF level and is
eliminated by straightforward CP correction.

While the [8s6p2d/6s3p] basis described above
may serve for benchmark comparisons, it is neither
practical nor necessary [78] for the scanning of the 12-
dimensional three-body contribution (Vé) to the
potential energy surface of the trimer and higher
oligomers, as outlined in Section 2. The three-body
energies used in the analytical representation have
been calculated using a double zeta plus polarization
basis (DZP; «,(H) = 1.0, ,(F) =1.2) [117,118] at
the MP2 level, which is computationally about thirty
times more economic. In our pointwise three-body
energy comparison of the DZP basis and larger basis
set results, the earlier findings of Ref. [78] have been
confirmed, as exemplified in Table 1. In this context, it
is important to compare the different approaches at the
same geometry rather than at their individual mini-
mized geometries [79], since the three-body term is
strongly structure dependent. At a given geometry,
basis sets of different size give three-body energies
(VR) which differ only slightly (about 20 cm ™' close
to the minimum) at the counterpoise corrected MP2
level. This is in marked contrast to the situation for
one- and in particular for two-body energies. Given
the slow convergence of polarizabilities with basis set
size, this result may appear surprising, as induction is
an important three-body contribution. However, the
relevant quantity for induction forces is the product
of polarizability and the squared dipole moment (see
below), which shows a faster convergence due to
partial compensation of errors. Extensive test calcula-
tions for Vi including geometries given in Table 1
confirm that for the larger basis sets, counterpoise
correction has almost no effect on the three-body
energy and MP2 results are quite close to SCF results.
For the DZP basis set, counterpoise corrections are
still small, but bring the three-body energy into closer
agreement with large basis set results.

While for monomer and dimer properties only the
largest basis set calculations proved satisfactory, the
DZP basis set is therefore well justified for the sepa-
rated three-body part of the HF interaction potential.
This basis set permits the evaluation of many trimer
geometries at the counterpoise corrected MP2 level
(DZP + MP2 — BSSE) and also enables the study of
three- and more-body effects in much larger HF
oligomers.

In order to have an independent estimate for quali-
tative trends in the HF polymerization sequence, we
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Table 1

Comparison of values predicated by the analytical HF3BL potential (VﬁF3BL) with the available three body energies (V,%) for bonded (HF),
configurations (all C3,-symmetry and thus characterized by the monomer bond length ryf, the FF-distance Rgg, and the angle formed by the FH
bond and the line joining the F atoms involved in the hydrogen bond, 2 FFH) from the literature [78,79] and from some of our own larger basis
set benchmarks. MPn: n™ order Mgller-Plesset perturbation theory; S designates a medium-polarized (Sadlej) basis set (see Ref. [78]), whereas
VP* designates a modification of the 6-31G™basis (see Ref. [79]). All results include counterpoise corrections for the BSSE (see also Ref.

[105]).
VigsgL/he em™) Valhe (cm ™) rur (pm) Rpr (pm) £/ FFH (deg) Lit. Method
—589 —565 91.7 273 26.9 [78] S + MP3
-214 —-191 91.7 273 60.0 [78] S + MP3
-1277 —-1161 91.7 250 26.9 [78] S + MP3
-27 -28 91.7 400 37.0 [78] S + MP3
-6 -6 91.7 500 40.6 [78] S + MP3
-925 -1077 91.3 261 24.1 [79] 6-31G™
—1092 —1140 91.3 256 24.1 [79] 6-31G™ + MP2
—-590 -581 91.1 272 274 [79] VP
—-630 —605 91.1 270 274 [79] VP* + MP2
—1164 —1205 93.3 259 21.4 This work [5s4p2d/3s2pld] + MP2
—1058 —-1104 93.4 262 21.6 This work [8s6p2d/6s3p] + MP2
—1058 —1085 93.4 262 21.6 This work DZP + MP2
—-1391 —-1371 932 250 26.9 This work [8s6p2d/6s3p] + MP2
—1391 —1387 932 250 26.9 This work DZP + MP2
—-1013 —1036 932 262 23.6 This work [8s6p2d/6s3p] + MP2
—1013 —1046 932 262 23.6 This work [5s4p2d/3s2pld] + MP2
—-1013 -1025 932 262 23.6 This work DZP + MP2
—563 —579 90.9 273 26.9 This work [5s4p2d/3s2pld] + MP2

have also calculated minimum properties at the
DZP + MP2 level for oligomers up to the octamer,
including harmonic frequencies up to the heptamer
(see Tables 2 and 3). These results may be compared
to the more accurate but less complete data in Ref.
[88] and to more recent ab initio calculations covering
a range of cluster sizes [81,122—124]. While absolute
binding energies and frequencies using such a small
basis set are necessarily unreliable, size dependent
trends are nevertheless extractable. In particular, this
independent data set allows for a qualitative judgment
of the validity of our analytical potential for oligomers
beyond the trimer, as it is not influenced by possible
range limitations present in analytical representations.
Furthermore, the DZP + MP2 data can be analyzed
in detail with respect to BSSE and many-body
contributions.

3.2. Quantum sampling of configuration space

The exploration of 12-D configuration space for the
three-body potential of HF is by no means trivial if
the number of configurations is restricted to some 10°

due to computational limitations. Any systematic grid
strategy is completely impractical and would mostly
sample points of little relevance or leave out many of
high relevance to the purpose of the investigation —
namely the large amplitude intermolecular dynamics
of HF clusters. The procedure which we have used to
sample the 12-dimensional three body configuration
space is thus composed of several steps. In a first
stage, a very coarse grid consisting of about 100 Cs-
symmetric (HF); configurations (which span a 4-D
subspace) was calculated and used for a first analysis
of the three-body energy and its major contributions.
In the second step, about 200 random C; configura-
tions within radial bounds of 1.5-2.0a, for bonded HF
lengths and 4.2-7.0a, for HF center of mass distances
without orientational constraints for the HF subunits
were successively included in the three-body fit until
the root mean square (rms) deviation of the employed
trial analytical function had converged. This trial
function consisted of the leading three-body dipole-
induction term augmented by various simple func-
tional forms to mimick the short-range behaviour.
The convergence of the fit was taken as an indication
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Table 2

Comparison of (HF), (n = 1-8) minimum geometries, well depths (D,/kJ molfl) and harmonic estimates (including all degrees of freedom
with positive curvature) of the total binding energy Dg/kJ mol ™! with respect to total dissociation predicted at the DZP + MP2 level. BSSE
corrected well depths are given including monomer relaxation (BSSE + MR). In order to assess the overshooting of a posteriori BSSE
corrections, we have minimized some smaller clusters on the BSSE-corrected DZP + MP2 surface. The results are given in parentheses.
Results in square brackets were obtained by minimizing the DZP + MP2 pairwise additive energy only, assuming C,, symmetry (probably not
the most stable structure for pairwise additive (HF)s). For n = 6, the data for the Sy chair minimum and for the C, twist (t) and C, boat (b)
stationary points are given together with those for the Cg, higher order saddle point. For the chair confirmation, the individual bond lengths and
bond angles differ by less than one unit in the last digit quoted; the FFF angle is 115° as compared to the planar angle of 120°. For the twist and
boat forms, the FFF angles are between 119 and 120°. The D, and Sg stationary points for n = 8 may be saddle points or local minima. The D,

Structure is a prolate top with A, = 0.0331 cem™! (see also Ref. [105])

n rie (pm) Rex (pm) £FFH (deg) C,(em™) D, Dy DPSSETMR

1 91.9 20.847 - - -
924,923 274 8.2,67.3 0.2269 24.1 16.1 18.7
92.4,92.2) (282) (5.9, 59.0) (19.2)

3 93.5 261 23.6 0.1261 78.1 56.2 56.3
93.1) (270) (25.1) (57.8)
[92.2] [270] [25.5] [67.8]

4 94.5 253 11.5 0.0668 138.8 105.1 106.2
93.9) (261) (12.8) (108.2)
[92.1] [268] [13.8] [108.0]

5 94.9 250 5.6 0.0378 188.5 145.4 148.1
94.2) (257) (6.6) (150.7)
[92.1] [269] [7.8] [139.2]

6Cen 95.0 249 2.0 0.0229 230.6 179.4 184.1

6% 95.0 249 3.5 0.0242 231.3 179.1

6C2(t) 95.0 249 22-24 0.0231 230.6

6C2(b) 95.0 249 2.1-23 0.0230 230.6

76 95.0-95.1 248-249 2-3 271.4 211.3

gP: 94.4 254 12.5 0.0302 288.6

8% 94.5 251 09 0.0106 310.8

for the saturation of 4-D space with sample points. At
this point, sampling of the full 12-D space of (HF); set
in. We have opted for an iterative stochastic procedure
based on the diffusion quantum Monte Carlo (DQMC)
method. Rovibrational DQMC is described in detail
elsewhere [61,125] and is summarized later in this
section. Briefly, the technique generates a discrete
weighted distribution proportional to the exact rovi-
brational ground state wave function for a given
potential energy surface. It is thus more appropriate
for sampling the configuration range sampled by the
light particle (tunneling) dynamics of (HF); than a
finite temperature classical Metropolis Monte Carlo
scheme. To extend the sampling beyond the ground
state amplitude, weight selection strategies were
employed. Alternatively, one could also simulate
(HF); using reduced atomic masses [61]. The first
150 DQMC configurations were obtained from a
pair potential simulation of (HF); using monomer

bias and continuous weights, much as described for
(HF), in Ref. [61], but with a somewhat modified one-
and two-body potential (SNC [26,106]). These points
were used in the three-body fit without their DQMC
weights, thus extending the sampling somewhat
beyond the ground state amplitude (which in any
case extends considerably beyond the ground state
probability). After some trial fits with different func-
tional forms a preliminary three-body potential was
obtained. This was then added to the pair potential in a
subsequent DQMC simulation, yielding 100 new and
more representative (HF); configurations, in addition
to a first estimate of the fully anharmonic trimer
quantum dissociation energy D,. This two-step
sequence consisting of analytical trial fits and
DQMC generation of new configurations using the
refined total (1 + 2 + 3)-body potential of (HF); was
iterated several times. During the process the weight
threshold above which the DQMC configurations
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Table 3

Comparison of (HF), (n = 3-6)C,,;, harmonic (normal mode) wavenumbers w, (in cm ™) predicted by the analytical HF3B(L/G) term (added to
the empirically refined accurate ab initio pair potentials SQSBDE [61], SNC [26,62,106] and SC — 2.9 [63]) with ab initio results. The harmonic
monomer stretching frequencies are given in parentheses in the source column. Infrared-active vibrations (E’, A” or E(yu, A,) are written in bold
face (d = degenerate (E), i = imaginary, ip = in plane, op = out of plane, str. = stretch, def. = deformation). The op/ip classification for the Sq
vibrations is somewhat arbitrary and based on correlations with the Cg, vibrations. Included are predictions by the MMC model [121] for n = 3.
Within the MMC framework, 3-D subspace anharmonic results have been obtained [35] for (HF); and are also given. Predictions by a recent
DIIS model [89] are included for n = 3,5

n HF str. ip bend ip str. ip def. op bend op def. Source
3 3884d 980 209d 719 HF3BG + SC-2.9 pair potential
3807 625d 228 500d (4134)
3994d 822 149d 592 SC-2.9 pair potential only
3960 454d 201 382d (4134)
3950d 844 181d 621 HF3BL + SNC pair potential
3792 510d 180 421d (4133)
4055d 725 129d 522 SNC pair potential only
3979 376d 173 331d (4133)
3885d 854 184d 625 HF3BL + SQSBDE pair potential
3822 527d 182 425d (4138)
3868d 876 184d 639 HF3BG + SQSBDE pair potential
3820 549d 193 448d (4138)
3904d 989 205d 726 [5s4p2d/3s2pld] + MP2 (this work)
3779 626d 225 516d (4198)
3974d 986 203d 722 DZP + MP2 (this work)
3862 598d 228 494d (4221)
3964d 923 191d 672 ACPF [88]
3863 562d 208 486d (4182)
1016 117d 629 MMC [121]
599d 240 406d
801 568 Electrical potential [35]
491d 376 anharmonic, ip—op—radial
separation
3938d 1001 163d 581 DIIS [89]
3843 586d 183 361d
4 3839 1018 296 83 770 41 HF3BG + SC-2.9 pair potential
3747d 777d 275d 636d
3637 657 208 573
3904 848 225 75 623 41 HF3BL + SNC pair potential
3892d 632d 214d 500d
3718 528 167 454
4075 765 176 51 538 14 SNC pair potential only
4017d 539d 176d 413d
3950 429 165 378
3691d 970 306 99 723 46 HF3BG + SQSBDE pair potential
3781 742d 281d 599d

3587 657 210 557
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n HF str. ip bend ip str. ip def. op bend op def. Source
3827 1150 296 93 829 46 DZP + MP2
3749d 877d 281d 693d this work
3562 673 219 631
3836 1120 300 90 845 47 ACPF [88]
3757d 870d 282d 718d
3571 700 213 647
5 3830d 961 337d 67d 730 25d HF3BG + SC-2.9 pair potential
3716d 801d 252d 650d
3629 656d 178 598d
3924d 804 244d 49d 576 26d HF3BL + SNC pair potential
3872d 647d 195d 499d
3745 540d 138 466d
3710d 929 371d 62d 693 25d HF3BG + SQSBDE pair potential
3832d 767d 279d 614d
3622 664d 195 580d
3746d 1183 361d 80d 837 23d DZP + MP2
3622d 989d 278d 755d this work
3425 767d 190 718d
3848d 1045 302d 78d 626 18d DIIS [89]
3728d 861d 237d 543d
3528 605d 149 465d
6 3869 877 407 88 661 25 HF3BG + SQSBDE pair potential
Cen 3817d 763d 362d 48d 607d 15d this work
3705d 664d 241d 585d
3639 623 166 581
Cen 3754 1155 404 101 813 24i DZP + MP2
3711d 1015d 361d 58d 759d 8id this work
3571d 835d 249d 741d
3396 741 162 744
Se 3747 1137 394 91 899 41 DZP + MP2
3701d 1016d 355d 53d 753d 27d this work
3561d 896d 256d 737d
3387 736 175 728

are discarded was gradually lowered in order to
sample more of the relevant higher energy configura-
tion space. After the collection of about 900 config-
urations, convergence and space saturation appeared
sufficient for the hydrogen bond dynamics of (HF);
and a final effort was put into the refinement of the
analytical potential. For this step, another 100 config-
urations close to the (HF); minimum structure were
generated, bringing the total number of three-body

energies to 1004 (from 5352 trimer basis set calcula-
tions). The three-body energies were weighted
according to their associated full ab initio (HF);
energy, since that quantity correlates with their rela-
tive importance for the (HF); hydrogen bond
dynamics. The 335 configurations up to 5000 cm ™'
above the minimum were given unit weight, the
higher energy weighting sequence was 0.3/0.1/0.03/
0.01/0.003/0.001 in bins of 5000 cm ' (>30000 cm ™'
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for the 0.001-weights) with 438/159/43/15/9/5 config-
urations per bin. This sampling and weighting scheme
concentrates on the description of three-body interac-
tions in the trimer hydrogen bonding region.

3.3. Description of the HF3BL analytical potential

Several criteria for the analytical three-body poten-
tial were defined at the outset of the fitting procedure:

1. The leading term at long distances, in this case the
second order dipole induction contribution, is fixed
using known experimental values for the dipole
polarizability, its anisotropy and the dipole
moment of HF. Compared to distributed charges
[53,126], a point dipole formulation is more
compatible with the available pair potentials.

2. No attempt is made to include higher order induc-
tion terms (neither in the multipoles nor in the
polarizability) in a similar way due to the poor
convergence of the multipole expansion at short
and intermediate distances and the importance of
exchange repulsion. Selection of the functional
form in this region is governed mostly by the fit
quality.

3. Singularities in the analytical potential are
restricted to configurations with superimposed
atoms or HF centers of mass in order to reduce
the chance of artifacts in physically relevant
regions of the configuration space.

4. The computational effort required for the evalua-
tion of the three-body term should not be larger
than that of the available pair potential code,
which in turn has been carefully optimized for
maximum performance on vector computers (e.g.
0.7 s at 2.3 Gflop/s on one processor of the NEC
SX-3/24R for one of 1024 simultaneous potential
evaluations). This ensures that the three-body part
accounts for less than 50% of the computational
effort up to medium-size clusters. For larger clus-
ters, cutoff methods may be used to avoid a three-
body overhead, since the two-body forces have a
longer range.

5. The maximum acceptable rms deviation of a prop-
erly weighted fit of the potential to the ab initio
three-body energies is about 100 cm ™', since the
absolute error of the ab initio approach for the
three-body energies is estimated to be less than

100 cm ™! for most of the relevant configurations.
In addition, the three dimer interactions occurring
in (HF); currently also have a cumulated fitting
uncertainty of somewhat less than 100 cm ™'
[61,63].

6. No Axilrod-Teller type triple-dipole dispersion
term is included in the fit, since this term only
appears at the MP3 level (dispersion interactions
are additive at the MP2 level [78]) and was shown
to be negligible for the relevant (HF); configura-
tions [78].

7. The three-body potential is required to have the full
permutation inversion symmetry with respect to
exchange of the HF units, as in the case of the
analogous two-body potentials [61,63]. No
hydrogen exchange symmetry is currently built
in, although the corresponding transition state for
(HF); lies lower than in (HF), at about
85(10) kJ mol ! [105,119]. This limits the validity
of the three-body potential to FF distances above =
4.2ay. It also prevents us from applying the surface
to reactive processes with H-exchange, which are
of interest also in relation to detailed symmetry
selection rules [127]. Generalizations to include
these effects have been discussed in Refs. [26,27].

The coordinates used in our analytical representa-
tion of the HF three-body potential are defined in
Fig.,1 in terms of the three hydrogen sites and the
three HF centers of mass. sy and t; denote the three
center—center and hydrogen—hydrogen distances,
respectively. The r; represent the nine mixed center-
hydrogen distances, of which the three r; are propor-
tional to the monomer bond lengths. The unit vectors
¢; and ¢; along the monomer HF bonds and the
center—center lines are used to define four different
types of angle cosine:

- o . S
¢;-¢; =cos a; with @7 j, cos a;; = cos (5)

¢;é; = cosf, with i # j # k # i, cos B, = cos B,

(6)

with i #j # k # i, cos%z—cos%j
(7N

€€ = oS
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Fig. 1. Definition of internal coordinates used for the analytical
representation of the HF3BL three-body potential. i, j, k represent
three interacting HF monomers with corresponding centers of mass
C (as obtained for my = 1.007825 u and mp = 18.9984 u). rj is the
distance between the center of molecule j and the hydrogen atom of
molecule k, hence r;; (my + mg)/myg is the bond length of molecule ;.
sj is the center of mass distance for molecules j and k, thus s = sy;.
t; denotes the distance between hydrogen atoms of molecules j and
k (ty = tij). é; and &; are unit vectors along the HF molecule i
(pointing towards the hydrogen atom) and from the center of i to
the center of j, respectively. They are the building blocks of the
angles «, B, ¥ and 6 defined in the text. For the HF3BG potential,
the centers C coincide with the F atoms, see text.

For the leading three-body term at long distances,
we start with the second order dipole induction term
for an n-particle system [74,75]:

Via = =3 D [ j(E8) + (o — @ )(E)7] (9)
j=1

Here, a,; and «a|; are the perpendicular (degen-
erate) and parallel components of the dipole polariz-
ability tensor of molecule j. They are given the values
5.2(4meyay) and 6.6(4mepap), respectively (lag =
52.9177249pm), consistent with the available body
of experimental data [128,129] and recent ab initio
calculations [130]. c?j is the total electrical ﬁgld at
the jth center resulting from the contributions &’ of
the dipoles at the centers k:

= > & (10
k=1,k#]

By subtracting those components which only
depend on two of the interaction centers, we are left

with the three-body contribution to Vy4:

3B __ »
Vind = — Z{au[ > > (gjk.(goﬂ]
J k#j 1>k, 1#]

+ (aH]- - alj)l: Z Z (éjk'gj)(%ﬂ'gj)il}

kAj 1>k i)
(11)

where the sums go from 1 to n with the indicated
constraints. One can also use the sum equivalence

SY S k=3 S (kD)

J=1 k) 1>kl j=1 k>j I>k
+fdj. k) + fkj, D} (12)

For the dipole field contributions (;“’ji from particles i
at the site of particle j we have:
> i) - 5 5 o
& = F(Js?j(ei — 3¢;(e;-¢;)) (13)
where for generality we have included a dependence
of the HF dipole moment w; on the HF bond length (or
rather on the proportional quantity r;). The simple
expression

l.llr,-i/ao

= mé’(’"ﬁ,zao) (14)

il D
with the switching function

(2
e ¢ ifr>c

1 otherwise

g(r,c) = 15)

(1D =3.33564 % 10°°C m) has the correct limits
for r; — 0 and — oo and gives satisfactory values
for the dipole moment of HF in between, particularly
in the vicinity of the equilibrium value of r;. Much
more accurate HF dipole moment functions are avail-
able [131], but are unnecessary for the present
purpose. A similar dependence could also be intro-
duced for o) and «j, but we have not included it at
the present stage due to the limited experimental data.
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Substitution of the cosine expressions yields:

- - (g ) ()
Epby = T (Cosayy — 3cosvykicosty;
At (47760)25zjs?j ! /
—30053/1}005011- + 9cosB£lcosijcosO,j) (16)
- L2 () ()
g. e g ;) = —— X (COS;,;COS¢y;
( Jk j)( Jjl j) (47760)25'2!-3?] ( kj lj

+ 3cos ay;cos6;cos b

+ 3cosaycos8cos by

+ 9cosb;cosfcosbycosy)  (17)

This expression does not contain the short-range
higher order polarization terms (polarization by
induced dipoles, polarization by higher multipoles,
etc.). These and all other nonadditive trimer contribu-
tions are fitted by two empirically evaluated terms.
The first term is an angular expression designed to
model short range induction effects:

Vi=-—p Z Z Z [(%005,32_1‘ - COS')/kj)

=1 kA Ikl
X cosb;(+ + 2cosby; + 6cos’ 61
+ 3cosaycosay; + 2cos ;. cos 6
— 2cosfy;cosf; — 1 + (Lcospj;

- cosy/,})cosﬁlj(% + 2cos6); + 6¢cos’ 6;)]

[ (riac8(ri» 2a0)s1)(ryg(ry, 2ao)/sy;) ]4
((ru/dag)* + D)((ryldag)* + 1)

X h(skj’ 4a0)h(slj, 4610) (18)
with
(= |
h(s,c) = € s ifs<c (19)
1 otherwise

and p; = (1.8 £ 0.1) X 10° cm ™! (the error given is
30 of the fit). The damping terms g, & can be conve-
niently modified in combination with pair potentials
which are not repulsive enough and thus lead to
artificial minima which are easily accessible from

the physical minimum. In high-dimensional spaces it
is difficult to exclude artificial minima completely.
However, the aim must be at least to ensure that
such minima are isolated from the physical minimum
by thermally unsurmountable and quantum-mechani-
cally impenetrable barriers. The DQMC algorithm
[61] is a very efficient tool to test this condition in
practice and did not reveal artificial minima for the
HF3BL potential in combination with the pair poten-
tials SQSBDE [61], SNB and SNC [26,106], which
are discussed later on. Here, the damping terms g, 4 do
not affect the quality of the three-body fit to the ab
initio data, i.e. they act in a configuration range which
anyway is not covered adequately by ab initio points.
Actually, the A-term is only effective when s, < 4ay,
i.e. when hydrogen exchange becomes feasible and
hence the configurations are outside the validity
range of the potential.

The second term consists of a sum of exponentials
in sy, t;; and r; to mimic exchange interaction:

n n n
vy, =p, Z Z Z {e—dz(fjk‘*"jl) + e—dz(fjk+lk/)

J=1 k>j I>k
+ e*dz(t/»ﬂrtkl) + loo[efdz(sjk+sk,+s,j)+2

e RluFratry) _ e—dz(V,-z"'ka"'rzk)]} (20)

with p, = (1.6 £ 0.1) X 10*cm™! (30 error) and
d, = 0.8ay ! (held fixed in the fit). The total analytical
HF three-body (HF3BL) potentiall for (HF), is thus

VipseL = Vg + Vi + Vs 1)

It has a weighted rms deviation of 62.8 cm ™' from
the 1004 ab initio data points with two free parameters
py and p,. This increases to 184 or 114 cm ™' when p,
or p, is held fixed at O, respectively. VSﬁ alone has a
rms deviation of 547 cm ™. As the largest absolute
three-body energies covered by the ab initio sampling
are below 5000 cm ™', the fit quality remains essen-
tially unaffected by the introduction of upper and
lower bounds of =20000 cm ' via

(VB + v, + Vy)lem™!

1% /em ™! = 20000 tanh
HF3BL/CM an 20000

(22)

' A FORTRAN 77 source code of the analytical HF3BG three-
body potential presented here is given in the Appendix A.
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As this function yields additional protection against

AVHF:{BL/hC Cm_l

Vi /he cm™?

1400 undesired artificial minima outside the ab initio
1200 3 sampling range, we recommend it in combination
1000 3 with weakly repulsive pair potentials. Fig. 2 gives
800 some insight into the correlations between fitted and
3 ab initio data. In comparing these plots with those
600 - available in the literature for the water system
400 1 [53,54,74], a striking difference can be noted.
200 A Whereas in the case of water most of the sampled
0] three-body energies are distributed more or less
500 1 symmetrically around zero in the range of about
400 3 300 cm ™', we find a strongly asyrlnmetric distribution
Frr e from roughly 100 to —1500 cm . Part of this differ-
-500 0 500 = 1000 1500 ence is certainly due to the sampling procedure for
~Epp/hc cm water, which concentrated more on the long range
interactions, while we have sampled more of the
rovibrational ground state amplitude of (HF);. But
5000 5 the discrepancy is also indicative of the more
E b . pronounced and systematically stabilizing three-
4000 7 ’ body effects in HF ring aggregates.
Table 1 compares available literature values for the
3000 3 three-body contributions of (HF); at various bonded
geometries and widely different basis sets with the
5000 , analytical Vypspp predictions. It demonstrates quite
E clearly the basis set insensitivity of the investigated
1000 7 quantity as well as the quality of the analytical DZP +
: MP2 — BSSE fit.
0
: 3.4. DOMC calculations in analytical potentials
The Diffusion Quantum Monte Carlo technique
(DQMC) [61,132-136] exploits an isomorphism
between the N-particle time-dependent Schrodinger
5000 1 equation,
4000 7 C
I av X2
3000 3 =Y V¥ (V- E)¥ (23)
2000 1 aGth) = 2my
1000 )
0 ?"ww: i, Fig. 2. Correlation plots for the analytical HF3BL fit. (a) Correlation
-1000 , a7 . of the analytical HF3BL three-body energy Vypspr, With the ab initio
] o DZP + MP2 three body energy Epzp down to —1500 cm ™" for all
-2000 _ 669 ab initio points with weights larger than 0.1. (b) As in (a) but for
-3000 4 a three-body range down to —5000 cm™ . (c) Correlation of the fit
4000 _ deviations (EDZP—VyF?B) with the total ]?ZP (I'-IF.)3 energy Eror
] counted from the minimum. The systematic deviations for the low
-5000 e e weight points beyond Ergr/hc = 25000 em™! help to avoid artifi-
0 20000 40000 cial holes in strongly repulsive ranges, while they are not significant

E-m-r/h cC cm ! for the hydrogen bond dynamics.
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and a 3N-dimensional transport equation involving
diffusion and reaction for the quantity ¥

v X )
E :ZDkaq/_quf, (24)
k=1

when propagated along ‘imaginary time’ or its reci-
procal energy equivalent 7= i-t/A. Here, my is the
mass of the kth particle, V the 3N-dimensional poten-
tial for the particles and E, a so far arbitrary energy
offset. D, describes anisotropic diffusion in 3N dimen-
sions and k; is a coordinate dependent first order rate
constant. Both transport coefficients act on ¥, which
consequently must be a non-negative distribution. The
distribution is represented by a discrete, weighted
ensemble of points in coordinate space. The reactive
and diffusive terms are separated in a short time
(Trotter—Suzuki) approximation [132] and can be
simulated by weight adjustment and Brownian
random motion. The Gaussian pseudo-random
numbers required for the latter can now be computed
very economically [137] in an approximation which
we find perfectly suitable for our DQMC applications.
The algorithm is about 6 times faster than previous
(already very fast) implementations, also on vector
computers, and renders random number generation
costs negligible for all but the very simplest interac-
tion potentials. For 7— oo, the simulated ¥-distribu-
tion approaches the (non-negative) wavefunction of
the lowest quantum state of the N-particle system.
E,;, when dynamically adjusted to keep the sum of
weights stable, fluctuates around its energy eigen-
value. For pairs or n-tuples of identical fermions
such as electrons, this state will be Pauli-forbidden
and hence not very useful. The lowest physical eigen-
state has a wave function with positive and negative
lobes and cannot be obtained simply via the diffusion
algorithm. Solutions to this so called sign-problem are
difficult, but are becoming available (see Ref. [138]).

Given the electronic potential energy hypersurface,
DQMC provides an attractive method for the solution
of the internuclear many-body (i.e. many atom
dynamics) problem. Here, the particles are often
distinguishable from each other or are n-tuples of
bosons (such as HF units in (HF),) and thus have a
ground state which is not restricted by the Pauli prin-
ciple. Even if fermion n-tuples cause Pauli restrictions
on the total ground state (such as in H3"), the boson

ground state energy is still useful, as the lowest Pauli-
allowed state will be nearby (generally a rotational or
tunneling excitation [127]), compared to the domi-
nating effect of vibrational zero point energy. Funda-
mental advantages of DQMC over basis set methods
are the applicability to systems of high dimensionality
and the absence of a need for simple zero-order
Hamiltonians. This explains the growing interest in
quantum Monte Carlo methods for the investigation
of zero-point energy effects in multidimensional,
anharmonic systems such as van der Waals aggregates
(see e.g. Refs. [38,61,69,125,139-141]).

Beyond the powerful application of the method to
ground state calculations, which is illustrated in
Sections 4 and 5, many extensions to excited states
have been investigated (see Refs. [27,61,106,142]).
Here we use only two such extensions which have
been developed some time ago [61] and shall describe
them briefly:

In the clamped coordinate quasiadiabatic channel
method, one or more holonomic distance constraints
are applied to slow system coordinates (in this case
the center of mass distances of HF units), while the
zero point energy of the remaining (mostly higher
frequency) bath coordinates is simulated. Parametric
variation of the constraints generates adiabatic chan-
nels [27,61,143,144], which may be interpreted as the
best effective reduced-dimensionality potentials for
motion in the slow coordinates. This motion, in turn,
can then be investigated with standard techniques.
Metric tensor effects on the kinetic energy operator
due to the introduction of single distance constraints
are expected to be small [145]. The quasiadiabatic or
Born—Oppenheimer separation in this clamped-coor-
dinate approach averages over specific vibrational
resonances but describes the important nonresonant
couplings between stretch and bend modes in
hydrogen bonded systems [61], which are largely
neglected in a minimum energy path analysis. We
may refer here also to the quasiadiabatic channel reac-
tion path treatment of tunneling problems [146,147].

We can compare also to the somewhat analogous
situation in electronic structure theory, e.g. the Born—
Oppenheimer potential of a single HF molecule: In a
Hartree(—Fock) treatment, the best self-consistent
single configuration energy due to the (fast) electronic
degrees of freedom is calculated parametrically for the
varying (slow) internuclear coordinate. This usually
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results in overestimates of the electronic dissociation
energies, excessively steep potentials and hence over-
estimated vibrational frequencies, even in the limit of
an infinitely flexible basis (e.g. the vibrational HF
fundamental is predicted near 4300 cm ' at the
Hartree—Fock limit [148]). By inclusion of additional
electronic configurations (e.g. via configuration inter-
action, CI [149,150] or coupled cluster methods
[151]), the internuclear potential function ultimately
converges to the ‘true’ (still non-relativistic) Born—
Oppenheimer potential and vibrational frequencies
are in much better agreement with experiment (HF
fundamental at 3961.42 cm ~'). Any resonant vibronic
couplings are of course not treated by this approach
(but rather irrelevant for the HF stretching funda-
mental). In the field of (slow) vibrations, adiabatic
channels (obtained by DQMC) compare to minimum
energy paths in a similar way as full CI compares to
Hartree—Fock in electronic structure theory of a
diatomic molecule. While specific, non-adiabatic
resonances are not accounted for, off-resonant adia-
batic coupling to the fast degrees of freedom is fully
described. Evidence presented in Ref. [61] for (HF),
and in Section 4 for the trimer suggests that the off-
resonant effects are systematic and large in hydrogen-
bonded systems (particularly for light hydrogen
bonded donor molecules, which give rise to high
frequency hydrogen bond libration), while resonant
interactions are generally small, becoming important
only occasionally. A similar situation arises in the
acetylenic CH-chromophore whereas for the three-
dimensional stretch-bend potential of isolated
aliphatic C—H chromophores [152], one finds a situa-
tion with strong ‘nonadiabatic’ Fermi-resonance
interaction in addition to the off-resonant effects
from the other degrees of freedom.

For quantum states with non-vanishing rotational
angular momentum, the local quantum rigid rotor
energy for a given set of rotational quantum numbers
can be added to the electronic potential at each coor-
dinate. A DQMC calculation carried out on such an
effective rotational surface will contain the centrifugal
effects resulting from the coupling of zero point vibra-
tional motion and rotation. The result is exact for
diatomics and provides a good description for polya-
tomics in the absence of specific Coriolis coupling.
Such specific couplings are usually small for the
lowest state of a given J rotational quantum number.

For high J, an efficient coding of this method requires
approximation formulae, since rigid asymmetric rotor
diagonalization would otherwise dominate the
computational effort. The case of a pseudo-diatomic,
nearly prolate top ((HF),) has been dealt with in Ref.
[61], where the method has been described for the first
time. Here, we want to discuss the oblate top limit
relevant for (HF); and larger oligomers. The approx-
imation formulae have to cover a substantial range of
asymmetry parameters in this case, as near-prolate
(open chain) configurations are quite low in energy
[102,107]. We use an expression due to Mecke
[153,154] for the average term value F(J) of the two
lowest levels (K = J, negligible splitting) for given J
in the oblate top limit:

FW)=Cl*+ LA+ By

% 12
~- 1l —B)JZJJ__II b*(l + [%] ) (25)

with

b= Bl_ A : (26)
2C- LA+ B

We have tested this approximation extensively
using exact diagonalization with the program Wang
[155] for a J range of 30-250 and A, B, C, b” ranges
covered by the wave functions of (HF),, n = 3,4, 5, 6.
The error of the approximation is found to be signifi-
cantly smaller than the statistical DQMC error in all
cases, whereas neglect of the third term in Eq. (25)
leads to unacceptable errors. In order to obtain a vibra-
tionally averaged (spectroscopic) C, rotational
constant from these term values, the rotational contri-
bution to the ground state energy F(J) from DQMC
calculations is normalized by J(J + 2) and plotted vs.
J?. The resulting functions do not deviate significantly
from linearity and the intercept (J/ = 0) immediately
gives C., an estimate for the spectroscopic C
constant in the absence of Coriolis contributions
[156]. To rationalize this procedure, we rewrite the
standard [154] centrifugal oblate top term formula
for K =J

F(J)=BJ* + BJ + (C — B)J*> — D,;J*(J + 1)

— DyJ(J + 1)J? — DgJ? (27)
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using C/J+B=C(J +2), C>D; and J > 1 to
obtain

% ~C = (Dy + Dyx + Dg)J* (28)

In order to obtain an independent estimate for B
rotational constants and hence for the magnitude of
inertial defects [157], we use Mecke’s expression
[153,154] for the average of all rigid rotor levels
with a given J:

D FUy)

T = lA+B+0Ju+1 (29)

as a rotational potential. While rovibrational inter-
actions will usually invalidate this relationship for
high J, the extrapolation to J/ = 0 provides an accurate
average rotational constant (1/3)(A + B + C).

The latter application exploits a general theorem
(Helmann-Feynman) which can be easily derived
using perturbation theory [158]:

Let A, and H be time-independent Hamilton opera-
tors with

H,=H,+ M\, (30)
H,¥,=E,\ V¥, @31)
Hy ¥, = EyW,, (32)

where W, ¥, are the lowest (real) eigenfunctions.
Then, one has for (Wy|¥,)=(¥,|¥,)=1 and
Y, — Vo= AV, + A>¥, + -

E, — E N A
% = (W|H\|Wo) + AW |Hy — Eo|¥y)
+ 2| o)) + O (33)
and the A = 0 intercept is
. E,—E .
tim () = (ol ) (34)

In the present case, A =J(J + 1) and I:Il = (A +
B+ C‘)/3. Coriolis contributions would lead to differ-
ences between expectation values evaluated in this
way and spectroscopically defined rotational
constants [156], but for the systems investigated
here, anharmonic effects are expected to dominate.

Other useful applications include A= &l

s

H, = jié, where  is the unit vector of a homogeneous
electric field &, and A = |&/|e*, A, = éa@, where a
is the polarizability tensor. In the latter cases, care has
to be exercised to achieve a correct orientation of the
molecule in the laboratory frame, as the quantities to
be determined are vectors and tensors. For moderate
amplitudes, the Eckart conditions [159] provide an
appropriate reference frame [125]. It should be
noted that it is significantly more economic to use
positive and negative values for A, as this replaces
the critical extrapolation by an interpolation in the
linear regime of the perturbation. The method intro-
duced in Ref. [158] has also been applied to kinetic
energy contributions and quadrupole coupling
constants [160] and an improved variant of the
technique has recently been published [161].

Details of the employed DQMC algorithms such as
the exact monomer importance sampling strategy and
choices for parameters are described in Ref. [61].
Sampling correlation corrections were carried out
according to the procedure described in Ref. [162]
and were found to be consistent with those obtained
in simpler analyses [61].

A side result of DQMC ground state calculations is
the sampling of multidimensional configuration
space. As discussed earlier in this section, this can
be exploited for the generation of ab initio data. For
larger oligomers, it also provides a crucial first step for
finding global minima [163]. The discrete wave func-
tion distribution at the end of a long and well-equili-
brated DQMC run samples the potential regions
relevant for the ground state. This normally includes
the region around the global potential minimum,
unless zero point energy effects favour a higher, but
more extended valley. In any case, the wave function
will sample the physically relevant region for very
cold clusters. By using this discrete wave function
distribution as an ensemble of start structures for
Metropolis Monte Carlo and other conventional mini-
mizers [164], the global minimum is located with high
likelihood. Unfavourable start configurations can
penetrate barriers very efficiently via quantum
tunneling and thus find their way to the global
minimum. Similar to temperature in simulated
annealing, the particle masses (or %) can be scaled
to assist equilibration. The technique is related to
other quantum methods proposed recently (Refs.
[165,166] and in particular the efficient deterministic
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scheme proposed in Ref. [167]), but the historically
earlier DQMC realization appears to be the variant
which is most easily applicable to high dimensional,
highly coupled situations, as it profits from the simpli-
city and generality of the transport equation
isomorphism in cartesian space (see also the recent
description in Ref. [168]).

From a conceptual standpoint, DQMC-precondi-
tioning of conventional minimizers, as we propose
and use it, automatically points at the limits of asking
questions about global minima. As experimental data
always include zero point energy, it is quite pointless
to locate minima for cases where the ground state
wave function is delocalized over a wide range of
structures.

3.5. DOMC using Voronoi step representation

The multidimensional DQMC sampling idea
discussed above can be carried one step further. As
described in detail in Refs. [82,83], one can avoid the
use of an analytical Born—Oppenheimer potential and
rather use some sort of multidimensional interpolation
between discrete potential energy points (VQMC-
DPR [82]). This removes the labour and bias of global
analytical fitting but requires a robust multidimen-
sional interpolation method.

Interpolation in truly multidimensional space is a
difficult problem, but we have found [82] that repre-
sentation of the potential in steps defined by Voronoi
polyhedra [169,170] around the sample points works
impressively well and we have thus applied this tech-
nique in the present work. The concept is based on
finding the nearest neighbour reference configuration
for which the potential energy is known. At the
desired molecular configuration, this nearest neigh-
bour energy is simply adopted, probably the crudest
variant of interpolation. The influence range of a
selected reference configuration in a multidimen-
sional ensemble of such configurations is circum-
scribed by a convex polyhedron, whose definition
goes back to Voronoi [169]. It remains to define an
appropriate metric in the multidimensional space of
internal degrees of freedom. While this is a largely
unexplored field, we currently use inverse interatomic
distances (squared for computational convenience), as
these have the global property of being sensitive
where the potential is steep. Summing over the

squared differences of all (independent) reciprocal
interatomic distances yields a measure for the degree
of nearness between two molecular configurations.
The three-body potential can be expressed as a func-
tion of the three FF distances, the three HH distances
and the nine HF separations. This is a redundant set of
coordinates, but it guarantees an unambiguous
construction of the geometry, whereas the FF and
HF distances alone do not distinguish between certain
out-of-plane conformers. Permutation symmetry for
the HF units is explored in the neighbourhood evalua-
tion, as is monomer integrity [82].

Here, we use the existing 1004 ab initio three-body
points in a Voronoi step interpolation as a start to
dynamically generate and accumulate more important
three-body configurations [82,83], whereas the pair
potential is implemented analytically.

3.6. A more global three-body potential (HF3BG)

The analytical HF3BL potential is of limited use for
larger HF clusters, as sampling and weighting for the
fit concentrate on the trimer species. We have thus
exploited the Voronoi representation concept
described above to obtain a more global three-body
point sample and fit. For this purpose, we have dyna-
mically added new DZP + MP2 — BSSE points from
several quantum and mixed quantum-classical Monte
Carlo simulations of (HF), (n = 3-8) at temperatures
between 0 and 473 K up to a total of 3000 point
samples in 12 dimensions with 3-body energies
ranging from —76 to +23 kJ/mol, using different
energy and distance criteria for accepting new config-
urations. The mixed quantum-classical simulation is
decribed briefly in Ref. [83]. It is used to sample more
of the heavy-frame amplitude than a quantum ground
state simulation. In these simulations, an analytical
pair potential is combined with a permanently updated
step-interpolated three-body potential, which always
comprises all currently available ab initio data. In
each of the simulations, saturation of the accessible
configuration space was observed, the need for new
points slowing down systematically. The enlarged
data base was subsequently used in a global,
unweighted analytical fit (HF3BG, see 1), similar to
the HF3BL [102] one, but more flexible and involving
only atomic centers (i.e. using F-F distances instead
of center of mass distances in the potential expression
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and fit). In the notation of the HF3BL potential, the
HF3BG potential consists of the leading 3-body
induction term Vﬁﬁ (the interaction centers now coin-
ciding with the F atoms; we retain the factor 1.11 in
the dipole moment function, Eq. (14), thus increasing
the dipole moments somewhat, but one might also
choose 1.06 to reproduce the HF3BL dipole) and a
sum of exponentials V:

Ve/(6Xx10°cm ') => > > (8T, + 2T, — 3T;
j=1 k>j I>k

+ 60T, + 90T5 — 2T — 9T)

(35)
with
Tl — e*(S/SaO)(r,‘jJrrijrrk,‘+rik+)~kj+rji) (36)
T2 — e*(3/4a0)(r,‘k+rjk+t,»j) + e*(3/4a0)(r,j+rkj+tik)
+ e*(3/4ao)(rji+’kf+fjk) (37)
T3 — e*(3/4a0)(r,<j+r,k+rk,) + 67(3/4%)(’,‘1(*"1(/*’]‘,) (38)

T4 — e*(S/ZaO)(r,‘jJrrijrri,») + e*(3/2a0)(r,»k+rkj+ri,»)
+ e*(3/2!lo)(fj,‘+l‘ik+f,j) + e*(3/2“0)("jk+"k,‘+fj;’)

+ e_(3/2a0)(rkj+rji+rkk) + e_(3/2a0)(rki+rij+rkk) (39)

TS — e_(3/2a0)(rik+rfi+rii) + e_(3/200)(ri/+rki+rii)
+ ¢ BRa) it rtry) 4 o= (3lag)ritrgtr)

+ e—(3/2ao)(rkl+rjk+"kk) + e_(3/2a0)(rkj+rik+rkk) (40)
T, = & 0880ty it @

T, = ¢~ U380y +7) g o=(138la0)r+ry)
4 o U38a0)ritri) 4 o =(1.38/a0)(rc +rio)
4 o (U38ag)r+r) 4 o= (1.38/a0)(rg +r;) (42)
V&% + Vg is damped at large negative energies (and

enhanced for large positive energies, which should be
constrained below 12000 cm™') using a simple

rational function:

_ —1
Vipssa/em ' =

(43)

( 1 _ cm! )
12000 Vﬁfi—FVE

This three-body potential has an unweighted rms
deviation from the 3000 DZP + MP2 — BSSE points
of 149.8 cm™', which is acceptable for the global
spread of the data points. The trimer-weighted rms
deviation (weights as for the HF3BL function) is
88 cm ™! for the full set of 3000 points and only
56cm™' for the initial set of 1004 points. This
shows that the global HF3BG potential is competitive
with the more local HF3BL expression for trimer
simulations. The limits of the more local HF3BL
potential are reflected in large rms deviations of
261.7 cm ™! (weighted) and 433.8 cm™! (unweighted),
when the data base is extended from the 1004 points
employed in the HF3BL fit to the global 3000 point
set.

We thus have two analytical potentials of similar
quality for the trimer dynamics and a clearly superior
HF3BG potential for the dynamics of larger
oligomers.

4. Results for (HF); and its isotopomers
4.1. Minimum properties

An immediate test for the analytical HF3B(L,G)
potentials in conjunction with the available accurate
HF pair potentials is the comparison of the Cjy,
minimum geometry and well depth of (HF); with
results from the pure and effective pair potentials.
This is shown in Table 4, which may also be
compared to the DZP + MP2 results in Table 2.
Some key results have been summarized in Table 2
of Ref. [26] and in Refs. [102,105,119], where
detailed comparison to earlier ab initio values and
discussion of the BSSE issue can also be found. We
use three different HF pair potentials for the trimer
results. The SQSBDE potential is well documented
[61] and has been shown to give a good representation
of the intermolecular interaction in (HF),. Based on
6-D calculations with adiabatically separated HF
stretching modes [62,106], two related variants SNB
and SNC have been developed [26]. They differ from
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Table 4

399

(HF), (n = 3-6) minimum geometries, well depths (D,/kJ mol ') and binding energies (harmonic estimates Dg, and fully anharmonic results
Dy, in kJ mol ") for dissociation into monomers predicted by the analytical HF3B(L,G) terms (added to the empirically refined ab initio pair
potentials SQSBDE [61], SNC [26,62,106], SC-2.9 [63]). Coordinate definitions are taken from Table 1. For n = 3, some benchmark ab initio
calculations are also given. For further comparison to ab initio results, see Ref. [26,81,102]. HF2-X is an effective pair potential from the
simulation of liquids [93] extended to flexible monomers [91] (see also Ref. [105])

n rur (pm) Ryr (pm) £ FFH (deg) D, Dg Dy Source
3 93.3 257 22.6 64.3 41.8 43.6 HF3BG + SC-2.9 pair
potential
92.6 271 244 53.2 34.5 SC-2.9 pair potential only
92.9 258 24.4 60.7 41.8 433 HF3BL + SNC pair potential
923 273 26.5 50.9 343 36.0 SNC pair potential only
93.2 257 24.4 60.8 422 42.8 HF3BL + SQSBDE pair
potential
933 255 24.3 61.3 42.0 42.6 HF3BG + SQSBDE pair
potential
92.9 276 20.2 71.0 HF2-X pair potential [91]
93.3 259 21.4 67.2 45.5 [S5s4p2d/3s2pld] + MP2 (this
work)
57 39 [5s4p2d/3s2pld] + MP2 —
(BSSE + MR)
934 262 21.6 60.9 [8s6p2d/6s3p] + MP2 (this
work)
55 [8s6p2d/6s3p] + MP2 —
(BSSE + MR)
4 94.0 251 11.6 111.6 79.0 80.6 HF3BG + SC-2.9 pair
potential
93.2 254 134 104.8 71.7 79.3 HF3BL + SNC pair potential
92.4 268 14.2 87.0 61.3 63.6 SNC pair potential only
94.4 243 124 113.6 825 83.0 HF3BG + SQSBDE pair
potential
5 94.0 251 6.4 147 107 108 HF3BG + SC-2.9 pair
potential
93.0 256 7.1 134 101 102 HF3BL + SNC pair potential
Non-planer 113 84 SNC pair potential only
94.5 241 7.1 153 112 113 HF3BG + SQSBDE pair
potential
6 93.9 252 33 180 131 132 HF3BG + SC-2.9 pair
potential (Cg)
93.0 260 33 157 118 HF3BL + SQSBDE pair
potential (Cg)
94.3 242 3.6 186 138 138 HF3BG + SQSBDE pair

potential (Cg)

each other by a direct HF—HF stretch coupling term
(S = semiempirical, N = new form, B = best, C =
with additional coupling) but are otherwise quite
similar. Finally, two very recent, much improved
pair potentials SC-2.9 and SO-3 [63] are used in
some cases.

From Table 4, it can be seen that the three-body

term has a marked influence on the equilibrium FF
distance and on the well depth. The hydrogen bond
is contracted by 10% and strengthened by 20% upon
inclusion of the three-body contributions. Variations
in the pair potential are less pronounced, whereas
BSSE corrections are very significant. This becomes
particularly evident in Table 2, where minimizations



400 M. Quack et al. / Journal of Molecular Structure 599 (2001) 381-425

on the BSSE-corrected surface are also shown for
comparison.

4.2. Zero point energy and predissociation

The experimentally observable binding energy D,
can be calculated from the well depth D, by
subtracting the difference in zero point energies
between the trimer and three isolated monomer frag-
ments. This subtraction is usually carried out at the
harmonic level, which is the only one easily acces-
sible to conventional ab initio calculations. The
resulting harmonic binding energies D} for the
combined (1 + 2 + 3)-body potentials fall within the
range covered by ab initio calculations with and
without BSSE correction [27,105,119], as illustrated
in Table 4.

With the help of DQMC, fully anharmonic binding
energies Dy are available for the analytical potentials.
They are also shown in Table 4. The relative size of
the anharmonicity correction to the trimer binding
energy D, is considerably smaller than for (HF),
[61] 3-5% in (HF); vs. 6-8% in (HF),). This is
mainly due to the more strongly bound character of
(HF); and may also have some contribution from
partial cancellation of positive and negative effects.
As we will see below, even this comparatively small
anharmonicity effect in the ground state of (HF); and
its isotopomers has a qualitative influence on the
predicted vibrational dynamics. Furthermore, as in
the dimer [61], anharmonicity contributions to vibra-
tional transitions can be much larger [110,121] (see
also Section 4.3).

Apart from determining the stability of the trimer
and dominating the thermal oligomerization equili-
brium HF + (HF), = (HF); the precise value of D,
is important for the discussion of possible predissocia-
tion mechanisms of (HF); upon HF stretch excitation.
In this context, the doubly degenerate IR-active HF
stretch fundamental vs near 3712 cm ™' deserves a
closer examination, since it has been investigated
experimentally in some detail [171]. There are two
types of dissociation channels available to (HF);
excited by one quantum of vs:

(HF); — (HF), + HF (type D (44)

(HF); — 3HF (type II) 45)

where the type II process can also proceed in a
sequential manner:

(HF); — (HF); + HF — 3HF (type Ila) (46)

The type I channel involves cleavage of fwo
hydrogen bonds, whereas in the type II process,
three bonds are ultimately broken. In both cases,
single hydrogen bond cleavage via IVR induced ring
opening [107,108]

cyclo-(HF); — (HF — HF — HF)" (A7)

may be a first [38,171], and possibly the rate deter-
mining [18] step for predissociation. The lowest type I
channel has an excess energy of 1060—1260 cm ™' (as
obtained from the Dy{(HF);} data in Table 4 and
Dy{(HF),}/hc = 1062 cm™ " [11,172]) which has to
be distributed among the fragments. For the lowest
channel of type II, this excess energy is predicted to
be only 0-200 cm !, Here, the uncertainty is domi-
nated by ab initio and fitting errors in the combined
pair and three-body potential energy functions,
whereas the statistical dynamical error of the quantum
simulation is negligible (<10 cm™"). We can thus
assume that (HF); — 3HF dissociation channels are
open for the (HF); vs state, at least with a small
amount of thermal rotational excitation available in
the cluster. Previous work suffered from large uncer-
tainties both in D, as well as in the anharmonicity
contribution to Dy. On the other hand, it is now
clear that this type II dissociation, where available,
must be very close to resonance. Less than three rota-
tional quanta in the HF fragments are needed to
absorb virtually all the excess energy. Depending on
whether the process occurs via direct coupling to the
continuum or sequentially via ring-opening and/or an
excited dimer, this could lead to strongly state depen-
dent linewidths in the v band. Experimental evidence
supports the off-resonant channel I as the main
pathway to dissociation [171], thus masking possible
non-statistical effects from type II channels. The
dominating channel I propensity can have several
reasons:

(1) Given the current uncertainty in the binding
energy, we cannot exclude that most type II
channels for the vs rovibrational states populated
in the excited jet in Ref. [171] are closed.

(i1) If predissociation proceeds sequentially, it is
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Fig. 3. Available ([H,D]F); predissociation channels (horizontal bars with symbolic indication of the fragment continuum, on the right hand
side of the isotopomer double columns) upon IR-active HF- and DF-stretch excitation (horizontal arrows on the left hand side of the double
columns [107,171]). The dashed arrows refer to predictions for IR-excitations which have not yet been investigated or whose assignment

remains ambiguous [171]. The absolute error for the minimal channel energies (horizontal bars) is estimated to be less than 100 cm

1, whereas

the relative error can be expected to be much smaller. Experimental confirmation of one critical channel thus leads to very much improved

estimates for all isotopomeric trimer binding energies.

possible that many excited dimer fragments do not
carry enough internal energy to dissociate, whereas
a direct type II process can be considered as
improbable, because the reverse three body process
is considered as improbable as well.

(iii) Type II predissociation as a direct (impulsive
[172]) process may be intrinsically unfavourable
due to the three diatom fragments involved,
although simple energy-, momentum- or angular
momentum gap laws [173] tend to favour a closely
resonant channel.

(iv) From a statistical standpoint, the number of
available product channels with low translational
energy is vastly larger for type I processes as
compared to type II reactions, due to the difference
in state density in the dimer and monomer units.

Independent on the variety of dynamical scenarios

for vs predissociation in (HF);, the energy balance
considerations inferred from the analytical potential
remain valid and suggest that (HF); predissociation is
very different from predissociation of (HF),
[9,18,19,172].

Successive isotopic substitution of HF molecules
by DF in (HF); allows for an interesting tuning of
the nearly resonant type II dissociation channel
discussed above, which is summarized in Fig. 3 (see
also Table 2 in Ref. [102], with slight changes due to
improved experimental and theoretical dimer disso-
ciation energies). While the type I channel excess
energies for (HF);, (HF),DF and HF(DF), are all in
the 950—1200 cm ' range and therefore far off reso-
nance, the calculated minimal type II channel excess
energies undergo a sign change in the same series.
Due to residual errors in the potential energy surface,
this crossover might be limited to states with non-zero
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angular momentum, but we predict that it will happen
within the energy spread covered by a typical super-
sonic jet expansion. Although the dynamical effects of
this type II channel crossing may be masked by type I
channel propensity, a detailed experimental investiga-
tion should be attempted, as it could give valuable
insights into the predissociation dynamics and accu-
rate information on the cluster energetics.

A more direct dynamic prediction could be made
[102] for the degenerate DF-excitation of (DF)s,
which was subsequently detected in the gas phase at
2724.60 cm ™! [103,107] after an ambiguous isoto-
pomer assignment ((DF); or (DF),HF) via predisso-
ciation spectroscopy at 2720 cm ™' [171] and matrix
assignments at 2717 cm~ ! (Ar) and 2720 cm ™' (Ne)
(3-D anharmonic prediction in the SNB + HF3BL
potential: 2733 cm ™', see Refs. [103,106]). In this
case, type II channels are not accessible and we
predict the lowest type I channel to be slightly
above resonance with the vibrational level (see
Fig. 3). This provides a sensitive probe for bounds
of Dy{(DF);}, since the experimental spectrum will
either show or not show dissociation lifetime broad-
ening for single rovibrational states. The findings of
the subsequent high resolution investigation [107] are
consistent with Dg/hc > 2725 cm ™" for the type I
channel in (DF);, i.e. a stable, non-predissociative vs
state, although they cannot rigorously exclude predis-
sociation on a timescale longer than 3 ns. Such a slow
predissociation in turn would be hard to reconcile with
the observation of very fast (=40 ps) and essentially
complete IVR in this band [107], leading to the
cleavage of one hydrogen bond (i.e. ring opening).
Hence, it is likely that the predissociative band
observed in Ref. [171] at 2720 cm ! is not due to
fundamental low J, K one-photon transitions in
(DF);, which we expect to be invisible to a molecular
beam depletion technique due to the lack of available
predissociation pathways. As described in the HF-
stretching case, it should be possible to tune through
the dissociation channel resonance for DF stretching
excitation via isotope substitution (see Fig. 3). In a
sense, this leads to a very large (in principle infinite)
isotope effect [174] for photoinduced DF abstraction
at essentially the same excitation wavenumber.
Hence, a detailed study of mixed isotopomers can
lead to a very accurate spectroscopic determination
of the trimer binding energy. Observation of any

predissociative mixed trimer band in the 3.7 um
region would immediately yield rather tight upper
and lower bounds for D, in combination with the find-
ings for (DF); [103,107]. Bolometric detection [11]
would be particularly informative, as it can discrimi-
nate between predissociative and stable excitations.

In conclusion, the ([H/D]JF); system contains a
number of fortunate energetic coincidences in the
HF/DF stretching range, which can be explored for
the study of predissociation mechanisms in hydrogen
bonded systems. We emphasize that these coinci-
dences depend rather critically on an accurate descrip-
tion of the pair potential, on the inclusion of three-
body effects and on anharmonic contributions to the
zero point energy [26,27,103].

4.3. Vibrations

Another important dynamical region of (HF); is
spanned by the intermolecular vibrations below the
lowest dissociation threshold of about 2600 cm ™.
Here, the absence of predissociation enables spectro-
scopic line resolution for low enough temperatures
and frequencies. This has already been established
impressively for certain combination bands in the
CO, laser range [35] whose vibrational assignment
is however difficult since a large number of stretch—
bend and bend—bend combinations is available and
off-resonant interactions between stretching and
bending manifolds have been neglected in the
theoretical analysis [35]. The Cj, symmetry
[102,105,107,171] present in (HF); leads to three
infrared active low frequency fundamentals. Rather
sharp (HF); peaks assigned to these fundamentals
were found in rare gas matrices [175,176] and provide
very valuable constraints for band centers, but the
expected matrix shifts render predictions for gas
phase values uncertain. In the gas phase equilibria,
(HF); is not very abundant [104] and most of the
observed broad bands [18,104,109,177,178] are
most likely dominated by contributions from larger
clusters.

Table 3 summarizes the harmonic frequencies
obtained from the combination of our HF pair poten-
tials [61-63,106] with the HF3BL and HF3BG three-
body potentials. One can observe a substantial
stiffening of the hydrogen bond librational and
stretching degrees of freedom with the inclusion of
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the three-body term. A further increase in the aniso-
tropy of the hydrogen bond potential is found when
switching from the SQSBDE and SNC pair potential
to the more reliable SC-2.9 pair potential. This is
consistent with the findings in (HF),. Agreement
with direct ab initio predictions given in Table 3 is
quite close for the HF3BG + SC-2.9 potential and
reasonable for the purely intermolecular MMC (mole-
cular mechanics for clusters) model [121]. A recent
diatomics in ionic systems (DIIS) model performs
poorly for the out-of-plane and FF stretching funda-
mentals of (HF);, in line with similar deficiencies for
(HF), [89].

From the results on D, and on (HF), [63,179], one
can speculate that the anharmonic band centers for
these low frequency fundamentals will on average
be lower than the harmonic results and should not
deviate by more than about 30% from the harmonic
numbers. Multidimensional anharmonic calculations
carried out in the HF3BL + SNB potential indeed
show anharmonicity effects in the —(15-20)% range
[102,106] (see also Refs. [35,121] for a reduced
dimensionality treatment neglecting angular—radial
coupling). These calculations involve a wide range
of techniques, including varaitional/DQMC 3D-9D
adiabatic separations, fixed, symmetry-constrained,
and variational node DQMC calculations. In some
cases, they provide rigorous upper bounds, in other
cases estimates of the lowest five fundamentals of
the trimer and some combinations. The results under-
score the importance of vibrational treatments beyond
the harmonic approximation, using methods such as
DQMC [61,106], close coupling and variational
calculations [62,179] or approximate angular—radial
and angular—angular separation schemes in some
favourable cases [35,37]. The HF3B three-body
potentials are an important prerequisite for such
studies, and will greatly assist the prediction and
analysis of the far infrared spectrum of (HF), its
isotopomers and higher oligomers [24].

In the HF stretching range, comparison to experi-
ment is already possible. The harmonic predictions
(Table 3) for the infrared active degenerate HF
stretching vibration range from 3868 to 3950 cm ™!,
depending mostly on the employed pair potential. The
more reliable pair potentials predict a harmonic shift
relative to the monomer of about —250 cm ™!, in
accordance with the harmonic DZP + MP2 result

and with the anharmonic experimental value of
—249 cm ™. Anharmonicity within the HF stretching
manifold increases the harmonic shift to about
—300 cm ™' [106,110], whereas zero point energy
contributions in the hydrogen bond modes counteract
this increase to a large extent [27,63,110], thus
explaining the apparent success of harmonic shift
predictions. This important compensating effect of
the zero-point motion is still not widely appreciated.
It is a straightforward result of the weakening of the
hydrogen bond due to its librational zero-point
energy, which reduces the softening of the monomer
mode relative to the minimum structure. In the
language of spectroscopic perturbation theory, it is
an important coupling term involving the HF
stretching mode and the hydrogen bond modes.
Quite independent of these anharmonic subtleties,
the three-body effect on the HF stretching frequency
shift is very pronounced, roughly doubling the value
obtained without three-body contribution (Table 3).

4.4. Rotation around the symmetry axis

Equilibrium rotational constants for the (H/D)
isotopomers of (HF); are summarized in Table 5 for
some analytical potentials and can be compared to the
ab initio results given in Tables 2 and 6 as well as in
Ref. [88]. Comparison of pair potential results with
those including HF3BL three-body interaction under-
score the structural importance of cooperativity. The
equilibrium rotational constants are not directly obser-
vable, as zero point vibrational motion couples to
rotation. For rotation around the three-fold symmetry
axis, we have obtained coupled C, constants within
the framework of effective rotational surface DQMC,
as described in Section 3. These are also shown in
Table 5. Vibrational correction at the ground state
level is relatively small due to partial cancellation of
stretching and bending effects, but significant. It
brings the theoretical prediction into agreement with
the recent experimental [107] C, value for (DF);
within statistical error bars. Independent evaluation
of By via Mecke’s sum formula [153] also confirms
the negligible inertial defect in the (DF); ground state
found in the experimental spectra [107]. This close
absolute agreement between theory and experiment
must be considered somewhat fortuitous in view of
the possible ab initio and fitting error in the analytical
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Table 5

Rotational constants for (HF); and its isotopomers in cm !at equi-
librium (index e) and including coupling to zero point motion (index
0; from DQMC with statistical error bar; Cy and By/2 are obtained
independently using the Mecke formulae discussed in the text and
show no significant inertial defect) for the SNB/SNC potentials
(indistinguishable for the quoted accuracy) including (no upper
index) and excluding (upper index pp) the three-body potential
HF3BL. For (DF);, experimental data [107] are also given

Isotopomer  C, cr (o) (o By2

(HF); 0.1288 0.124(1)

(DF), 0.1245 0.111  0.121(1) 0.107(1) 0.121(1)

Exp [107]: 0.120 0.120
AF Bf Cﬂ

(HF), 0.2575 0.2575 0.1288

(HF),DF 0.2575 0.2519 0.1273
HF(DF), 0.2547 0.2491 0.1259
(DF); 0.2491  0.2491 0.1245

potential as well as possible Coriolis corrections,
which have been neglected. However, it provides
first reliable (a posteriori) information on the equili-
brium structure of this highly anharmonic system,
which should be very close to the data set given in
Table 4, namely Rpr = 258 pm, ryp = 93 pm and
/ FFH = 24°. This represents a sizeable contraction
of the hydrogen bond compared to the dimer value
(Rpg = 275 pm), caused mainly by the three-body
term. Based on these data, the microwave (MW) spec-
trum for mixed isotopomers can be predicted quite
accurately (see Table 5). Mixed isotopomers are
expected to have a zero point motion induced dipole
moment in excess of 0.01 D due to the HF distance
dependence of the monomer dipole, induction
enhancement in the trimer and large amplitude
bending motion. This should be sufficient for detec-
tion using FT-MW techniques in supersonic jets [1-3]
and could improve structural information on the
trimer beyond that obtained from the strongly coupled
vs spectrum [107].

4.5. Other stationary points and minimum energy
paths

Investigation of the local environment around the
trimer equilibrium structure gives useful qualitative
insight into the hydrogen bond dynamics. Global
results using DQMC techniques lead to quantitative

spectroscopic information for low excitations and
inspection of the associated wavefunctions indicates
the absence of dramatic delocalization effects. A
remaining task concerns the characterization of the
potential surface far from equilibrium, in an energetic
range accessible to HF stretching excitation. In this
region, the ab initio data base for the HF3BL three-
body potential is relatively sparse, whereas the
extended HF3BG data base should be sufficient for a
reliable description.

A first important question concerns equivalent
minima. Clearly, the cyclic (HF); hydrogen bond
pattern for distinguishable HF units can be formulated
clockwise (e.g. 1 —2— 3 — 1) and counterclock-
wise (1 < 2 « 3 «1). One may ask whether vibra-
tional interconversion tunneling [178] between these
clock- and counterclockwise hydrogen bonded cyclic
(HF); minima is feasible and whether it will be visible
in the fundamental spectra. The barrier for such a
process is expected to be much higher than in the
dimer, since the odd number of constituents implies
that no favourable all-disrotatory path exists in
contrast to the dimer [178]. We have searched care-
fully for stationary points above the C3, minimum of
the (HF); surface. Most of the initial searching efforts
concentrated on the analytical potentials, since this is
many orders of magnitude more economic than for
reliable ab initio calculations. The resulting stationary
points were then used as initial guesses for
other analytical potential surfaces and [8s6p2d/
6s3p] + MP2 analytical gradient calculations (Table
6). Only three additional stationary points were found
and vibrationally analysed using a smaller [5s4p2d/
3s2pld] basis set at MP2-level. Energetically, they are
all quite close to the type I dissociation channel
products. Hence, they correspond to very floppy meta-
stable or transition structures with sizeable zero-point
energy differences already at the harmonic level,
which might even be amplified by the inclusion of
anharmonic effects [145]. This is in contrast to the
dimer C,, interconversion transition state which is
quite tight, at least at the anharmonic level [145].
Due to the weak binding and relatively large monomer
distances, three-body interactions are much less
important than close to the minimum. In fact, the
three stationary geometries can be described conveni-
ently by two (HF), near-minimum structures having
their donor or acceptor HF molecules merged, i.e. in a
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Table 6

Stationary points of HF trimer calculated at the MP2 level using the [8s6p2d/6s3p] basis set described in the text. r, R denote distances, A,, B,, C,
equilibrium rotational constants, D, the total dissociation energy (into monomers). Aryr denotes the change in ryr upon complexation

Cjy;, global minimum

D,/he (cm™") 5090 rgr (pm) 93.4

Ryr (pm) 262 Argr (pm) 1.7

A, B, C,(cm™") 0.2509, 0.2509, 0.1254 £ FFH (deg) 21.6

C,-saddle, [ad]-chain

E — E¢ /he (em™) 1507 £/ HF---F (deg) 116.4,3.8,2.3
rur (pm) 92.2,92.9, 92.6 Rgr (pm) 267.8, 271.0, 468.1
C,,-minimum,[aa]-structure

E — Ec,/hc (em™) 2743 £ HF---F (deg) 3.5 (long F---F)
rgr (pm) 2x92.1,92.3 Rer (pm) 2x284.0, 547.1
C,,-saddle,[dd]-structure

E — Ec/hc (cm™h 2869 £/ HF---F (deg) 131.7 (long F---F)
rur (pm) 2x%92.0,92.6 Rgr (pm) 2x2774,323.4

pairwise additive fashion. This qualitative description
immediately leads to three structures, namely a donor
merged trimer ([dd]-(HF);), an acceptor-merged
trimer ([aa]-(HF);) and a chain molecule obtained
by merging a donor HF with an acceptor HF ([ad]-
(HF)3) and these are in fact the stationary geometries
found by both analytical and ab initio searches (see
Fig. 4).

The [dd]-(HF); structure is a C,, saddle point 2869/
2682 cm ™' above the minimum with an imaginary
harmonic frequency of about 200 cm ™' magnitude
in the ab initio/HF3BG + SQSBDE potential. A
related C,, barrier of 2900 cm ' has been determined
using an electric dipole-type potential without radial
relaxation of the equilateral (HF); triangle [35]. From
harmonic frequencies in the [Ss4p2d/3s2pld] basis,
we estimate a harmonic zero-point energy correction
of about —800 cm ™ for the threshold energy relevant
in the framework of transition state theory (see
however Ref. [145] for the crucial influence of anhar-
monicity contributions). Interconversion tunneling
via this [dd]-structure is possible and profits from
the small necessary displacements of the heavy nuclei
along the path. However, the flatness and width of the
barrier probably requires sizeable promotion by
bending excitations for the spectroscopic observation
of the process.

The [aa]-(HF); structure is a local C,, minimum
2743/2573 cm™"  (ab  initio/HF3BG + SQSBDE)
above the Cj;, global minimum. The older HF3BL +
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Fig. 4. Schematic representation of important rearrangements in
(HF);, indicating minima (full circles) and saddle points (empty
circles) together with approximate barriers and thresholds
(including zero point energy) in kJ/mol.
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SNB potential predicts this minimum to be consider-
ably lower, at 2250 cm_l, whereas the result for the
most recent HF3BG + SO-3 potential is 2804 cm .
A somewhat related secondary minimum structure has
been found for the HyO(HF), complex [55] and for
(HF); in a pairwise additive approach [180]. Again,
the zero point energy corrected barrier is some 700—
800 cm ' lower, indicating a flat local environment.
The barriers connecting this structure to the global
clockwise and counterclockwise minima are less
than about 200 cm ! in the HF3BL + SNB potential,
as inferred from Monte Carlo simulations. The
pronounced heavy atom motion makes this path
somewhat less relevant for the interconversion
tunneling dynamics. Nevertheless, interconversion
via the [aa] structure may be an attractive classical
(thermal) path, since it only involves a sequence of
disrotatory dimer bending motions apart from the ring
opening and closure. The structure is also important
for the discussion of chain branching in larger HF
clusters and the liquid (see later sections).

Finally, the [ad]-(HF); chain structure remains to be
discussed. It has no direct relevance to interconver-
sion tunneling, since it does not connect clock- and
counterclockwise minima. However, similar to the
Cw, (HF), structure, it is dynamically important, in
particular for the ring opening processes discussed
in the context of predissociation [38,107,171]. The
lowest Cg chain structure is found to be a saddle at
1507/1579 cm ™" (ab initio/HF3BG + SQSBDE) with
an imaginary frequency of 70 cm ™' magnitude. With
the HF3BL + SNB potential, it is predicted consider-
ably higher, at 1917 cm ™. Zero point energy correc-
tion at the harmonic level amounts to about 400—
500 cm ™' and thus emphasizes the dynamical impor-
tance of this structure for excited vibrational states.
According to these predictions, ring opening in HF
trimer should be feasible at or just beyond CO, laser
excitation frequencies, where the cluster has already
been studied spectroscopically [35]. Ring opening is
definitely possible and has already been observed
after monomer fundamental excitation [107].

Summarizing our findings and considering that
dissociation of the trimer into a dimer and a monomer
only requires about 2561 cm” ', interconversion
tunneling in (HF); is a slow and complex process
[181] which will be difficult to observe in the far
infrared spectrum. In this sense, ground state (HF),

may be considered as less floppy than (HF),, while
this does not exclude substantial anharmonicity
effects. The analytical surfaces based on the HF3BG
three body term appear to describe interconversion
well. Ring opening to a HF—-HF—-HF chain conforma-
tion is energetically much more feasible than
hydrogen bond interconversion. The barrier is above
fundamental excitations of hydrogen bond modes and
is somewhat overestimated by the HF3BL three-body
potential. This suggests that anharmonic density of
state estimates from this analytical potential at high
energies may be somewhat too low, in good agree-
ment with experimental estimates [107].

It is instructive to investigate minimum energy
paths connecting the stationary points on the analy-
tical surface. Fig. 5 shows such paths with respect to
FFF bond angle variation. Constraining the molecule
to planarity allows motion along ‘excited’ paths for
certain ranges of the angle, as shown in the figure. The
steep Cs;, global minimum should be compared to the
floppy character of higher stationary states, where
deviations between HF3BL and HF3BG parameteri-
zations are significant. Fig. 6 shows a path along a
distance constraint, namely the center of mass separa-
tion R between a chosen monomer and dimer frag-
ment. For distances up to about 450 pm, the path
closely resembles the angular motion shown in Fig.
5. The distance constraint is fulfilled with angular
distortions as long as possible. Only when the trimer
is stretched beyond linearity, the second hydrogen
bond cleavage sets in and gives rise to a steepening
of the path.

4.6. Adiabatic stretching channels

As FF-stretching is a slow coordinate in (HF);, the
minimum energy paths discussed in Section 4.5 are
not the best reduced dimensionality potentials for this
motion. Rather, the zero point energy of the
remaining, faster degrees of freedom should be
added [182]. This has been done for the three-dimen-
sional FF stretching potential [106]. Here, we inves-
tigate the one-dimensional stretching potential shown
in Fig. 6 as this already contains the essential adia-
batic effects for the type I dissociation coordinate
without being complicated by the other stretching
modes. The lowest adiabatic stretching channels for
relative motion of the monomer and dimer fragments
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Fig. 5. Planar minimum energy paths along the F,F,F; angle « for
the SQSBDE + HF3BG (full) and SNB + HF3BL (dashed) poten-
tials. The lowest path goes through the global C;;, minimum and
starts/ends at a collinear FFF conformation with off-axis hydrogens
(a higher order saddle point). The two in chain hydrogen bonds are
always cis-configured. If a trans-configuration such as the Cg[ad]
saddle is used at the start, one can move in a secondary constrained
minimum path within a certain angular range (middle curve) and the
Cg[ad] saddle corresponds to a minimum on that path. Using a C,,
starting point leads to the highest path shown within a range of «
values. This path goes through the C,,[aa] stationary point. Note the
agreement of the two potential functions in the hydrogen bonded
region and the differences at higher energies, where the SQSBDE +
HF3BG potential is based on better sampling.

have been calculated for (DF); and (HF); and are
shown as full lines in Fig. 6. As expected, the channel
for (HF); is shallower than that for (DF); because of
the increased zero point motion for the light hydrogen
isotope in the hydrogen bond modes which switch into
rotations for the dissociated products. In this sense,
deuterium bonds are stronger than hydrogen bonds
[183,184]. There is an opposing effect due to the intra-
molecular frequency shift, which is larger for
hydrogen than for deuterium and thus stabilizes the
lighter isotopomer. This intramolecular effect,
however, is smaller than the intermolecular effect in
the case of HF clusters, because librational frequen-

cies usually exceed monomer frequency shifts in
magnitude. The net strengthening of the hydrogen
bond upon deuteration has consequences for IR spec-
troscopy. While the harmonic (degenerate) prediction
for the stretching fundamentals is 181 cm ™~ '/178 cm ™
for (HF);/(DF); due to the small difference in mass,
the fundamental transitions in the corresponding adia-
batic channels are 153 cm™'/155 cm ™. This inverse
isotope effect agrees remarkably well with experi-
mental matrix data [176], which find 152.5 cm ™!/
155.5cm ™" for (HF)y/(DF);. The agreement of the
absolute values must be fortuitous, considering matrix
shifts, ab initio errors, fitting artifacts and the reduc-
tion of the stretching problem to one dimension
[61,106]. The shift, however, is a real, adiabatic off-
resonant coupling effect, as discussed in Section 3. A
standard minimum energy path treatment yields
174 cm~'/170 cm ™", i.e. wrong ordering and magni-
tudes. This confirms the findings in (HF), [61] and
clearly shows that hydrogen bond stretch anharmoni-
city is not dominated by diagonal terms but rather by
the off-diagonal zero-point energy coupling or corre-
lation. Similar effects should be found in other
hydrogen bonded clusters [184], as the transformation
of high frequency hydrogen bond librational modes
into rotations upon dissociation is a general principle
[143,144].

5. Energetics and dynamics of HF oligomers

Clusters beyond dimers are studied for many
hydrogen bonded systems, but the clustering tendency
of gaseous hydrogen fluoride is uniquely pronounced
in terms of cluster size and concentration
[18,104,106,185]. Therefore, it is worthwhile to
investigate to which extent a pair + three-body poten-
tial approach will be valid for larger aggregates.
Higher than three-body interactions may come into
play and even if they are individually of small magni-
tude, their number grows quickly with increasing
aggregate size n. Another limitation is given by the
increasing importance of the inner two-body sampling
region. While the earlier pair potentials of (HF), have
been constructed for typical dimer interactions, the
nearest neighbour distance in larger clusters is consid-
erably shortened [88,105,186] and approaches values
for which ab initio sampling and spectroscopic
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Fig. 6. 1-D minimum energy path (dashed) and (HF); (upper), (DF); (lower full curve) lowest adiabatic dimer—monomer stretching channels
obtained from the SNB + HF3BL potential via clamped-coordinate DQMC. R is the distance between monomer and dimer centers of mass. All
channels have been normalized to O for infinite separation. The sigmoid behaviour of the channels for moderate elongation marks the transition
between single hydrogen bond cleavage and double hydrogen bond cleavage. A plot extending to larger distances can be found in Ref. [27],

Fig. 7.

characterization of the dimer becomes sparse. This
will be particularly noticeable for the HF stretching
dynamics due to the extended quantum motion of the
light hydrogens, while the intermolecular vibrations
should initially be less affected. Thanks to the
modular character of the many body approach, this
can be remedied by the refinement of the HF pair
and three-body potentials and eventually by the inclu-
sion of a four-body term [26]. However, hydrogen
exchange between monomer units, which is neglected
in current analytical models, becomes more and more
important for larger clusters [26,27,105,119]. This
means that refinements beyond a certain level may
require a reformulation of the potential expressions
[26,187]. Here, we want to explore structural and
dynamical properties of the available combination
of pair- and three-body potentials for the next higher
oligomers (n = 4-7) in some detail, in order to get
some insight into the possible limitations mentioned

above. Using the new tool of Voronoi step representa-
tion in vibrational QMC [82], one can also assess the
analytical fitting bias inherent in the potentials [83].

5.1. Higher than three-body forces

A crucial test for the applicability of our approach
to the simulation of larger HF clusters (n > 3) is
provided by the ab initio evaluation of higher-body
contributions in representative (close to minimum)
(HF), configurations. We have used the ab initio
approach described in Section 3, i.e. the DZP +
MP2 — BSSE level, to calculate all nonvanishing m-
body contributions for a Cs;, pentamer geometry close
to the (presumably absolute) minimum found by us
(FF-distance: 4.86a,, monomer HF-distance: 1.756ay,
FFH-angle 7.3°) and for a Cg;, hexamer geometry close
to the optimized structure given in Ref. [88] (FF-
distance: 4.677ay,, monomer HF-distance: 1.791a,
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FFH-angle 0°). For the pentamer geometry, all terms
turn out to be attractive. The three-body energy
amounts to 42% of the two-body potential, and the
succeeding terms converge exponentially (4% four-
body contribution, 0.3% five-body contribution). A
recent, much more accurate calculation [119] yields
64, 9, and 0.7%, respectively, at a similar geometry.
For the hexamer geometry, the three-, four-, five-, and
six-body contributions amount to 83, 18, —6, 2% of
the two-body potential.

These numbers suggest that combined one-, two-
and three-body potentials should give a reliable
description of the hydrogen bond dynamics of HF
clusters close to equilibrium up to at least six mono-
mers [102], provided the analytical fits are accurate
enough. The error introduced by this truncation is
relatively systematic, leading to a somewhat under-
estimated hydrogen bond strength in larger clusters.
This is also confirmed by density functional calcula-
tions [26,105] (see in particular Figs. 2 and 10 in Ref.
[26]). More serious deficiencies arise for large HF
bond elongations, close to concerted hydrogen
transfer structures [26] and for higher order properties
sensitive to derivatives of the potential energy. For
clusters beyond the hexamer, non-bonded contacts
start to come into play and may be more sensitive to
subtle many-body contributions. For solid and liquid
HF, at least a substantial improvement over (HF),-
derived pair potentials is expected.

5.2. Oligomer structure and stability trends

Given the predicted usefulness of a combined
(1 +2 + 3)-body approach for larger HF clusters,
we have to explore the reliability of the analytical
fits involved. For this purpose Tables 3 and 4 contain
results for higher oligomers. The minimum geome-
tries for the analytical surfaces have been obtained
by various techniques, ranging from Metropolis
Monte Carlo techniques with simulated annealing to
methods involving the calculation of the Hessian
matrix [188]. Due to the rapidly increasing number
of local minima, there is no strict proof that the
lowest minima found are in fact the global ones.
However, many independent runs render this very
likely for n = 6. Harmonic analysis of the structures
was always used to confirm that they correspond to a
minimum.

The global minima for clusters of 3—7 HF units are
simple rings with each HF engaging in one hydrogen
bond as a donor molecule and in one as an acceptor
[26,27,88,102,105,109,119]. A general qualitative
question about these ring structures concerns their
planarity. While the quantum nature of nuclear
motion may wash out the transition between planar
and non-planar structures to some degree, the equili-
brium structure is defined in a classical sense as a
property of the electronic potential energy surface.
True and effective pair potentials tend to predict
folded rings already for n = 4 (HF2-X [91]) or n =
5 (SNB/C [26,27]), while inclusion of three body
forces leads to planar (C,;) global minima for all
oligomers up to and including the pentamer. For n =
6, we find a transitory behaviour with competitive
planar and folded structures, while larger clusters
are clearly folded. This might be related to the regular
pentagon being the largest equilateral, isogonal
polygon constrained to lie in a plane [189], but
more likely it is due to the existence of residual ring
strain up to this size. The ab initio DZP + MP2 calcu-
lations shown in Table 2 locate the transition to non-
planarity between n =5 and n = 6 and predict the
planar Cg, structure of (HF); to be a third-order saddle
point, whereas the geometry at the global minimum is
a Sg chair conformation 0.7 kJ/mol lower in energy. If
confirmed, this would be a particularly simple
example for the rare Sg point group, which requires
at least 12 atoms to be realized. In between these
conformations, boat-like and twist-like stationary
points of C, symmetry can also be found (Table 2).
(HF)g is thus very close to the quasiplanar [157] limit.
This is even more pronounced when zero point energy
is added to the three-dimensional puckering potential
around the 3rd order Cg, saddle, not counting any
contributions from the three low frequency puckering
modes. Such an adiabatic potential of puckering
motion in the bath of faster bending and stretching
modes is expected to be closer to the reality than the
simple electronic puckering potential where the
remaining degrees of freedom are minimized
[61,143]. In this adiabatic potential, we find at
the DZP + MP2 harmonic frequency level that the
Cen—S¢ energy difference is reduced from 0.7 kJ/mol
to 0.25 kJ/mol. Inclusion of anharmonicity can be
expected to lead to effects of similar magnitude
[145]. Density and hybrid functional calculations
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predict a very slightly non-planar Sy structure for the
hexamer [105].

Although the analytical potentials presented in this
work cannot be expected to be quantitatively reliable
at this level of subtle effects, it is interesting to
compare their properties to the less biased (but at
least for n <4 much less accurate) DZP + MP2
predictions. The analytical SQSBDE + HF3B and
SC-2.9 + HF3BG potentials have a global Cg,
minimum, whereas the SNB/C + HF3BL potentials
exhibit a Cg, secondary minimum, which is 0.7 kJ/
mol above a presumably global, strongly folded C,
twist-like, chiral minimum structure. When zero
point energy is included at the harmonic level, the
energy difference between the two minimum struc-
tures reduces to only 0.1 kJ/mol. A large number of
further low energy minima and extended flat valleys
can be found in this potential surface and examination
of the ground state wavefunction generated by DQMC
indicates that it has significant amplitude in several of
these minima and valleys. The barriers separating the
stationary points (minima) are low and therefore
quantum delocalization is expected, although some
localization is suggested by perturbation theory in
the large barrier limit for non-equivalent minima.

An interesting spectroscopic consequence of the
pronounced quasiplanarity of (HF)¢ in the SNB +
HF3BL potential is found for the C rotational
constant, which corresponds to spinning motion
around the ring axis. The C constant differs by more
than 50% for the Cg, structure and the structure of the
global minimum of the SNB + HF3BL surface and
still by about 6% for the corresponding stationary
points in the DZP + MP2 approach. The effective
zero-point averaged C; rotational constant, which
can be obtained from DQMC calculations for high J
values, appears to be quite normal, as in smaller clus-
ters. However, it extrapolates smoothly to the planar
(secondary) Cg, minimum value rather than to the
global (C,) one at J = 0. Upon rapid spinning rota-
tion, centrifugal effects obviously invert the energy
sequence. It is, however, quite unlikely that such a
pronounced effect of quasiplanarity can be confirmed
experimentally.

The C,, symmetry of the planar ring structures
reduces the number of independent structural para-
meters to three. The DZP + MP2 results quoted in
Table 2 are expected to be reliable as far as trends

in these structural parameters are concerned. The
£ FFH hydrogen bond angles are a measure for ring
strain. The strain free value is <<10° already for pair
interactions. Upon inclusion of three-body terms, the
optimum angle may be somewhat smaller, = 2-6°. In
rings, realization of the optimum angle for a single
hydrogen bond is influenced by the acceptor HF angle,
which in turn is constrained by ring closure. This
constraint vanishes for n = 5, 6. The resulting steady
decrease [105] of £FFH from n = 3 to n = 6 is nicely
matched by the analytical potentials, whereas DIIS
models [89,122] currently overestimate the bending
angles.

The FF distance Rgg drops steadily with increasing
ring size, while the HF bond lengths ryr increase in the
same direction (see Table 2). These two trends are
strongly correlated [105,190]. Both are consequences
of the increased hydrogen bond strength and sensitive
measures for the reliability of analytical fits, as the
energy required to reverse these trends is rather
small. This structural sensitivity is also illustrated by
the difference between cluster minima obtained by
BSSE correction before or after minimization (Table
2). Energy effects of the order of 2—3% cause struc-
tural changes of similar size. From Table 4, it is seen
that the analytical potentials only show the correct
bond length trends for n = 5. For n > 5, the trends
are reversed. This may be a consequence of neglected
higher-body forces or enforced monomer integrity.
DIIS models perform qualitatively better in this
respect. The recent experimental structure [24] of
the tetramer is in good agreement with the ab initio
and analytical potential predictions, considering both
theoretical and spectroscopic data inversion uncer-
tainties.

The difference between harmonically estimated
local binding energies D/ and fully anharmonic global
D, results continues to decrease beyond the trimer,
amounting to less than 1% in (HF)s¢ and therefore
approaching the statistical error of the DQMC calcu-
lations, which is less than 0.5% of the dissociation
energy in most cases. This may be explained by a
cancellation of opposing effects for different degrees
of freedom and by the strong binding in these clusters.
However, neglect of hydrogen exchange pathways in
the analytical potential energy surfaces may also
contribute artificially to this effect.

The process of stepwise evaporation of HF
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molecules from a cluster of size n

(HF), = (HF),_, + HF A H) =E,,, (48)

is very important in the interpretation of predissocia-
tion experiments, because it governs the open chan-
nels for cluster decay as long as cluster—cluster
product channels are not favoured. The latter is
certainly true for n < 8. Stepwise vaporization ener-
gies E\,, are a sensitive probe of ring strain and other
hydrogen bond weakening effects, as they correspond
to the energy difference between two neighboring
clusters. For the HF3BG + SC-2.9 potential (see
Table 4), they are plotted with (E\,,) and without
(Elvap) anharmonic zero point energy correction in
Fig. 7a.

One can also consider the integral vaporization
energies per HF unit, Eyy, corresponding to the reac-
tion

1 .
—(HF), =HF A Hy = Ey,. (49)

These are shown in Fig. 7b. Both representations,
while containing the same information, have their
relative merits. The integral energies demonstrate
the energetic approach to the solid and global thermo-
dynamical stability trends, whereas the stepwise ener-
gies are directly relevant for elementary vaporization,
condensation and cluster-‘melting’ processes.

To judge the reliability of the HF3BG + SC-2.9
potential beyond n = 3, Fig. 8§ shows DZP + MP2
results (Table 2) for the global (HF), minima up to
n = 8, with and without harmonically estimated zero
point energy correction. The qualitative agreement is
quite good, considering the substantial BSSE inherent
in the ab initio data and the lack of higher than three-
body terms in the analytical potential energy surface.
The latter contributions can be estimated by a detailed
analysis of the ab initio calculations (Table 2) and by
calculations at higher levels [26,104—-106,119], also
supported by spectroscopic evidence [110,111]. The

Fig. 7. (a) Stepwise vaporization energies E,,(n) at 0 K corre-
sponding to the process (HF), — (HF),_; + HF obtained classically
(A) and including anharmonic zero point energy ([J) for the SC-
2.9 + HF3BG potential (full lines). Also shown are the best esti-
mates including higher than three-body forces [26] (dashed lines).
(b) as in (a), but showing the integral vaporization energy per HF
unit Eiv’zfp(n) corresponding to the process %(HF),1 — HF.
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Fig. 9. Stepwise MMC [121] vaporization energies E\,,(n) at 0 K
(A) corresponding to the process (HF), — (HF),—; + HF including
harmonic zero point energy without (dashes) and with (full line)
consideration of HF stretching contributions (from our DZP + MP2
results). For comparison, best estimates for Dg [26] are also given

).

current best values for the stepwise dissociation
energy [26], based on such estimates, are also repro-
duced in Fig. 7.

A further independent assessment of the stability
sequence up to n = 6 is provided by the intermole-
cular MMC (molecular mechanics for clusters) data
[121], although at this level, which involves rigid
monomers, the pentamer structure is non-symmetric.
The data are presented in Fig. 9, which may be
compared to Figs. 7 and 8. For a reliable prediction
of zero point energy corrected binding energies D{, it
is essential to add contributions from monomer flex-
ibility, i.e. intramolecular frequency shifts, to the rigid

Fig. 8. (a) Stepwise DZP + MP2 vaporization energies E.,,(n) at
0 K corresponding to the process (HF), — (HF),—; + HF obtained
classically (A, dashed) and including harmonic zero point energy
(O, full line). (b) as in (a), but showing the integral vaporization
energy per HF unit Ei,‘”:p (n) corresponding to the process
(1/n)(HF), — HF.
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Fig. 10. Stepwise HF2-X [91] vaporization energies E.,,(n) at 0 K
(+, dashed) corresponding to the process (HF), — (HF),—; + HF in
the classical approximation without zero point correction, compared

to the HF3BG + SC-2.9 result (A). The effective pair potential
substantially overestimates the dimer binding energy.

MMC data. We have done this at the DZP + MP2 level,
as shown in Fig. 9. While the quantitative dimer perfor-
mance of the corrected MMC results is inferior to that of
the HF3BG + SO-3 potential, the qualitative behaviour
for larger clusters is quite similar, indicating that an
induction model with empirical repulsive components
can perform quite well. However, monomer flexibility is
seen to be at least as important as higher than three-body
contributions for an accurate description of the larger
clusters [26].

On the other hand, an effective pair potential such as
the HF2-X model [91] may perform reasonably well
on the average for larger clusters, but it will substan-
tially overestimate the dimer binding energy, where
many-body contributions are missing. This is illu-
strated in Fig. 10.

Comparison of the results displayed in Fig. 7 to the
infinite cluster limit, i.e. the vaporization enthalpy or
dissociation energy Dj of the solid at 0 K, would be
desirable. Due to the unusual vapor phase properties
of HF [104], this quantity is quite uncertain. It can be
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estimated to be Dg =34 *£2kJ/mol from a
thermodynamic cycle calculation integrating the best
available thermodynamic data [191-193], with the
enthalpy of vaporization AH,,, into the ideal gas state
as the most critical quantity. Despite sizeable error bars,
one can see that the integral stabilities are far from
convergence to the solid, whereas the stepwise vapor-
ization enthalpy of (HF), is likely to exceed that of the
solid due to the highly strained product molecule (HF);.
Turning to more qualitative aspects of cluster stability,
all models predict a strong relative stability maximum
for the tetramer, followed by the trimer and the
pentamer. The dimer, whose binding energy is naturally
overestimated by effective pair potentials, is much less
stable against HF vaporization. On the larger cluster
side, the pentamer, hexamer, and heptamer do not
reach the relative stability level of the tetramer, as in
many other systems [39,42,125,194,195]. This relative
stability maximum at n = 4 is mainly a consequence of
the strain energy in the n = 3 dissociation product,
which is caused by the pair potential and reinforced by
three body attraction [26,27,104]. In HF clusters, the
strain effect is not masked by steric hindrance. In alcohol
clusters, steric interactions can be systematically varied
to oppose the strain effect, leading to a stabilization of
smaller aggregates [196].

5.3. Oligomer isomerism

So far, only the global minimum (simple ring)
structures for (HF), with n < 8 including some ring
puckering have been discussed. As expected for a
multidimensional, anisotropic potential energy hyper-
surface, other local minimum structures exist. We
have postponed their discussion to this point, because
they are not energetically competitive with the global
ring structures up to at least n = 7 [26,102,109-111],
and do not contribute substantially to HF vapor at
thermodynamic equilibrium [104] or to the infrared
bands observed in low temperature equilibria [18] or
in supersonic jet expansions [27,109,110].

Fig. 11 gives a survey over the most important local
minima which were found for the HF3BG + SC-2.9
potential energy hypersurface in terms of the energy
per monomer required for complete dissociation into
HF units. The C,, secondary minimum for (HF); has
already been discussed in Section 4.5. Its double
acceptor motif can be extended to larger clusters,
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Fig. 11. Integral vaporization energies Ey,(n) for different HF
cluster isomers at 0 K corresponding to the process (1/n)(HF), —
HF in the classical approximation for the HF3BG + SC-2.9 poten-
tial.

where it leads to structures containing single HF
molecules attached to a ring [104]. They account for
the second-most stable (HF), isomers for n = 4,5,
possibly also for n = 6. These ‘lasso’-type, branched
structures [104] have been considered to be thermo-
dynamically or spectroscopically relevant by some
authors [38,197]. We cannot confirm this, based on
experimental spectra and the HF3BG + SC-2.9
results, also confirmed by DZP + MP2 as well as
B3LYP (6-31 + G") calculations. For example,
isomerization of (HF)s to a tetramer with an attached
monomer requires 21, 32, and 34 kJ/mol, respectively,
at these levels of theory. Increased ring strain and the
loss of cooperative stabilization in the attached HF
hydrogen bond account for this effect [31,33,104],
and the result predicted by our analytical potential
energy surfaces most likely represents a lower
bound, since four-body forces are neglected. The
same holds for structures with more or longer side
chains attached to a ring, which come into play for
n > 5. Detailed thermodynamic modeling [104,106]

including these structures also proves their insignifi-
cance at higher temperatures, whereas effective pair
potentials can be expected to enhance the branching
tendency [38]. The least stable pentamer structure
contained in Fig. 11 consists of two ring trimers
merged at one of the corners. This structure is also
confirmed by quantum-chemical calculations. We
note that two recent studies involving model poten-
tials [92,122] come to similar conclusions concerning
the isomerism of (HF),, n = 6, despite characteristic
deficiencies for the smaller clusters and inclusion of
some higher than three-body contributions to the
potential energy. At these levels, e.g. the ring
pentamer is 19 kJ/mol [92] or 27 kJ/mol [122] lower
in energy than the tetramer with an attached
monomer. In bulky alcohol clusters, lasso structures
can compete more easily with simple ring structures,
if sterical hindrance and cooperative enhancement
cancel each other [195].

Starting with the clusters (HF); g, isomers built from
two sandwiched rings become local minima. In the
analytical PES, they even surpass folded ring struc-
tures in their stability for n = 8. This, however, is
most likely an artifact of neglecting 4- and higher-
body forces and retaining monomer integrity in the
analytical potentials. Ab initio calculations (see
Table 2) suggest that the transition to sandwich struc-
tures as global minima does not yet happen at n = 8.
Quite generally, the residual deficiencies of the analy-
tical potential energy surface tend to anticipate struc-
tural changes, because they involve a truncation of the
mechanisms for simple ring stabilization at the three-
body level. Accurate predictions of relative stability
in this size range are difficult, because binding
between saturated hydrogen bonded strands is subtle.
We estimate that it contributes around 0.5-2 kJ/mol
for a nearest neighbour interaction. A recent investi-
gation of simplified diatomic model potentials [198]
also leads to global double ring minima under certain
circumstances, indicating the potential importance of
this structural element. Double ring structures may
play a role in the kinetics of vaporization and nuclea-
tion. For example, fragmentation patterns leading to
two oligomer ring fragments may become energeti-
cally competitive with single HF vaporization already
for n = 8. By combining a clockwise with an antic-
lockwise ring, chiral structures with interesting race-
mization paths can be obtained.
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While the gas phase of HF is dominated by rings
[104], the liquid phase is probably composed mainly
of chains [65,93,94,98]. This difference is consistent
with the simple Jacobson—Stockmayer model [199]
which predicts the ring-to-chain ratio for a given
oligomer size to be proportional to the volume or
dilution. Binding is expected to remain predominantly
one-dimensional in the condensed phase, and this
provides a simple qualitative rationalization of the
highly associated gas phase and the highly compres-
sible liquid [104]. A washed-out liquid—gas phase
transition is regularly found in model simulations of
dipolar systems with little dispersive interaction
[200], for which HF with its exceptionally low ratio
of polarizability to polarity provides a real example.
Nevertheless, the detailed structure of 1-D hydrogen
bonded liquids such as alcohols and HF remains a
difficult challenge [195,201].

5.4. Vibrational dynamics of HF oligomers

Predictions from the present ab initio and analytical
potential energy hypersurfaces have been useful in the
assignment of HF cluster vibrational spectra
[15,27,102,104,105,107,109—111]. The controversy
on the assignment of (HF), infrared spectra between
Refs. [109-111], where the first consistent assign-
ments were obtained for n = 4—-6, and the more recent
Refs. [202,203], where so called size selected techni-
ques were used, has been discussed in detail in Ref. [27]
and references given therein. Essentially definitive
support for our original assignments [109-111] was
provided by a recent, detailed experimental investiga-
tion [25]. Since the monomer and pair potentials have
been thoroughly tested against experimental dimer
results [63], we can concentrate on the effect of
neglecting higher than three-body terms in the analy-
tical potentials for larger clusters and on the perfor-
mance of the harmonic DZP + MP2 results. At
DZP + MP2 level, all harmonic dimer frequencies
are somewhat overestimated compared to the best esti-
mates [63], but the error is only about 8% for the in-
plane intermolecular fundamentals, 4% for the out-of-
plane fundamental, and 2% for the intramolecular
modes. Therefore, DZP + MP2 results for larger clus-
ters, summarized in Table 3 and Fig. 12, should provide
reliable trends of vibrational frequencies with
increasing cluster size. Anharmonic contributions to
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Fig. 12. Harmonic wavenumbers w/cm ™! of (HF), IR active vibra-
tions at the DZP + MP2 level as a function of cluster size n. For n =
2, the in plane bending and HF stretching frequency pairs are aver-
aged. +: HF stretching (o — 2000 cm™! s plotted); X: FF
stretching; [J: in plane bending; <: out of plane bending, all for
C,;, structures; Transitions for the (HF)s Sg global minimum and the
(HF); C,-symmetry structure are denoted with Z symbols, if they
have band strengths in excess of 50 km/mol. Large Z symbols mark
the dominant HF stretching bands.

these frequencies are large, but in some cases different
contributions may cancel in part [27,110].

The HF stretching manifold is most sensitive to
insufficiencies in the analytical potential parameteri-
zation and shows an artificial near-saturation of the
harmonic complexation red shifts already for n > 4
(see Table 3), whereas the DZP + MP2 results (Table
2 and Fig. 12) and recent spectra of the IR active
degenerate stretching fundamentals [109,111,203]
indicate that this does not happen for n < 7. These
insufficiencies are confirmed by the strong depen-
dence of the HF stretching predictions on details of
the vibrational coupling. They are in contrast to the
quantitative success of the analytical potentials in
reproducing anharmonic monomer, dimer [62,204]
and trimer [106] stretching fundamentals, indicating
that neglect of four-body terms dominates the error
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Fig. 13. Harmonic wavenumber shifts Av of the IR-active HF
stretching fundamental as a function of cluster size including up
to one- (1), two- (1-2), three- (1-3) and n-body (1—n) contributions
to the total potential energy. Comparison is also made to experi-
mental (exp) anharmonic wavenumber shifts. The harmonic
numbers are best estimates based on SC-2.9 + HF3BG and ab initio
calculations.

[26]. Fig. 13 shows best estimates of the harmonic HF
stretching wavenumber shifts as a function of cluster
size, with progressive inclusion of higher-body contri-
butions. A one-body potential, by definition, does not
show any cluster size dependence. Two-body contri-
butions induce relatively small shifts, which saturate
for n = 4. Inclusion of 3-body terms leads to accurate
predictions for the trimer and sizeable shifts for the
larger clusters, but saturation of the shift is already
reached for n = 5. Inclusion of higher than three-body
contributions is crucial for the pentamer and larger
clusters, as already discussed in Ref. [26]. Compared
to these harmonic many-body contributions, total
anharmonic effects are relatively small due to cancel-
lation of opposite contributions [27,110], thus
explaining why harmonic ab initio predictions can
be so useful in the cluster size assignment based on

hydride stretching spectra [109]. Among other model
potentials including monomer flexibility, a very
recent DIIS potential [89] (Table 3) appears to
perform somewhat better in the HF stretching domain,
since it includes higher than three-body forces in a
perturbative manner. On the other hand, an earlier
semiempirical treatment [124] fails completely in
the prediction of the mode coupling in the HF
stretching manifold.

Turning to FF stretching frequencies, preliminary
comparison to experimental data is also possible
[178]. The broad oligomer absorption observed in
long path cell spectra (150—-260cm™' with
maximum near 230 cm ') is undoubtedly due to
‘lattice’ vibrations in HF clusters (n > 3). While
these motions are intrinsically weakly IR active,
they gain intensity through cooperativity, coupling
to librational modes and possibly to the HF
stretching dipoles. The latter coupling is strongly
promoted by the closeness of hydrogen exchange
configurations. The IR active FF stretching frequen-
cies for the cyclic C,, structures go through a
maximum between n =4 and n =25 in direct ab
initio (=~280cm™"), analytical potential
(=275 cm™") and MMC ( = 265 cm ") predictions.
This trend is consistent with the stepwise HF vapor-
ization energies. Assuming that off-resonant zero
point motional coupling (see Section 4) is the domi-
nating anharmonicity effect also for n>3 and
considering that its relative magnitude does not
exceed the —20% range found for the trimer, the
experimental spectrum [104] is consistent with a
harmonic wavenumber maximum of about 250-
300 cm~'. This agrees well with the DZP + MP2
prediction and is consistent with somewhat
underestimated binding energies for the larger
clusters in the analytical potentials. Pure pair
potentials  underestimate the FF  stretching
frequencies substantially.

In plane degenerate bending frequencies increase
steadily from n =3 to n = 6 (Fig. 12). The out-of-
plane libration is rather constant over the oligomer
range studied. This leads to a crossing with the in
plane bending wavenumbers between n =3 and
n = 4 for the analytical, MMC and ab initio poten-
tials. The DIIS model potential does not reproduce
this crossing [89], since it underestimates the out-of-
plane bending mode by a substantial amount. The
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crossing itself can be explained by ring strain, which
has more influence on the in plane force constants.
Both in- and out-of-plane vibrations give rise to the
10—-15 pm band system [104,177], whereas the
weaker 8 wm band [104,177] might be due to a
combination or overtone transition. The infrared
active librational fundamentals have recently been
assigned in a jet experiment [24]. They are only 3—
7% lower than our harmonic HF3BG + SC-2.9 poten-
tial prediction, which itself is somewhat on the low
side due to the neglect of 4-body contributions. For
the pentamer, experiment [24] is even above the
harmonic prediction on the analytical potential energy
hypersurface. In contrast, the DZP + MP2 harmonic
predictions are systematically above the experimental
fundamentals by 12—16%.

Summarizing the vibrational dynamics in HF oligo-
mers, the ab initio results are consistent with the
experimental information available, once reasonable
anharmonicities are invoked. The analytical predic-
tions reproduce qualitative trends for hydrogen bond
modes but there is evidence for a lack of bond strength
for n > 4, particularly evident in the HF stretching
manifold. The true harmonic frequencies are expected
in between, closer to the analytical models for n < 4
and closer to the ab initio data for n > 4. The
performance of pure pair potentials is very poor.

Ring puckering will affect the IR selection rules
[42], resulting in more than one IR active HF
stretching vibration. For the S¢ symmetry predicted
at DZP + MP2 level, one half of the fundamentals
may be IR active (see Table 3 and Figs. 12 and 14).
While the lowest frequency, totally symmetric HF
stretching mode remains inactive, the highest
frequency non-degenerate mode should become
visible as a weak satellite which grows in intensity
with increasing puckering extent. At the double
harmonic DZP + MP2 level, the satellite band
contributes =~ 5% to the total band strength.
Twist- and boat-like distortions lead to more satel-
lite bands. The available IR spectra of (HF)q
[109,197] are too congested to allow for a clear
distinction between planar and quasi-planar struc-
tures of this complex at the predicted puckering
level. A sensitive probe of puckering may also be
found in the FIR spectrum below the FF stretching
polymer band [178]. While the planar structures
have inactive puckering bands and hence do not
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Fig. 14. Square root of C,, (HF), DZP + MP2 infrared molar band
strengths S in the double-harmonic approximation as a function of
cluster size n. Integrated absorption cross sections G, which are
directly proportional to squared transition dipole moments, can be
obtained with band centers 7, via G = S/(#,N,). We plot S because
it allows a direct comparison of predicted IR absorbances for band
centers varying over 1-2 orders of magnitude. For the in plane
vibrations with n > 2, a degeneracy factor of two is included,
while for n =2, the corresponding non-degenerate modes (HF
stretch and in plane bend) are added together. +: HF stretching;
X : FF stretching; [J: in plane bending; <: out of plane bending; see
Fig. 12 and Table 3 for the corresponding frequencies. The HF
stretch intensity increases more than quadratically with cluster
size (approximately ~ 235013 up to n = 6). The other IR active
vibrations grow much more moderately in intensity with increasing
cluster size. For the FF stretches, this is in contrast to experimental
evidence [178], suggesting anharmonic effects and coupling to the
HF modes. The effect of ring strain for n = 3 is clearly visible. Also
included are band strengths for the C; (HF); structure.

contribute to spectral congestion, the DZP + MP2
calculations indicate a weakly IR active band near
27 cm™! for the S, minimum, which may correspond
to a weak broad hump observed in the experimental
low temperature cell spectrum [178]. The far
infrared promises to be a fruitful spectroscopic
region to investigate ring puckering in hydrogen
bonded complexes.
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6. Conclusions

Based on the electronic structure calculations,
analytical potential energy hypersurfaces, molecular
dynamics results and spectroscopic evidence
discussed in the preceding sections, we can draw the
following main conclusions:

(i) The three-body contribution to the potential for
HF aggregates can be calculated ab initio with rela-
tively high accuracy at little cost. This is in marked
contrast to the effort needed for reliable HF pair
potentials [63].

(i1) The HF three-body potential makes a very signif-
icant contribution to the structure and dynamics of HF
oligomers (e.g. = 10% in the hydrogen bond length,
=~ 20% of the binding energy and =~ 50% of the HF
frequency shift in the trimer).

(iii) The ab initio analytical three-body potential
(HF3BG) is expected to be accurate (within about
100-200 cmfl) for the (HF); configurations
relevant to the hydrogen bond dynamics. It is compu-
tationally economic and portable between different
true pair potentials, although it is of course incompa-
tible with empirical effective HF pair potentials
which try to include many-body interactions in an
effective way and are therefore of limited use in the
description of the HF dimer [65,91,93].

(iv) (HF); is the least floppy and most strained of the
HF aggregates. Our results for the anharmonic
binding energy (D, = 43(3) kJ/mol), harmonic
frequencies (209, 625, 719, 3884 cm™! for the IR-
active vibrations), minimum structure (Cs;, ryp =
93.3(3) pm, Rpp = 259(2) pm, FFH-angle 24(3)°)
and ground state C; rotational constant (0.120 cm”!
for (DF);) are among the most reliable predictions for
this cluster as derived from an analytically available
12-dimensional potential energy hypersurface.
Currently, no need for an empirical refinement of
the three-body potential in the hydrogen-bonded
region is evident. The interconversion tunneling
dynamics is predicted to be complex and slow.

(v) The complete dissociation channel (into three
monomer fragments) is probably still open to (HF),
upon HF stretching excitation in the IR under super-
sonic jet expansion conditions. Successive deutera-
tion leads to sufficient stabilization to close this
channel, leaving dissociation into a dimer and a

monomer as the only option. (DF); is predicted to
be stable for J = 0 excitation of any vibrational
fundamental. This latter prediction relies on anhar-
monic effects in the zero-point energy and three-body
effects in the potential. Neglect of either of these
effects in the potential would lead to a predissociative
vs fundamental.

(vi) The predictions for higher HF oligomers are
limited by the neglect of higher-body contributions
to the potential and by the onset of hydrogen exchange.
These limitations appear to be acceptably small for
many properties of at least the tetramer, the pentamer
and the hexamer species. Some predictions, such as
harmonic frequencies and absolute binding energies
for n > 3 are clearly affected by the limitations.

(vii) Voronoi step representation [82] is shown to
be a useful tool in the development of multidimen-
sional potential energy surfaces.

(viii) The best estimate for the full anharmonic
binding energy of (HF), is 84.5 = 4 kJ/mol [26],
suggesting that HF stretching fundamental excita-
tion in the IR is at best slightly above threshold for
evaporation of one HF unit. More likely, it falls
below this threshold. This result is also consistent
with a recent ab initio result [24].

(ix) The onset of ring puckering for the global
minimum structures of (HF), oligomers is located
around n = 6, but the quantum ground state struc-
ture remains quasiplanar and spectroscopic
evidence for puckering is currently circumstantial.
(x) Beyond n = 7, some indication for stable double
ring structures bound to each other via secondary
interactions is found. The cluster size beyond which
such structures become competitive remains open, as
the balance between large single rings and aggregates
of smaller rings is very subtle and basis set superposi-
tion error becomes a critical issue.

We have described how existing HF pair potential
parametrizations can be used in a meaningful way for
higher oligomers and in particular for the trimer, by
simply adding a three body potential. Many results
presented in this work lead to clear predictions for
the hydrogen bond structure and dynamics of HF
aggregates in general and (HF); in particular. Some of
these predictions have been tested experimentally
[25,27,107,109,197]. The assignment of the very
complex (HF), cluster infrared spectra in the HF-



M. Quack et al. / Journal of Molecular Structure 599 (2001) 381-425 419

stretching fundamental region [15,109-111] was
substantially aided by the potentials and quantum
chemical calculations presented here. While this assign-
ment has been questioned on the basis of somewhat
limited experimental evidence in the past [197,
202,203], it is gratifying to see that our original assign-
ments could be fully confirmed in recent experiments
[25]. This provides a nice illustration of the usefulness of
such global potentials for the analysis of complex
spectra. Another prediction derived from the present
potentials concerns the ground state rotational
constants and thus microwave spectra observable
for the mixed isotopomers HF(DF), and (HF),DF.
This is an interesting challenge to experimental rota-
tional spectroscopy [1-5], which we plan to take up in
the near future.

The theoretical work in progress or planned concerns
the accurate calculation of rovibrational states [205] for
(HF);, and the extension of the potential description to
include multidimensional tunneling dynamics with
hydrogen exchange [26,27]. Also 4-body and 5-body
contributions to the potentials of the higher (HF), clus-
ters are being included [26,27]. Finally, a fit of the 3-
body dipole moments will provide predictions for abso-
lute intensities of vibrational and rotational transitions
of the HF-trimer and its isotopomers.
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Appendix A. FORTRAN 77 source code for the
analytical HF3BG potential

The FORTRAN 77 subroutine polaris accepts as
input the cartesian coordinates xc (in bohr) and
provides as output ef, the three-body energy divided
by hc corresponding to Viyy incm ™), Eq. (4).
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C Supplementary material to ref. [2], given below.
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c

C email martin@guack.ch // msuhm@gwdg.de

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine ***polaris(xc,et,p,np)***

et: three body energy/hc in cm-1

p(4)=0.88a0-1, p(5)=1.38a0-1)
np: number of free parameters

nNaNNONNOONNQNQN

subroutine polaris(xc,et,p,np)

C calculation of HF3BG three-body potential model
implicit double precision (a-h,o0-z)
parameter (n=1)

C number of simultaneous potential evaluations - large values

C give optimum vector processor speedup
parameter (zero=0.0d0,one=1.0d0,half=0.5d0)
dimension xc(n,3,6),r(n,3,3),dr(n,3,3,3),rc(n,3,3)
dimension drc(n,3,3,3),rhh(n,3)

dimension th(n,3,3),alph(n,3,3),beta(n,3,3),gamma(n,3,3)

dimension p(*),dmo(n,3),et(n),etb(n,3)
data apot/5.2d0/apoa/1.5d0/

C polarizability tensor of HF
data cofa/33972.40/

Xc: cartesian atomic coordinates (bohr) H1,H2,H3,Fl1,F2,F3

p: free parameters (p(l)=6e5cm-1, p(2)=1.2ed4cm-1, p(3)=0.375e0a0-1,
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C unit conversion factor (input: bohr, output: cm-1)

do 10 in=1,n

et (in) =zero

10 continue

C no coordinate transformation cartesian--H-F to cartesian--H-COM!
C rhh-i=nonbonded HH

do 17 in=1,n

rhh(in,1l)=sqrt((xc(in,1,1)-xc(in,1,2))**2+

* (xc(in,2,1)-xc(in,2,2)) **2+
* (xc(in,3,1)-xc(in,3,2)) **2)

rhh(in, 2)=sqrt((xc(in,1,1)-xc(in,1,3)) **2+
* (xc(in,2,1)-xc(in,2,3)) **2+
* (xc(in,3,1)-xc(in,3,3))**2)

rhh(in, 3)=sqrt((xc(in,1,2)-xc(in,1,3))**2+
* (xc(in,2,2)-xc(in,2,3)) **2+
* (xc(in,3,2)-xc(in,3,3))**2)
17 continue
do 18 i=1,3
do 19 j=1,3
do 21 in=1,n
dr(in,1,i,j)=xc(in,1l,i)-xc(in,1,j+3)
dr(in,2,1i,j)=xc(in,2,1i)-xc(in,2,Jj+3)
dr(in,3,1i,j)=xc(in,3,i)-xc(in,3,j+3)
C r-ii=bonded H-F
C r-ij=nonbonded H-F
r(in,i,j)=sqrt(dr(in,1,i,j)**2+dr(in,2,1i,3j)**2+dr(in,3,1,]) **2)
21 continue
19 continue
18 continue
do 25 i=1,3
do 26 in=1,n
dmo(in,i)=r(in,i,1i)/((r(in,i,1)/4.40)**4+1)
if(r(in,i,i).gt.2.) then
dmo (in,i)=dmo(in, i) *exp (- ((r(in,i,1i)-2.)/2.)**2)
endif
26 continue
25 continue
do 27 i=1,3
do 28 j=i+1,3
do 30 in=1,n
drc(in,1,1i,j)=xc(in,1,j+3)-xc(in,1,i+3)
drc(in,1,j,1i)=-drc(in,1,1i,3)
drc(in,2,1i,3j)=xc(in,2,3j+3)-xc(in,2,1i+3)
drc(in,2,j,1i)=-drc(in,2,1,3)
drc(in,3,1i,3j)=xc(in,3,3j+3)-xc(in,3,1i+3)
drc(in,3,j,1)=-drc(in,3,1i,3)
C rc-ij F-F distance
rc(in,i,j)=sqrt(drc(in,1,i,j)**2+drc(in,2,1i,])**2
* +drc(in,3,1i,3) **2)
rc(in,j,i)=rc(in,i,Jj)
30 continue
28 continue
27 continue
do 34 i=1,3
do 35 j=i+1,3
k=6-i-3
do 37 in=1,n
alph(in,i,j)=((dr(in,1,i,1i)*dr(in,1,3,3)+

* dr(in,2,1i,1i)*dr(in,2,3,3)+
* dr(in,3,1i,1i)*dr(in,3,3,3))/
* (r(in,i,i)*r(in,j,J)))

alph(in, j,i)=alph(in,i,j)
beta(in,j,i)=((drc(in,1,i,k)*drc(in,1,3j,k)+

* drc(in,2,1i,k)*drc(in, 2,3, k)+
* drc(in,3,i,k)*drc(in,3,3,k))/
* (rc(in,i, k) *rc(in,j,k)))

beta(in,i,j)=beta(in,j, i)
37 continue
35 continue
34 continue
do 38 i=1,3
do 39 j=1,3
if(i.ne.j)then
k=6-1i-3
do 41 in=1,n
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gamma (in,i,j)=((dr(in,1,k,k) *drc(in,1,1i,3)+
dr(in,2,k,k)*drc(in,2,1,3)+
dr (in, 3,k,k) *drc(in,3,1,3))/
* (r(in, k,k)*rc(in,i,3)))
th(in,i,j)=((dr(in,1,1i,1i)*drc(in,1,1i,3)+
dr(in,2,i,i)*drc(in,2,1i,3)+
* dr(in,3,i,1i)*drc(in,3,1,3))/
* (r(in,i,i)*rc(in,i,3)))
41 continue
endif
39 continue
38 continue

do 42 i=1,3
do 43 k=i+1,3
j=6-i-k
do 45 in=1,n
etb(in, j)=-((alph(in,i, k)
-3*gamma (in, i, j) *th(in, i, 3j)
-3*gamma (in, k, j) *th(in, k,j) +
9*beta(in,k,i)*th(in,i,j) *th(in,k,3j))
*apot+
(alph(in, i, j)+3*th(in,i,3j)*th(in,j,i))*
(alph(in,k,3j)+3*th(in,k,j) *th(in, j, k))
*apoa) *
1.2321d0*dmo (in, i) *dmo (in, k) *cofa/
(((rc(in,i,3))**3)*((rc(in, k,J)) **3))
et (in)=et(in)+etb(in, j)
45 continue
43 continue
42 continue
do 46 in=1,n
et (in)=et (in)+p(1) *(
-9% (

LR N A

exp(-p(5)*(r(in,1,2)+r(in, 2,3
+exp(-p(5) *(r(in,1,3)+r(in, 2,1
+exp(-p(5) *(r(in,2,3)+r(in, 3,1
+exp (-p(5) *(r(in,2,1)+r(in, 3,2
+exp (-p(5) *(r(in,1,2)+r(in,3,1
+exp(-p(5)*(r(in,1,3)+r(in, 3,2
)+
2*%(

exp(-2*p(3)*(r(in,1,3)+r(in,2,3)+rhh(in, 1)
+exp(-2*p(3) *(r(in,1,2)+r(in, 3,2)+rhh(in, 2)
+exp(-2*p(3) *(r(in,2,1)+r(in, 3,1)+rhh(in, 3)
)+
90* (

exp (-4*p(3) *(r(in,1,3)+r(in,2,1)+r(in,1,1))
+exp(-4*p(3)*(r(in,1,2)+r(in,3,1)+r(in,1,1))
+exp (-4*p(3)*(r(in,2,1)+r(in,3,2)+r(in,2,2))

2))
3))
3))

)
)
)

+exp(-4*p(3) *(xr(in,2,3)+r(in,1,2)+r(in, 2,
+exp(-4*p(3)*(r(in,3,2)+r(in,1,3)+r(in, 3,
+exp(-4*p(3)*(r(in,3,1)+r(in,2,3)+r(in, 3,
)+

60*(
exp(-4*p(3)*(r(in,1,2)+r(in,2,3)+r(in,1,1)
+exp(-4*p(3)*(r(in,1,3)+r(in,3,2)+r(in,1,1)
+exp(-4*p(3) *(r(in,2,1)+r(in,1,3)+r(in,2,2)
+exp(-4*p(3)*(r(in,2,3)+r(in,3,1)+r(in, 2,2)
+exp (-4*p(3) *(r(in,3,2)+r(in,2,1)+r(in, 3,3)
+exp(-4*p(3) *(r(in,3,1)+r(in,1,2)+r(in, 3, 3)
)

_3*(
exp(-2*p(3)*(r(in,1,2)+r(in,2,3)+r(in,3,1)
+exp (-2*p(3)*(r(in,1,3)+r(in,2,1)+r(in,3,2
)

-2%(
exp(-p(4) *(rhh(in, 2)+rhh(in, 3)+rhh(in,1)))
)+

8* (
exp(-p(3)*(r(in,1,2)+r(in,2,3)+r(in,3,1)
+r(in,1,3)+r(in,2,1)+r(in,3,2)))
)
)

if (et(in).ge.p(2)) et(in)=p(2)-one

et (in)=-et(in)/ (et (in)/p(2)-1.40)

46 continue

return

end

F ok ok ok ok ok ok ok ok ok ok ok ok ok Rk Ok ok %k R 3k Ok % Ok Ok Ok ok Ok 3k Ok 3k ok ok ok X ok X ok F F *
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