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1 INTRODUCTION

The statistical adiabatic channel model (SACM)I"3 is one
realization of the larger class of statistical theories of chemical
reactions. Its goal is to describe, with feasible computational
implementation, average reaction rate constants, cross sections,
and transition probabilities and lifetimes at a detailed level, to
a substantial extent with ‘state selection’, for bimolecular reac-
tive or inelastic collisions with intermediate complex formation
(symbolic sets of quantum numbers v, j, E, J ...)

A(a, ja) +B(vs, jB) = X*(E.J...)
= Y(vy, jy) +Z(vz. jz) (1

or unimolecular decay
X*(E,J...) = YOy, jy) + Z(vz. jz) @)

Figure 1 places the statistical adiabatic channel model in the
general landscape of dynamical and statistical theories of che-
mical reactions. While this diagram stems originally from a
review* written in 1977 shortly after the development of the
statistical adiabatic channel model (see also Refs. 5-28, cited
in Figure 1), it is largely still valid today, when it is noted
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Figure 1 The theoretical description of unimolecular and bimolecular processes involving intermediate complexes in the framework of a
general scattering theory (S-matrix) (after Ref. 4) (A.M. = angular momentum)

that many of the more recent developments, such as vari-
ational transition state theory, fall under the subclasses of
canonical and microcanonical optimization (sometimes with
dynamical assumptions differing slightly from the original adi-
abatic channel model). These developments, as well as the
statistical adiabatic channel model, are now included in the
more recent textbook literature on the subject.?~23 Neverthe-
less, because of the usual limitations of textbook material, it
seems very pertinent to summarize the basic concepts, meth-
ods, and results of the SACM in this encyclopedia article, as
the SACM has found wide applications in a variety of fields in
modern reaction kinetics, including specialized subfields such
as atmospheric chemistry, astrochemistry, combustion kinetics,
mass spectrometry, and ion molecule reactions,?® as well as
laser chemistry®® (see Multiphoton Excitation). In the present
article we focus attention on the fundamental concepts and
methods of the SACM, including also some recent develop-
ments. While we also make reference to some selected app-
lications, a summary of the great multitude of applications in
the various fields mentioned is beyond the scope of this short
article.

2 BASIC STATISTICAL ADIABATIC CHANNEL
MODEL AND FUNDAMENTAL EQUATIONS FOR
UNIMOLECULAR AND BIMOLECULAR
REACTIONS INVOLVING INTERMEDIATE
COMPLEXES

2.1 The Statistical Scattering Matrix

We shall derive in this section the fundamental equations for
the kinetic quantities in the adiabatic channel model from the
point of view of the statistical S-matrix in scattering theory,
which may seem to be the most logical approach following
Refs. 2 and 17. In theoretical quantum dynamics we start from
the time-dependent Schrodinger equation (3):

. h oV A

1271' a s ®)
where W depends upon all spin and space coordinates of the
particles in the molecular system under consideration and upon
time. Equation (3) is solved formally by the time evolution
operator U (¢, o) in equation (4), retaining only the dependence
upon time explicitly in the notation:

W(r) = U, 10)¥(to) @

Considering the time evolution in a collision, it is useful in
scattering theory to write the time evolution operator U in
a matrix representation U in the basis of scattering states of
the well separated, non-interacting collision partners, and to
consider the formal limit of time #y) — —oo long before the
interaction in the collision takes place and t — 400, a time
long after the collision. The resulting time evolution matrix in
this formal limit3! is called the scattering matrix (S-matrix) in
equation (5):

S=U( - +o00,tg - —00) (5)

The scattering wavefunctions are given in equation (6) for
large separation g of the collision partners (g is a reaction
coordinate, asymptotically the center of mass distance, see
section 4.2):

V=g k120, m, {Q1 exp [—i (kag — 327)]
~02exp [+ (kaq — 3¢7)] } ©)

®, is the product wavefunction for the combined (gener-
ally nu-rovibronic) internal states of the collision partners
(ie., la) = |{va, ja, ma}}{vs, jB, mg}), using various col-
lective quantum numbers such as the vibrational quantum
number v in a formal notation), Y, ,, is the normalized
spherical harmonic for angular momentum quantum num-
bers £ and m; of relative rotation of the collision partners
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and k, = 27t(2uEt'a)1/2/h is the collision wavenumber with
the translational energy E;, = E — E, (E, = combined inter-
nal energy of collision partners, E = total energy) and u =
(my' +mg")~! is the reduced mass for the collision. Q;
and @, are constants. It is useful to transform to a basis
which explicitly contains the constants of motion such as
total angular momentum (with quantum number J) and its
projection (with quantum number M), as well as parity (quan-
tum number II), and to write an incoming scattering channel
formally as |i) = |/, M, a, £;, E,) and an outgoing channel
f=,M,b, ¢, Ep). With an incoming wave on |i) only, the
total scattering wavefunction takes the form of equation (7):

I¥) o< |/, M, a, &, Ea) — > Spild, M, b, &, Evp) )
f

These equations show explicitly how the S-matrix maps the
incoming wavefunction in the channel |i) onto the outgoing
wavefunctions in all possible channels | f). Observable cross
sections o for collision processes are derived from appropriate
sums and averages over the elementary cross section oy; in
equation (8):

_ wep = Spil?

O'f,'

with the Kronecker §f; (=1 for i = f and 0 for i # f).
The fundamental assumption of the statistical S-matrix the-
ories consists in a coarse grained (averaged) equipartition as
described in Figure 2'72 and summarized by equation (9):

W(E,J)™!
8 for weakly coupled channels

for strongly coupled channels

(IS£il%) f.i0E = { 9

W(E,J) is the number of strongly coupled channels (see
below) at energy E and total angular momentum J. The S-
matrix is block diagonal in certain good quantum numbers,
such as J, M, TI etc. (see also below). The total number
of asymptotically open channels (i.e., with E;, > 0) is given
by N(E,J), where N(E,J) is usually larger than W(E,J).

ISE, 3, M, T1...)?
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Figure 2 The structure of the statistical S-matrix in equation (9).
W(E,J) is the number of open channels in the adiabatic channel
model. See detailed discussion in the text. (Reproduced by permission
from J. Phys. Chem., 1979, 83, 150.)

One identifies the difference between N(E,J) and W(E,J)
by considering dynamical constraints, distinguishing strongly
coupled channels, which lead to intermediate complex for-
mation, and weakly coupled channels, which do not lead to
complex formation in a collision, or at least have a very low
probability of giving complex formation. For the strongly cou-
pled channels one assumes equal transition probability |S f,-l2
from some initial to all final strongly coupled channels with
total number W(E, J). This leads automatically to the form
of the |S|>-matrix given by equation (9), if one assumes that
the |S|?>-matrix is diagonal for the weakly coupled channels.
The assumption of equal average transition probability may
be further justified by two types of averaging process. The
first averaging concerns large Ny >> 1 of initial and Ng 3> 1
of final channels. The second kind of average concerns the
energy interval AE over which the collision energy is statis-
tically undetermined in a collision experiment. This energy
interval can be supposed to cover many resonance scatter-
ing states of the intermediate complex. When the density of
such resonance or metastable molecular intermediate levels
is o(E, J), then possible conditions for meaningful statistical
averages are given by the inequalities (10) and (11):

AEQ(E,J) > 1 (10)
AEQ(E,J) > W(E,J) (11)

For a detailed discussion of these averaging procedures we
refer to Refs. 2, 17, and 32. Without averaging, one might in
addition describe fluctuations around the average values given
by equation (9). So far we have not specified the dynamical
properties or approximations which lead to the distinction
between the strongly coupled channels and the weakly coupled
channels indicated in equation (9) and Figure 2. The adiabatic
channel model provides precisely such specifications.

2.2 Dynamical Assumptions of the Adiabatic Channel
Model

The complete molecular Hamiltonian for the collision prob-
lem or for unimolecular dissociation is decomposed according
to equation (12) into a dominant zero order part Hy and a

part Hi, chosen in such a way that equations (13), (14) are
satisfied:

A=H+H, (12)
Aoy = EqW, (13)
Yo = Pa(q, {R})Ea(q) (14)

The reaction coordinate g is identical to the scattering coor-
dinate at large values of g, and is chosen according to an
appropriate procedure (see below) for small values of g, when
there is encounter of the collision partners in the complex. The
set of coordinates {R} contains all other degrees of freedom,
including the electronic degrees of freedom in the most general
description. In practice, however, one may start from an elec-
tronically adiabatic (Born-Oppenheimer) electronic potential
for the atomic (nuclear) degrees of freedom only. The adiabatic
channel wavefunctions satisfy a Schrédinger equation (15) for
a ‘clamped ¢’ Hamiltonian:

A(q, (RN®a(g, (R)) = Va(@)®a(q. {R}) (15)
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One may explicitly decompose the ‘adiabatic channel poten-
tials’ V,(g) into a contribution from the electronic degrees of
freedom, i.e., the electronic potential V(g) in equation (16),
and a contribution E,(g) from the atomic (‘nuclear motion’)
degrees of freedom:

Valg) = V(g) + Ea(g) (16)

V{(q) is assumed here to be the electronic ground state, for
definiteness. If excited electronic states are of interest, one
can introduce excited state electronic potentials V'(g), V”(q),
etc. The complete zero order solution is finally given by
equation (17) with the kinetic energy operator f'q along the
reaction coordinate:

{Tg+ Va@)eaq(q) = Egbag(q) amn

We have bound state solutions &, ,(g), when E, is less than
energy Vo(g — oo) of the lowest dissociation channel of the
intermediate complex (or the unimolecular reactant), quasi-
bound solutions when E, is less than V(g — o0), tunneling
quasibound states when E; < Vamax, and finally continuum
solutions otherwise. We note that the tunneling quasibound
states will ultimately dissociate within the approximation spec-
ified by A 0, whereas the other quasibound states dissociate
when the coupling due to A, is included. So far, the dynamical
assumptions are largely identical with the general assump-
tion of ‘adiabatic transition state’ theory.!1733-37 In such a
theory, adiabatic channel potentials would cross only if they
differ in a good quantum number such as J, M, or 1. How-
ever, in the SACM additional, approximate adiabatically good
quantum numbers are introduced by specifying Hy in such a
way that it is adiabatically separable with respect to certain
‘high frequency’ or ‘conserved’ modes.! This results in the
correlation diagram shown in Figure 3. The general channel
wavefunction ®,(]a)) is thus characterized by three different
types of quantum numbers. The first type in the upper part of
Figure 3 corresponds to exact constants of the motion such as
J, M, T1, and other specific symmetries I" (these may in part
be only almost exact, see section 3 for a more detailed discus-
sion of the symmetries). These are supposed to be constants of
the motion for the collision or dissociation process as a whole,
including reaction. The S-matrix is diagonal in these quantum
numbers (or approximately so). The second type of quantum
numbers, v; to v, corresponds to the ‘adiabatically separa-
ble modes’ or ‘conserved’ modes, which are not at all good
quantum numbers for the collision or reaction process. They
are, however, good quantum numbers for the construction of
the channel wavefunctions and channel potentials following
equation (15). Therefore, channel potentials V,(g) differing in
these quantum number may cross, since the v, are in fact good
quantum numbers for ®,. One quantum number v, need not
correspond to one degree of freedom, but might label ener-
gies from a subset of degrees of freedom strongly coupled
among each other. The physical picture in introducing these
adiabatically separable modes would typically correspond to
high frequency modes, which in an inelastic long range colli-
sion, not proceeding through the collision complex, would not
change their quantum number with appreciable probability.
While other correlations are conceivable, a standard corre-
lation for these modes would be v;, = v; =v;, in the three
regions for calculating channel potentials. In the collision of

Collision complex Intermediate Separated collision

(reactant) region partners (fragment)
region region
l2) |aq) lap)
J J J
M M M
n In I
r r r
Vin e v [ Vip
Van V2 v2p
Vmn oYord Vr cee Vrp
Ja.ma, TA
{Vbns Tn} w JB.mB, T8
£, mg, (vpa, vbB)

Figure 3 Basic correlation diagram of the adiabatic channel model
(after Ref. 1). The adiabatic channels |a) are characterized by a
set of quantum numbers of three types: good quantum numbers
(J,M, I1,T), which are conserved in the overall process, adiabat-
ically conserved quantum numbers (v; to v,), which are conserved in
the channel correlation but not in the overall collision process, and
finally nonconserved quantum numbers (w).

J is the total angular momentum quantum number excluding nuclear
spin, M the corresponding magnetic quantum number, I1 is the quan-
tum number parity, and I is the quantum number corresponding to the
irreducible representation of some appropriate further symmetry group
(for instance nuclear spin symmetry?® in the permutation group). The
v; stand for various types of vibrational quantum number, j, m for
angular momentum and magnetic quantum numbers of fragments, ©
for the asymmetric top rotational quantum number (X for symmetric
tops) and £, m; for the angular momentum and magnetic quantum
numbers of the relative rotational motion of the fragments about their
common center of mass

Cl with NO passing through the intermediate CINO, the high
frequency NO stretching vibration could be such a mode.
Finally, the third set of modes corresponds to ‘low fre-
quency’ vibrations and rotations of collision partners and col-
lision complex which are so strongly coupled among each
other at intermediate distances, that they cannot be labeled
by separable quantum numbers, thus they are labeled by one
channel quantum number w in the order of increasing energy.
For a given set of quantum numbers (J...v,) the noncross-
ing rule applies to these channels w. In the CINO example,
the bending mode and asymmetric top quantum number t
for the collision complex (reactant) molecule would be com-
bined in w, whereas for the separated fragments this would
be the free rotation of the NO molecule (angular momen-
tum quantum number j) and the relative ‘orbital’ rotation of
the Cl and NO around their common center of mass (angular
momentum quantum number £), disregarding here the elec-
tronic and nuclear spin degrees of freedom for simplicity at
this point, at least in the ‘half-collision’ corresponding to
CINO formation and CINO dissociation, while nonadiabatic
couplings may or may not be important during the lifetime of
the intermediate complex (see also below). For more compli-
cated systems, there are more such ‘soft’ (transitional) modes
lumped together in the quantum number w. While there is
always a minimum number of such degrees of freedom, char-
acterized by the type of vibrational-rotational motion in the
collision complex which has no correspondence in the sepa-
rated fragments (for instance, disappearing vibrational modes),
the precise specification, which modes are considered to be
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adiabatically separable and which are not, has to be investi-
gated for each dynamical system separately. Indeed, one may
consider carrying out simple preliminary quantum or classi-
cal dynamical calculations to find out which assignment in the
correlation of Figure 3 is best. In practice, one will often use
the simplest empirical correlation and interpolation scheme!
outlined further below. An extreme assumption would be to
have no modes in the ‘adiabatically separable class’ v; to v,.

Figure 4 provides a schematic representation of adiabatic
channel potentials, which have been selected to represent
some of the most important types of behavior. V(g) is the
electronic potential. The channel |a) might be close to the
lowest adiabatic channel V(g), containing perhaps in addition
one quantum in an adiabatically separable mode. The channel
|b) contains a large excitation in one or more adiabatically
separable modes, which results in an asymptotically (¢ — 00)
closed channel where the channel potential energy exceeds
the total energy E. The channel |c) corresponds to a case
with large excitation in a disappearing (transitional or ‘soft’)
vibrational mode, which turns into rotational motion of the
fragments. V.(g) has a maximum at intermediate fragment
distances g. Channels of the type ¢ and the type b may
cross, as shown in the example, even if they share a set of
good quantum numbers (J, M, I, I'), for the reasons discussed
in relation to the correlation diagram. Finally the channel
|d) would correspond to a high orbital and total angular
momentum, leading to an essentially repulsive centrifugal type
potential in the range shown. For the examples shown, only
channel |b) is asymptotically closed, whereas |c) and |d)
are adiabatically closed and channel |a) is open. Of these
examples, in the SACM only channel |a) would contribute to
the number W(E, J) of strongly coupled channels to be used
in equation (9).

A major achievement of the adiabatic channel model at the
time of its invention! was, indeed, this complete correlation

V,(q)

Figure 4 Schematic drawing of adiabatic channel potentials, illus-
trating the main types of behavior. The channels {b), |c), and [d) are
adiabatically closed at the energy E, the channel |a) is adiabatically
open. V(q) is the electronic potential. (Reproduced by permission
from Ber. Bunsenges. Phys. Chem., 1974, 78, 240)

and following of adiabatic channel potentials throughout the
complete region of coordinate values from separated fragments
to the bound collision complex (or the unimolecular reactant),
including in particular complete labels involving the good
quantum numbers (J, M, 1, I .. .). Previously, such complete
specification had been available only for the outer region
near the fragments in phase space theory,® which can be
considered to be a special limiting case of the adiabatic
channel model as we shall show below. On the other hand,
while traditional RRKM theory and related theories made
wide use of abstract notation for total angular momentum
quantum numbers J, etc., there was no realization of a proper
assignment of such quantum numbers to channels, except
for the trivial cases of bound molecule and tight transition
states, but excluding the fragment region of freely moving
collision partners. Indeed, for simple bond fission reactions
the regions of freely moving collision partners and of close
collision are both dynamically important, without there being
a well defined location g* of a ‘transition state’ and the
adiabatic channel model was in part designed to resolve the
questions and ambiguities arising from the absence of a well
defined transition state structure. In the SACM all relevant
kinetic quantities can be calculated without reference to such
a structure.

The most natural self-consistent assumption in specifying
the number of strongly coupled channels would be through
channel maxima V,max in some region gmin < g9 < g0, leading
to the count in equation (18):

WE,J..)=Y h(E = Vaima) (18)
a(J...)

with the Heaviside step function A(x > 0) =1 h(x <0) =0
(only E and J are retained in the notation, the others being
included implicitly). a(J .. .) indicates the sum being extended
over channels |a) with a given set of good quantum numbers
J .... One may furthermore introduce transmission coefficients
¥a or consider a channel count different from the maximum.
For instance, when many channel maxima fall into regions of
small g, where the adiabatic assumptions are likely to fail, one
may decide to count channels as open if their potential remains
below E until entering a strong coupling region defined by
some g < gs. Also, the explicit inclusion of transitions between
channels has been discussed as a possible variant of the
SACM.V?

A note may be useful concerning the use of the word ‘adi-
abatic’ in the SACM. This was introduced consistent with
the original meaning in Greek from a-8ixBaivw - ‘I do not
transgress’, or ‘walk through’, implying that the dynamical
system does not jump between different channel potentials
in the outer regions of ¢. In thermodynamics and other app-
lication, ‘adiabatic’ has sometimes been used as ‘following in
an infinitely slow motion’, which in the present case would
lead to the noncrossing rule for all channels moving along g,
except for those differing in a good quantum number. This
led to some misunderstandings and misrepresentations in text-
books and elsewhere.?** There is, however, no fundamental
reason why one should prefer the second usage of ‘adiabatic’
over the first,! etymologically more fundamental, one.3® It
has also been suggested to use the notion of ‘quasiadiabatic’
in order to explicitly include also possibilities for coupling
between the channels.? In any case these are matters of ter-
minology, not of the underlying physics.
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2.3 Some Practical Equations for Cross Sections and
Rate Constants

The definition of the S-matrix implies the cross sections
for bimolecular collisions via intermediate complexes through
the fundamental equation (8). In general, a reactant or product
level a with degeneracy g, comprises several channel states
i and f. Averaging over all initial states and summing over
final states one calculates, for instance, the integral inelastic
or reactive cross section op, connecting an initial (reactant)
level a and a final (product or reactant) level b as given by
equation (19):

T W(E,J,a)W(E,J,b)
WE)=— S (J+1 19
ba(E) gakgg( +1) WE D) (19)

The channel wavenumber k, is given by the well defined
asymptotic (g — oo) translational energy Ey = E — Voo On
the reactant channel |a), at total energy E through equa-
tion (20):

_ 2r[2u(E — Vaoo)]]/2

ka
h

(20)

w= (m;l + mg . )~ is the reduced mass for the collision. The
degeneracy g, is usually just the magnetic degeneracy arising
from the angular momenta ja, and jp, of the collision partners
on the entrance level a given by equation (21), resulting from
magnetic sublevels which are not selected before the collision:

8a= 2jaa+1)(2jsa+1) (21

However, it can also be useful to collect further channels at
the same or very similar channel energy Vi, into one entrance
level a, resulting in degeneracies g, defined in other ways. It
can be useful to define cross sections for complex formation
for the entrance level a by equation (22):

0S(E.J) = —— @] + DW(E, ], a) 22)
8ak?

Considering equations (19) and (22) together, one can interpret
the cross section oy, as arising from a sum of contributions
over angular momenta J consisting of a cross section for
complex formation at E and J multiplied by a probability
P(E, J, b) for decay of that complex into a level b, given by
equation (23):
W(E,J,b)

P(E,J»b)—m (23)
Finally, the total cross section for complex formation is given
by equation (24):

OS(E) = —= S () + DW(E, J, a) 24)
8aka 15

The relative probability P;(E, J) of forming a complex with

a given total angular momentum J by collisions from the
entrance level a is given by equation (25):

o,(E,J)

PLE.J) = 2 s

(25)

These expressions can be readily evaluated numerically, from
W(E,J), W(E,J,a), and W(E,J,b) and are useful in a

number of applications. Similar expressions can be derived for
differential cross sections, which we shall not reproduce here.

Thermally averaged quantities, rate constants k(T), can be
calculated from these cross sections by means of the general
equations (26) and (27):

oy [aFs —E dE
(Oba) =/0 [ﬁ] oba(E) €Xp (ﬁ) [ﬁ] (26)

8kT11/?
kpa(T) = [E] (Oba) 27

The integration variable E in equation (26) is effectively
Ey,. The condition for the validity of these equations for a
thermally averaged rate constant k,(7) is the existence of
a well defined Maxwell-Boltzmann distribution of velocities
of collision partners or relative collision energies (E — E,)
at temperature 7', which remains unperturbed by the reaction
process. If, furthermore the internal state distributions of the
reactants also remain at an unperturbed Boltzmann distribution
at temperature 7', one finds a thermal rate constant for complex
formation (or ‘capture’) given by equation (28):

8kT 112
K(T) = kiecoo(T) = [;l:] a’(T) (28)

krec oo (T') is the high pressure recombination (or ‘capture’) rate

coefficient and ¢°(T’) is the thermally averaged cross section
for complex formation in equation (29):
h2 Q*

oc'T=—e—— 29

& 8TUKT Qaint OB,int 5

Here, Qa int and Qg ine are the canonical partition functions for
all internal degrees of freedom of the collision partners A and
B, and Q* is given by equation (30):

o= Son(22)

= —E\ [dE
=/0 W(E)exp <ﬁ> [k_T}

with the total number of adiabatically open channels in equa-
tion (31):

(30a)

(30b)

W(E) = Z 2(21 + 1D)W(E, J, a) (31a)

a J=0

= R(E — Vimax) (31b)

The zero of energy for the partition functions QO and Qg and
for 0* must be the same, the most natural choice being the
zero point levels of the collision partners A and B (i.e., Voo,
using the notation Q°). If one chooses as a different reference
energy for O* the maximum of the lowest adiabatic channel,
i.e., one introduces equations (32) to (34):

V; max — Vimax — Vomax (32)
’ -V

oozl e

Eo = Vomax — Vooo (34)
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one obtains the frequently used transition state form in equa-
tion (35) for the rate coefficient, including the possibility of a
barrier Eg in the entrance channel for the reaction:

oo 0 —Eo
()= ————=——exp (———) (35)
h 0u0s O int OB.int kT
which makes use of the translational partition functions per
unit volume defined by equation (36):

(36)

. 2rm kT 132
o = %)

The densities of states o(E, J) of the collision complex are not
needed explicitly anywhere in these expressions, although they
arise implicitly in the conditions of validity, equations (10)
and (11). The densities are needed, however, for calculating
lifetimes of collision complexes, and for specific rate constants
of unimolecular decay.

2.4 Lifetimes of Collision Complexes, Specific Rate
Constants k(E, J) for Unimolecular Decay, and
Transmission Coefficients

Lifetimes for collision complexes and specific rate coef-
ficients for unimolecular decay of metastable states can be
derived in several ways in the framework of the adiabatic chan-
nel model, resulting in similar fundamental expressions. The
major differences between the various derivations of lifetimes
are connected to the physical interpretation.

2.4.1 Statistical Lifetimes of Collision Complexes>

The most general approach towards quantum lifetimes of
collision complexes starts from the energy dependence of the
statistical S-matrix.!” Following Smith,*! one can show that
equation (37) holds:

N(EJ)N(E,J)

NE N T QE N =NEDH" Y > 18;Pan; 37)
k=1 j=1

where Q is the lifetime matrix given by equation (38):

h _dst
Q=i—S§

—_ 3
2 dE i

N(E, J) is the number of asymptotically open channels, which
is the order of the block S(E,J) of the S-matrix shown in
Figure 2. At; is the delay time matrix defined by equa-
tion (39):

Aty =1 -1 (39)

where r,lj is the collision time between entrance channel j

and exit channel k with the interaction potential, and r,?j is
the hypothetical collision time without the interaction. Afy;
is thus strictly speaking not an observable quantity, but this
causes no difficulty for long lived collision complexes with
r,}j >~ At > t,?j. Similarly, one can define an excess density
of states g by equation (40):

0e(E,J) = 0" (E,J) — °(E, ]) (40)

where g! is the density of states with the interaction potential
between the collision partners and ° the density of states

without the interaction. One can show#2%3

holds:

that equation (41)

Tr[Q(E, J)] = hoe(E, J) (41)

from which one can define an average delay time through
equation (42):

hge(E,J)

AtE,J) = NGE.T)

(42)

Introducing now the average density of metastable levels
o(E, J) of the intermediate complex, which can be obtained by
continuing the bound state spectrum in the framework of the
adiabatic channel model or, in the case of isolated resonance
scattering states, by counting the resonances and averaging
over an interval AE 3 o(E,J)™!, one has the approximate
equivalence of average quantities in equation (43):

(0e(E, J))aE = o(E, J) (43)

Noting that only scattering on adiabatically open channels
with number W (E, J) leads to long-lived complexes, and that
furthermore the excess density pe(E,J) at the location of
a long-lived resonance is larger than the average given by
equation (43), one finds finally the inequality for long-lived
complex lifetimes given by equation (44):

_ ho(E,J)

WE,J) = (ANE, N)ag = WE.T)

(44)

Similarly, one has equation (45) for the average specific rate
constant k(E, J) for unimolecular decay of metastable com-
plexes:

W(E,J)
ho(E, )

KE,J) < 45)
A more detailed discussion of this reasoning from formal
scattering theory can be found in Ref. 17. One can express
the inequality (45) as an equation (46):

W(E.,J)

k(E,J) = (y)hQ(E 7

(46)

where one interprets () as an average transmission coefficient
satisfying the inequality (47):

0= =l 47

From this discussion it becomes quite clear that the funda-
mental expression of statistical unimolecular rate theory in
equation (46) is an average quantity. When considered as an
energy average over many isolated long-lived resonance scat-
tering states in the interval AE, one has the inequality (48):

AE > o(E,J)7! (48)

which is equivalent to the inequality (10).

The individual lifetimes and specific rate coefficients may
scatter around this average value, as has been clearly pointed
out in the early discussion of these quantities in the adiabatic
channel model.> More recently, the concept of statistical fluc-
tuations about this average has found renewed attention.*4~46
Furthermore, the average transmission coefficient (y) intro-
duced somewhat formally through equations (45) to (47), can
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be understood on the basis of two simple dynamical models,
which we shall discuss here as well.

2.4.2 Recurrence Times and Transmission Coefficients for
Quasibound Complex Dynamics

We consider the time-dependent wavefunction arising from
a superposition of quasibound states of density o(E, J). For
an equally spaced spectrum of density o the recurrence time
t; generating a specific dynamical state is:*’

tr = ho(E, J) 49)

For a nonequidistant spectrum with the same average density
one has

t; > ho(E,J) (50)

If the specific state considered is an outgoing translational
state on the adiabatic channel |a) (Figure 4), one obtains an
expression (51) for the specific rate constant on this adiabatic
channel, if the quantum mechanical transmission probability
for leaving the complex boundary is T, the rate constant being
the frequency of generating the outgoing wave multiplied by
the transmission probability:

T.(E
k(E,J.a)= hg(lg ;)

(1)

Summing over all channels, one obtains

2T

kE,J) = e ET) (52)

For simple analytical adiabatic channel model potentials one
can derive simple analytical expressions for the transmission
coefficients.! Often, one may replace T, by the crudest quasi-
classical model, giving a step function behavior with the Heav-
iside function A(x > 0) = 1 and A(x < 0) = 0 in equation (53):

Ta(E) = h(E — Vamax) (53)
Use of equation (18) results in equation (54):

W(E,J)
ho(E,J)

k(E,J)= (54)

If one uses more generally 0 < T, < 1 one finds the inequal-
ity (45), where one must, however, accept some adiabatic
channels as open below the classical thresholds due to the
tunneling, if the tunneling probability is appreciable. A second
reason for the inequality (45) arises from the inequality (50).

2.4.3 Transmission Coefficients from Analytically Solvable
Resonance Scattering Models

Mies and Krauss!3~15 derived analytical expressions for
the decay rates from a set of resonance scattering states i with
density o coupled with equal coupling strength (parameter I';,)
to a continuum corresponding to channel [a). Their result can
be written in the form!” of equation (55):

Yia

kiy =
(ho)

(55)

with a transmission coefficient being given by equation (56):

o 2nT0 56)
Vo= 0+ #To/27
¥iq satisfies the condition (57):
0<ya=x<l (57)

Both for very small coupling strengths ', in the model and for
very large I';,, the effective transmission coefficient decreases
to zero as I';, decreases to zero or increases to infinity. In
the perturbation theory limit I';, < 0~ !(I'o <« 1), one obtains
isolated resonances with Lorentzian line shape and exponential
decay rate coefficients given by equation (58):

27T,
kia = Tlg (58)
Summing over all continua a one finds equation (59) for the
total decay rate constant from the resonance i:

22l 2
k=2"1=-2%"r, (59)

The maximum value y;, = 1 is obtained when nl,0/2 = 1.
Writing ¢ = o(E,J), summing over all channels |a), and
assuming that y;;, = 1 for W(E, J) adiabatically open channels
and y;, = 0 otherwise, one obtains the usual right hand side
inequality (60):

2 i W(E,J)

M= \;k‘” = RE D) " hE D) (o0

The limiting case with 7T";,0 >> 1 results in equation (61):

Yia = <1 (61)

nlia0

The decrease of the transmission coefficient with increasing
coupling strength TI';, arises from interference between the
overlapping resonances in this particular model.

Peskin, Reissler, and Miller*® have proposed a different
model for the effective transmission coefficient, which can
be derived from simple one-dimensional scattering models or
from a random matrix optical model. For the one-dimensional
case of a coupling to a single continuum I', one obtains the
one-channel rate constant of equations (62) and (63):

KE) = L (62)
he
y =1—exp(—2mgl') (63)

y interpolates smoothly between small values near zero for
o « 1 in equation (64):

y =2mel’ (64)

giving the perturbation theory limit for an exponential decay
in equation (65):

k=" (65)
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and y = 1 for I';0 > 1, giving the single channel rate constant
in equation (66):
k= i (66)
ho
For coupling a dense set of states with density o(E,J) to
W (E, J) channels one finds similarly equations (67), (68):

_W(ED)
k(E,J) = 7o, 1) 142] (67)
—2m(™)o(E,J
(y) =1—exp [——-—_—nv(v(E)Qj) )] (68)

Again, the average transmission coefficient (y) interpolates
smoothly between 1 (for (I'™)o(E, J)/W(E,J) > 1) and very
small values for the perturbation theory limit for an exponential
decay with a Lorentzian line shape ((I'*) = full width at half
maximum) and a rate constant

KE. J) = 271;1"*)

(69)

We must note here that different forms for y arise from the
models because of the different nature of the models, and
that there is a very different physical significance also for the
quantities [';,, I'y and (I*). It must also be clear that the rate
coefficient of the adiabatic channel model does not depend on
any of these model assumptions; rather, it can be derived in its
general form from the very general considerations discussed
in Section 2.4.1. However, the simple models for deriving
transmission coefficients in Section 2.4.2 and 2.4.3 provide
some physical insight and could also be made the basis
for simple numerical calculations of transmission coefficients
beyond the step function behavior, which leads to the most
frequently used equation (54), i.e., equation (46) with ( y=1.
See also our calculation of transmission coefficients.’

2.5 High Pressure Limiting Rate Constants for
Unimolecular Reaction

The high pressure limiting rate coefficient for unimolecu-
lar reaction is the Boltzmann average over the specific rate
constants, given by equation (70):

oo OO

koo (T) = Q% / > @I+ DKE, J)elE, J)exp< ) dE (70)
E=0 ;- kT

Ox is the reactant (X) partition function. Inserting equa-
tion (46) with a double average over ((y)) (or assuming
(y) = 1 and equation 54) one finds! equation (71):

kT i
koo (T) = (1)) (7) ox' /E . > @I+ DW(E, )

—J=0

<esn (7 ) ()

’

L oy (ZBEx0
—((V))h Ox CXP( T ) an

AEyy is the energy difference between the maximum of the
lowest adiabatic channel potential and the zero point level Eox
of the reactant X as given by equation (72):

AExo = Vamax — Eox (72)

Q* has the same significance as in equation (35) and may
conveniently be considered to be the ‘partition function of the
transition state’ in the adiabatic channel model, referred to the
zero point level of the transition state, equation (32).

One could also try to take the reverse route, starting from
equation (35) (which implies ({(y)) = 1, not important for the
present discussion). Then one derives koo(T) from detailed
balance and the statistical thermodynamical expression for the
equilibrium constant. Finally, one might obtain specific rate
constants k(E) by an inverse Laplace transformation (operator

L=Vin equation 73), with 8 = (kT)~1:
L=M0x (B)kso (B)) (73)

However, it is not possible to recover the nontrivial depen-
dence of k(E,J) on angular momentum J and other good
quantum numbers by this procedure. The question has been
discussed critically.?® Formally, one might consider energy to
be a sufficient index, if all decaying metastable states corre-
spond to completely separated, isolated resonances. However,
in practice this is rather the exception than the rule in uni-
molecular rate theory. Under normal circumstances one must
allow for a dense set of heavily overlapping resonances with
a variety of good quantum numbers.

Q(EMK(E) =

3 SYMMETRY AND APPROXIMATE CONSTANTS
OF MOTION IN THE ADIABATIC CHANNEL
MODEL

A particular property of the adiabatic channel model is the
ability to provide complete explicit specification of all good
quantum numbers and symmetries for individual channels,
throughout the correlation between all reactant and product
levels (see Figure 3). At the time of introducing the adiabatic
channel model this was a new feature in statistical theory,
which can be systematically used both for obtaining simple
computational results and for obtaining a deeper understanding
of some of the basic properties of the reaction processes
involved. We shall summarize here some of the ideas and
results.

3.1 Fundamental Molecular Symmetries

The dynamical consequences of molecular symmetry arise

from the i mvanance of the Hamiltonian H and time evolution
operator U with respect to certain symmetry operations C in
equation (74) and (75):

a el
(@}
Il

oy
T

(74)
(75)

Il
oy
>

¢

(&

The symmetry operations C lead thus to certain ‘constants
of motion’ or evolution, in particular also to ‘reaction con-
stants’.4%49-5! The general symmetry operations of relevance
in the present context are with the related constants of motion:

(i) translation in space (momentum conservation)
(ii) translation in time (energy conservation)
(iii) rotation in space (total angular momentum conservation)
(iv) time reversal (symmetry of the S-matrix)
(v) reflection of all particle coordinates in the center of mass
(parity conservation)
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(vi) permutations of the indices of identical particles, i.e.,
electrons and certain nuclei (permutation symmetry and
Pauli principle).

The first three invariances are generally believed to be
exact. (i) leads in practice to the statement that in the cen-
ter of mass frame for the reaction the center of mass
stays at rest. (ii) is explicitly included in the adiabatic chan-
nel model through explicit specification of total energy E.
(ii1) corresponds to conservation of total angular momentum
(F), including electronic and nuclear spin. (iv) leads to the
symmetry of the S-matrix in an appropriate basis (i.e., S = ST,
see Ref. 17 for details. In general, S need not be symmetric, but
it can be made symmetric by transformation to an appropriate
basis, which is advisable for theoretical purposes). (v) leads to
conservation of total parity and (vi) leads to the conservation
of the irreducible representation of the corresponding permuta-
tion symmetry group. Because of the generalized Pauli princi-
ple, only one irreducible representation is allowed. Therefore
(vi) leads to the (almost) trivial statement that this allowed
representation is maintained. For a discussion of further, more
general symmetries such as C, CP, CPT, etc., we refer to
Ref. 51.

In general, equation (76) applies for an observable constant
of the motion C corresponding to an operator C:%

(C®) = (FOICIY(@®) = (TWO)CIT¥(0)
= (W(O)|UTCU 1w (0)) = (¥(0)|C|W(0))
= (C(0)) (76)

In particular, if W(z) is an eigenfunction ¢, of C with eigen-
value c,, then one has equation (77):%°

(C@) = (£1C1Zn) = cn an

Therefore we can label such a W(), and also molecular energy
levels, adiabatic channels and the like by the quantum numbers
¢, the good quantum numbers under these conditions. (C’ and
cn, need not be dimensionless, thus the expression ‘quantum
number’ should not be taken literally. However, one can
always define numbers ¢, = f(n), which are dimensionless.)

3.2 The Principle of Approximate Parity and Nuclear
Spin Symmetry Conservation and Other
Approximate Symmetries of Adiabatic Channels

In the framework of electroweak theory of molecules, par-
ity is not a rigorous constant of the motion.>! Nevertheless, it
remains a practical, approximately good quantum number in
the framework of ordinary electromagnetic theory. Similarly,
neglecting the weak coupling of nuclear spin with molecular
motion, one may introduce the nuclear spin quantum num-
bers I, M; and nuclear spin symmetry (i.e., the irreducible
representation of the nuclear spin function and the correspond-
ing complementary, Pauli-allowed irreducible representation
of the ‘motional’ molecular wavefunction) as approximately
good quantum numbers for scattering, chemical reactions, opti-
cal transitions, and for adiabatic channels*%* In practice, this
amounts to classifying adiabatic channels with respect to the

symmetry group in equation (78):
N
Snrnzms =S" @[] Sn (78)
i=1

or a subgroup Mg, of order m thereof. S* = {E*, E} is the
reflection group (‘Spiegelungsgruppe’) and S, is the symmet-
ric group of the permutations of n; identical nuclei of type
‘I’ occurring in the molecular reaction system.*® Similarly
to molecular energy levels, every adiabatic channel in this
approximation can be characterized by its ‘motional’ angular
momentum J, its motional symmetry species I'; in the rele-
vant molecular symmetry group and the corresponding Pauli-
allowed nuclear spin statistical weights (corresponding to the
Pauli-allowed nuclear spin angular momenta I, M occurring
together with I'y). One thus arrives at the following practical
procedure to obtain symmetry and angular momentum labels
for adiabatic channels:

(i) Obtain the ‘motional’ angular momentum coupling of
reactants and products in the usual way,3? in a basis
which explicitly specifies the total ‘motional’ angular
momentum J (perhaps including electron spin if the
coupling is important) for the adiabatic channels and
molecular states.

(i) Obtain a classification of the adiabatic channels by
irreducible representation I' of an appropriate group
Sn.npmy OF subgroup M, explicitly specifying also
motional parity (by = in the notation).

(iii) Count channels W(E,J,M,I'=...) and densities
oE, J, M, T% .. ).

(iv) Note degeneracy (2J + 1) x gg(I'*) where gk is the
nuclear spin statistical weight for the irreducible repre-
sentation I'* of the motional wavefunction.

(v) Calculate cross sections with a statistical S-matrix,
which is blockdiagonal in J, M, I'%, ie.,

(1Sa°) = W(E,J, M, T*..)™! (79)
for strongly coupled channels, and specific rate constants

W(E,J,M,T%..)

KE,J MTE. )= (y)—2"2 1 "7
( V=W E T M TE

(80)

Further details of the procedures and examples can be
found in Refs. 40 and 49. Here we shall quote a relatively
simple example for illustration, which shows some of the main
features of these procedures. The hydrogen bonded complex
(HF); can dissociate into two HF momomers:

(HF); > 2HF Do ~ 1062 cm™! (81)
The complete group in equation (78) would be:3%3
53, =55 % S% x §* (82)

including exchange of nuclei between the two HF monomer
units. However, if the latter remain intact, only the exchange
(ab) of the monomers as a whole needs to be considered,
leading to a group M of order 4 defined by equation (83):

My = {E, E*, (ab), (ab)*} (83)

where E is the identity, E* the inversion operation, and (ab)
represents the permutation of the two intact HF momomers,
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(ab)* combined with inversion. The symmetry species (irre-
ducible representations) of this group can be labeled A1, A™,
B™, B~, where the exponent + and — indicates parity and A
and B whether one has symmetry (A) or antisymmetry (B) with
respect to the permutation (ab). Parity is easily obtained for
the wavefunctions of a planar asymmetric top (HF), and the
two diatomic rotors. The symmetric (A) nuclear spin functions
have total nuclear spin [ = 2, 1, 0 (twice for the latter, total
weight gg = 10) and combine with A motional symmetry. The
antisymmetric nuclear spin function (B) has I = 1 (twice, total
weight gg = 6) combining with B motional symmetry.

Angular momentum coupling is particularly transparent
for this example, as there is no electronic (spin) angular
momentum for reactants and products in equation (81). One
just combines two diatomic rotors with j; and j, to a channel
angular momentum j in equation (84):

i—il=ji<ih+i (34)
giving a total J by equation (85):
lj—e=<J=<j+¢t (85)

The motional parity of the product channels is given by
equation (86):

I = (_1)j1+1'2+‘5 (86)

and exchange symmetry by equations (87) and (88), if (vi, ji)
= (v2, jo):

A for j+ £ =even 87)
B for j+ £ = odd (88)

If (v, j1) # (v2, j2) one has a degenerate A, B pair. Figure 5
shows the corresponding symmetry correlations for the low-
est adiabatic channels with / = 0 (and therefore j = £). For
the bound complex (HF); with J =0 the exchange sym-
metry (A, B) results from the tunneling splitting (tunneling
vibrational mode vs), and parity from whether the only out
of plane vibration vs has an even (4) or odd (—) quan-
tum number. There is thus a total of four different symmetry
species on both sides of the correlation diagram for channels,
with numerous crossings of channels of different symmetry.
Additional crossings would arise at high energy, where the
(HF)-stretching quanta are excited, because vy is a conserved
quantum number in the correlation. We shall return to this
example below and note at present that statistical theory is
not really applicable for vibrational predissociation of (HF),
after (HF)-stretching excitation;% however, it may possibly
be applicable to excitation of the low frequency modes.>® In
any case, the symmetry correlation is independent of whether
statistical theory is applicable or not. It would also apply to
other, symmetrically equivalent cases. Correlation diagrams
of the type shown in Figure 5 are also very useful in dis-
cussing state selected predissociation into selected product
channels.

More generally, further complications arise for angular
momentum couplings when the fragments show electronic
angular momentum, but the fundamental symmetry rules are
not affected by this. Early examples for detailed correlations
include triatomic systems,* and another more recent exam-
ple is the correlation for atom + linear molecule.5¢ While for
such simple cases, and planar molecules in general, parity is

r (Vs, Vg)
B~ an
A= ©, 1)
1=0
B"—— (5,0)
At*—— 4, 0) s
E jini1T
12 3 3 B*
1233 A"
17222 A°
" 1211A"
B"—— (3,0 1222 B
At yp 0y §B==11211B"
6p——09222 Al
~ 02228B
1122 A"
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17100 A
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2B=—=¢/1 11B"
B* 1,0 +
e EO o; 0B——0/000 A

Figure 5 Symmetry correlation for adiabatic channels in the disso-
ciation (HF), — 2HF (after Ref. 39)

easily identified as a quantum number, it must be stressed
that, even for nonplanar molecules, parity can frequently
be identified as a good quantum number of the spectro-
scopic states. This means, however, going beyond the usual
point group classification of spectroscopic levels. Methane and
CFsl are relevant examples.*®*® However, the parity-violating
weak nuclear interaction can introduce modifications at this
point,*8 which we shall not discuss in detail here. Further
effects of interest arise when one includes explicit correla-
tion with hyperfine levels, which in principle is possible in
the adiabatic channel model,®® (see also the discussion of
hyperfine effects in H3* in Ref. 63) and may become relevant
with recent experimental detection of hyperfine distributions
in reaction products.%’ These effects, as well as the role of
coupling of scattering partial waves £ to symmetry and differ-
ential cross sections, are best treated separately.*® Two recent
results of importance in this context should be mentioned.
Firstly, the detailed symmetry selection rules predicted*® for
H,* + H, — H3t + H have been demonstrated in an ele-
gant experiment.”> Secondly, ozone isotope anomalies®> may
well be related to the symmetry-dependent isotope effect
predicted in 1977, although the relationship may not be
simple.

Finally, we should mention here the possibility of introduc-
ing further approximate constants of the motion beyond parity
and nuclear spin symmetry. Recent spectroscopic evidence
suggests that such approximately good additional quantum
numbers should exist rather frequently on short time scales
of a few picoseconds and less in intramolecular vibrational
redistribution,561:62 and these may well persist in reactions,
although experimental evidence for such effects remains to be
established with certainty.
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3.3 Approximate Calculation of Symmetrized Densities
of States and Adiabatic Channel Numbers

While detailed symmetry correlations of adiabatic channels
are possible, they are frequently unnecessary. One must dis-
tinguish here good quantum numbers arising from continuous
groups, such as the total angular momentum quantum number,
from those arising from discrete groups such as parity and
nuclear spin-permutation symmetry. Whereas effects arising
from angular momentum conservation have to be considered
explicitly even in the classical limit at high energy, the discrete
symmetries can be dealt with by simple correction factors at
high energies, where the densities and numbers of channels
are large.

The first important aspect to be considered is the role
of rovibrational (Coriolis) coupling in calculating effective
rovibrational densities of states, including all rotational levels
of a given angular momentum J. This idea was, indeed,
first implemented in the framework of the adiabatic channel
model,! as the importance of a consistent inclusion of proper
rovibrational coupling for effective densities g(E, J) was not
recognized in earlier versions of statistical theories, such as
RRKM theory. For a symmetric top with quantum numbers
K, the density o(E, J) takes the approximate form given by
equation (89):

J
0B, 1) = gowlE~JU + DB~ (A—BK* —E]  (89)
K=0

Here, E, is the energy of the zero point level, A and B are
rotational constants (in energy units, gx = 1 for K =0 and
gx =2 for K > 0). The use of such densities in the statistical
formulae implies that K is not a good quantum number for
the reaction. The vibrational density of states gy, can be
calculated in the separable harmonic or anharmonic oscillator
approximations by simple formulae,** or fast convolution
algorithms, %566 which we have extended to include calculation
of rovibrational states o(E, J) for the adiabatic channel model
(see Ref. 17 and references cited therein). If K is considered
to be a good quantum number on short time scales, one would
effectively calculate equation (90):

W J.K) W (E)
ho(E,J,K) ~ hoi(E)

k(E,J.K) = (90)

This is actually the most frequently used assumption in tradi-
tional RRKM theory. Near threshold, one has W =~ 1 in the
rate constant expressions (90) and (54). On the other hand,
o(E,J) is substantially larger, for large J, than gy, - the
increase being about a factor of 2J 4+ 1 if the rotational
energy is very small. Thus one finds that rovibrational cou-
pling decreases the threshold rate constants for increasing J,
compared to k(E, J = 0). However, for very large J this effect
is counteracted by an increase in the rotational energy, decreas-
ing the factor g in equation (89), as was already observed in
the first discussions of this effect.* From a dynamical point
of view, there is no particular reason to treat the symmetric
top quantum number K as a ‘better’ quantum number than,
say, vibrational angular momentum quantum numbers £, or
some other vibrational quantum numbers. Some or all of these
may be conserved on very short time scales, but not on long
time scales. None of them should be treated on an equal foot-
ing with J, which is certainly a very well conserved quantum

number, with the restriction of possible coupling to nuclear
spin degrees of freedom on rather long time scales.

Symmetrized densities of states o(E,J, [’y ...) and adia-
batic channel numbers W (E,J, T ...) can be calculated by
counting algorithms, for instance extending the Beyer-Swineh-
art algorithm in appropriate ways (see Refs. 40 and 50 also
for further references), where T'{ is an irreducible representa-
tion of the molecular symmetry group. In the classical limit
of high energy and angular momentum, it can be shown that
the total density can be decomposed according to a regular
representation, leading to equation (91):5°

W(E,J,TE) o(E,J,TE) [IE]
W(E,J,TF)  oE,J,TF) ~ [TE]

(1)

[F,ﬁ] stands for the dimension of the irreducible representa-
tion I'Z. One notes that each channel and level entering the
count in W(E, J, Fﬁ) orin go(E,J, F,ﬂ,,:) has a further motional
degeneracy g, = [1"?;]. If one introduces a count of nonde-
generate motional states without considerations from the Pauli
principle, one would obtain the densities in equation (92):

Q(E,J,TE) = [TEo(E,J, TE) 92)
and channel numbers in equation (93):
W(E,J,TE) = [TEIW(E, J, TE) (93)

In actual fact, each level of motional degeneracy [l",f] com-
bines with a nuclear spin wavefunction of spin symmetry
degeneracy [['j] to give a nondegenerate Pauli allowed state
following equation (94):

Ci X Ty = Cpauti + -+ %94)

Ipaui always corresponds to a nondegenerate species defined
by its character xo under the group operations Q:

Ng
xo = [J(~1)e ©5)

i=1

In equation (95), P;p is the parity of the permutation of the
ith kind of fermions (total number Ng) in the operation Q.
Of course, the degeneracy arising from angular momentum
is retained. Thus, in counting levels that really exist, the
densities in equation (91) are relevant. However, the densities
in equation (92) are relevant when one counts molecular state
densities o(E,J) using a model of oscillators and rotors
disregarding the molecular symmetry group. One obtains the
decomposition of this full ‘motional’ density according to
equations (96) and (97):

oE,J)=) ¢'(E,J,Ty) (96)

W(E,J)= W(E,J,Tn) ©7)

m

In practice, one will usually calculate directly o(E,J) and
W(E, J) and then obtain o(E, J, T'y,), W(E,J, '), and o'(E,
J,Tw), W(E,J, Ty) using equations (96) and (97) together
with equations (91), (92), and (93). These general results*’
have been repeatedly checked by direct count for specific
systems,®¥7 and it is generally found that the convergence
towards the classical limit of a regular density at high energy
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is even faster than would be expected on the basis of the
approach of the total density to the classical limit. At low
energies, one should always use direct count. In the calculation
of rate constants according to equation (80), ¢ has usually
already reached the regular limit, whereas W has not (in the
extreme W = 1, only one channel being open). Therefore the
threshold rate constants are larger when symmetry is taken into
account, compared to a calculation with unsymmetrized total
densities o(E, J). However, when both W and ¢ have reached
the regular limit, the symmetry correction factor for k(E,J)
cancels completely, as it is the same in the numerator and in
the denominator. In order to have such canceling one must take
care, however, to use the same group and the same irreducible
representations for the calculation of both W(E,J,I') and
o(E, J, I'). Indeed, this is necessary for a consistent definition
of k(E,J,T"). This fact also makes it quite clear that one
cannot simply use, say, different point groups for the molecule
which dissociates (and o(E,J,I")) and the ‘transition state’
with W(E, J, ).

3.4 Symmetry Numbers and Reaction Path Polytropy

For the thermal unimolecular reaction the expression (71)
is extended by a further explicit summation over the symmetry
index " with W(E, J, ") with a nuclear spin statistical weight
gx(I"). The integral in equation (71) can be calculated, in the
regular limit, using the approximation in equation (98):

W(E, Tpai) = y_ »_(2J + DW(E, J, Ti)g(T)
i J=0

11 QL + DW(E)

OM g

(98)
i

W(E, I'paui;) is the total number of Pauli allowed channels
including nuclear spin. /; is the nuclear spin of the jth nucleus
in the molecule, W,(E) the total number of open channels
calculated ‘mechanically’ without regarding symmetry and
nuclear spin, and oy, is the symmetry number of the molec-
ular symmetry group M of order g* as relevant for the
calculation of W(E). This could be the full permutation inver-
sion group or a subgroup thereof. The symmetry number o,
is just the order of the subgroup of permutations in either of
these groups.>® The partition function Qx can be replaced sim-
ilarly by

2+ 1
Ox (Crauit) = Qmx - [ | (—;’—J’—) (99)
i ngx

The factor I1;(2/; + 1) cancels and one arrives at the final
expression (100) for the high pressure limiting rate constant

KT Qf O, ( —AEx
—=m . T exp
h Omx oM, kT

koo (T) = {(¥)) (100)

Some observations may be useful in the interpretation of this
expression. Firstly, both the O, must be computed consistently
with a mechanical model, which is consistent with the assumed
symmetry group. In principle this is completely arbitrary but
one must satisfy quite generally equation (101):

Om _ Om2

oM sgl amng

(101)

When one uses a mechanical model 1 to compute Qy,; with a
symmetry number oy, and compares this with calculation of
QOm> with another mechanical model 2 with symmetry number
OM,» the partition function for the true Pauli-allowed states
given by equation (99) must remain unaffected by this change
of models.

Secondly, the factor ou,,/om,,. is frequently interpreted
as a ‘reaction path degeneracy due to symmetry’. While this
is a practical concept for rigid, classical transition states
with a well defined point group (o being computed for the
point group of interest, then), this concept loses its meaning
for nonrigid transition states and nonrigid molecules. For
instance, one might choose in this case a model with the full
permutation inversion group for calculating both Qmmx and Q%
This group and the relevant oy,, are then the same for both
and the ratio corresponding to the reaction path degeneracy
would be 1. However, one might choose different symmetry
models for Q,x and Q,’;’ and then the ratio is different from
1 (but ks (T) would not be affected by this change). For
instance, a rather useful assumption for bond dissociation
would be an ordinary rigid molecular reactant with some
modest symmetry and a small symmetry number o but a
very nonrigid ‘transition state’ corresponding to a channel
count with almost freely rotating fragments, say with some
fragment symmetry numbers o) and o». Then the ‘reaction
path degeneracy’ would be o/(o; - 02), frequently less than
1. While this would appear counterintuitive, it is, of course,
perfectly correct and consistent with the model assumptions
used in the channel count.

Thirdly, one may consider a reaction path polytropy as a
result of nonequivalent reaction paths. Here one would nor-
mally compute the total rate constant by the sum in equa-
tion (102):

P
K@y = Y k(T (102)
i=1

If the koo;(T) are almost the same, one can replace the sum
by a product (pks;) with a polytropy factor p. An example
would be the existence of two enantiomeric reaction paths
With kool = koop and k9% (T) 2~ 2ksr. Because of the weak
nuclear interaction the equation between ko1 and kop holds
only approximately. For other isomeric reaction paths, the
differences might be even larger and replacing the sum in
equation (102) by a product for one k,; with some degeneracy
factor may be less helpful.

4 THE STATISTICAL ADIABATIC CHANNEL
MODEL AS AN AB INITIO THEORY AND AS AN
EMPIRICAL FEW PARAMETER MODEL

The statistical adiabatic channel model was originally intro-
duced as a simple empirical model to describe kinetic exper-
iments with as few parameters as possible, providing never-
theless a connection to a more fundamental theory. While it
was clear from the start that the model could also be used as
an ab initio theory, the numerical computations necessary in
this context seemed impractical at the time of the invention of
the model.! Indeed, even the simple empirical approach was
computationally demanding by the standard of the resources
available then. During the past decades the computational
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situation has changed drastically and today the ab initio use
of the SACM is possible and coexists with the empirical
use, which still provides most of the applications. We shall
present here the two approaches in a logical (not the histori-
cal) order, starting with some recent results from the ab initio
approach, proceeding to a description of the early empirical
method, which is still useful, to end finally with the results
from even more simplified models, which can be derived from
the SACM.

4.1 Ab Initio Calculation of Adiabatic Channels on
Electronic Potential Hypersurfaces

From the point of view of pure theory, the most logical
approach would be to calculate electronic potential hypersur-
faces and adiabatic channel potentials ab initio and predict
the relevant experimental quantities following Sections 2 and
3. Such a prediction would be approximate, because of the
approximations involved in the model, but it would be fully ab
initio, not involving any empirical adjustment. Indeed, the adi-
abatic channel model could furthermore be made the starting
point of a numerically ‘exact’ reaction rate theory by explic-
itly including transitions between the adiabatic channels, as
already proposed.!” A slightly more modest: program would
be to use empirically adjusted potential hypersurfaces and
still compute adiabatic channel potentials ab initio by solu-
tion of the relevant Schrodinger equation (15) for this prob-
lem. Neither of these approaches can be used routinely today
for complicated polyatomic reaction systems. However, some
results along these lines are available, which can be used to
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test the quality of some of the empirical model assumptions.
Adiabatic channel potentials V,(g) in equation (15) can be
calculated for relatively simple systems by (partly) analytical
or various numerical methods.2%5>68=7" One numerically exact
approach to solving the adiabatic channel Schrodinger equation
for larger polyatomic systems is provided by the quasiadiabatic
channel quantum Monte Carlo method.3® This method is based
on Anderson’s diffusion Monte Carlo approach,”* applied here
to the rovibrational part of the Schrédinger equation using
the clamped reaction coordinate approximation, which is in
essence the adiabatic channel model. While we refer to the
original paper introducing this method,®® we note that the
‘adiabatic channel’ part of the method scales very favorably,
approximately linearly with the number of atoms. The ques-
tion of calculating the electronic potential is to be considered
separately. The method is straightforward only for the lowest
adiabatic channel of a given symmetry, where it is numeri-
cally exact, providing statistical upper and lower bounds for
the adiabatic channel potentials. Here it is ideally suited to
provide benchmarks against which one can test other ab ini-
tio and also empirical approaches of the SACM. The result of
one such test is shown in Figure 6 for the (HF), dissociation
reaction already used for illustration in Section 3. Figure 6a
shows the four lowest adiabatic channel potentials of the sym-
metries A*, B*, A=, B~. Figure 6b shows the corresponding
rovibrational energy contribution in a logarithmic presenta-
tion following Ref. 1. As described below, for the empirical
adiabatic channel interpolation method such a graph would
be strictly linear for all channels, with the same slope —a.
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Figure 6 Adiabatic channels for (HF), — 2HF from quasiadiabatic channel quantum Monte Carlo calculations (after Ref. 39)
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While this behavior is certainly not found exactly, one has
a roughly linear behavior with « ~ 0.3 A~! at long distance
and a steeper slope (a~ 0.8 A~!) at short distance. Such
results can be used to test and calibrate the simple interpolation
procedures of the adiabatic channels. We stress that the quasia-
diabatic channel quantum Monte Carlo results correspond to
exact (6 — 1) dimensional solutions of the Schrodinger equa-
tion on a 6-dimensional potential hypersurface without making
any separability assumptions. This test thus goes far beyond
earlier tests following similar ideas using simple 1-dimensional
hindered rotor potential functions.3* Such high-dimensional
calculations correspond more or less to the current state of the
art and further work along these lines is to be expected. We
note that the method has also been used to calculate adiabatic
channels for the isotope effects in the hydrogen bond isomer-
ization reaction of (HF),”? and the idea has also been taken up
in calculations on bimolecular reactions.”® Extension to higher
(HF),, clusters such as the reaction (HF); — (HF), + HF with
even higher dimensionality on appropriate multidimensional
potential hypersurfaces has been presented.”

4.2 The Choice of a Reaction Coordinate ¢

Both in the ab initio calculation of adiabatic channels on a
potential hypersurface and in the more empirical approaches
described below, there may be a question as to the choice of
the reaction coordinate ¢.! If there is a deep valley connect-
ing reactants and products, possibly passing through a well
defined saddle point, then this would define a natural choice
of the reaction coordinate. In principle, one can also intro-
duce additional dynamical constraints in the definition of the
reaction coordinate and the question has been discussed in the
early literature.3*~37 Sometimes one may wish to introduce a
certain practical definition of a reaction coordinate for reasons
of simplicity and convenience. We take here the position that
there is no a priori compelling choice of a reaction coordinate.
Different choices simply result in slightly different versions of
the theory. As long as the differences are not too large, this
will not affect the calculated results by much. A frequently
very good choice of the reaction coordinate is given by a nor-
mal coordinate near the potential minimum, changing then into
a local bond distance coordinate for slightly larger values of
q and finally into the center of mass distance of the frag-
ments for very large g. One can in principle envisage an after
the fact optimization of the reaction coordinate in the frame-
work of the variational approximation to transition state theory
to be discussed below. The choice of the reaction coordinate
affects both the vibrational and the rotational contributions
(via the centrifugal potentials). While individual contributions
may be affected more importantly by differences in the choice
of reaction coordinate, the total channel potentials will be less
affected, because of some cancellation in consistent treatments.

A note on nomenclature may be useful. In the recent
literature, the ‘reaction coordinate’ has frequently been called
the ‘reaction path’, the two being synonymous when viewed
as technical terms. However, ‘reaction path’ is frequently also
supposed to imply that it is the physical path taken in the
course of the reaction (classically a ‘typical’ trajectory). This
is different from the definition of a mathematical reaction
coordinate, which has no such intuitive connotations and is
thus preferred here. Note also that the reaction coordinate need
not be the minimum energy path (MEP) either.

4.3 The Few Parameter Empirical Interpolation for
Electronic Potentials and Adiabatic Channel
Potentials

In applications to a wide range of experimental results, one
needs an efficient theoretical tool allowing for quick compari-
son of experiment and theory, perhaps followed by adjustment
of theoretical parameters to experiment. With this goal in mind,
the early formulation of the SACM included a simple empirical
representation of the main features of the electronic potential
by a very few adjustable parameters. Furthermore, the com-
plicated calculation of adiabatic channels by a solution of the
multidimensional clamped -g- rovibrational Schrodinger equa-
tion, which is an exceedingly demanding task even today for
larger than triatomic systems, was completely circumvented
by a simple channel interpolation procedure. We shall present
here a very brief description of this empirical approach for
simple bond fission reactions.

The long range electronic potential in the reaction coor-
dinate g can be represented by simple expressions of the
form (103):

Ch
V(g) = o= (103)
q

with constants C,, and n = 6 for collisions of two neutral
molecules, n = 2 for ion—dipolar"5 and n = 4 for other (e.g.,
quadrupolar) ion-molecule collisions. Further useful expres-
sions for general long range potentials can be found in Ref. 76.
In order to include short range repulsion one might use the
Lennard-Jones (6-12) potential in equation (104):

=33

with the usual parameters ¢ and o.
Frequently, a better representation is given by the Morse
potential:1”

6
} (104)

V(q) = De{l — exp[B(ge — )1)* (105)

B is 'the ‘Morse steepness’ parameter, g. is the value of
the reaction coordinate at the potential minimum and D, the
energy difference between the potential minimum and the
dissociated fragments. D, can be derived empirically from the
measurable thermodynamic or spectroscopic bond dissociation
energy at 0 K, AH} = DY by means of equation (106):!

De =D} + E;n — Eqp (106)
E, is the total zero point energy of the bound molecule and
Ep is the total zero point energy of the dissociated fragments.
One must get as accurate an estimate as possible of these fully
anharmonic zero point energies from the vibrational spectrum,
if the complete potential is not known. The Morse parameters
B and D, can be further related to the force constant F, for
motion along g near the potential minimum by equation (107):

— F‘I
ﬂ‘\/zoe

Other potentials, such as the Poschl-Teller potential and
related forms, have been suggested,3*’%77 and one should not

(107)
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hesitate to choose the most appropriate form (including inter-
polated ab initio results), if enough is known about the specific
potential.

The second most important feature of the potential for
simple bond fission reactions is the angular potential for those
coordinates which correspond to free relative rotations for
the separated fragments, changing into hindered rotations at
shorter distances and finally vibrations in the bound molecule.
Such potentials can be parametrized by general expressions of
the form given in equations (108) and (109),'** where g, is
the reference value of the angle ¢:

V(g q) =05 Vaj(@{l —cosinj — )} (108)

Vaj(@) = 3Vnj(ge) {2 explaj(ge — )]  expl2aj(ge — @)1} (109)

These are to be added to V(g). The «; take the place here
of the Morse steepness parameter. Because in the empirical
approach one does not compute the corresponding hindered
rotor eigenvalues exactly but rather by interpolation, one lumps
all the o; together into one « and uses the interpolation formula
(110) for channel eigenvalues (see Figure 3 for the notation).

Eq.(q) = Ea(ge, Vin, Von, T) expl—a(g — ge)]
+ Ea(g = 00, Vip, j1, j2, T1, T2, )

X “ - eXP[—a(q - tIe)]} + Ecent (1 10)
The E,(g.) and E,(g = co) are introduced in a correlation
procedure by ordering the energy levels at g and g = oo by
increasing energy for the relevant modes. The channel eigen-
values are added to the electronic potential in order to obtain
the adiabatic channel potentials, according to equation (16).
The centrifugal potential is interpolated in such a way that
one obtains the pure J-dependent contribution to the ordinary
rotational energy of the bound molecule (the 7 dependence is
included in the first term in equation (110) for small g =~ ge,
and a pure centrifugal rotational energy for the two centers of
mass of the two fragments rotating about their common center
of mass. A useful interpolation is given by equations (111)
and (112):

Ecem=Bs(Q)'P(P+1) (111)
P=Jexp[—a(g —ge)] + £ - {1 —exp[—a(g —ge)l} (112)
Here
B C
B(p= 201D 113)

is the mean of the two small rotational constants calculated
from the inertial tensor at the optimized structure for clamped
g. Slightly more sophisticated treatments of the centrifugal
energy have also been used and an essentially exact treat-
ment of this highly nontrivial problem has become available
by means of the quasiadiabatic channel quantum Monte Carlo
method.3® The parameter B can be obtained from spectroscopic
data in the usual way. o could be obtained from mixed anhar-
monicities x;; but in practice has been adjusted to kinetic
results,"*1728 (frequently o ~ 1 A~!). It has also been sug-
gested that ¢ and B could be related by empirical relations,
e.g., a = B/2.%7°

4.4 Treatments with Further Simplifications and
Dynamical Limiting Cases

Even the empirical, detailed channel correlation and inter-
polation procedure described in Section 4.3 can be too cum-
bersome or expensive for some experimental applications. This
provides motivation for further simplifications, which we shall
mention here, providing also some insight into dynamical lim-
iting cases of the SACM.

4.4.1 Variational Approximations for Specific
(Microcanonical) and Thermal (Canonical) Rate
Constants

Instead of following individual channel potentials and
counting adiabatically open channels according to their indi-
vidual maxima, one may define a number of locally open
adiabatic channels* by equation (114):

W(E,J,q) = Zh[E = Va(9)] (114)
a(J)
One has obviously the inequality (115):
W(E,J,q) = W(E,J) (115)

Therefore the best approximation to the true W(E, J) is given
by equation (116):

W(E,J,q") = WHE,J) = W(E, J, @)min (116)

WH(E, J) has an obvious interpretation as the number of open
channels at the location g* of the transition state. As one varies
the position g* of the transition state one finds the optimum
choice at the position of a minimum value, W(E, J, @)min-
Therefore, such approximations are also called microcanonical
variational transition state theory. Sometimes the variational
procedure has been used with the minimum density of states
criterion in equation (1 17):24.26 ’

o(E,J,q") = o(E,J, Q)min (117)
or, using W(E, g) in equations (118), (119),2
W(E, q) = 2]+ DW(E,J) (118)
J=0
W(E, ¢") = WE, Qmin 2t ¢*(E) (119)

It has sometimes been claimed that the equalities in (115) must
hold, but this would be clearly incorrect.

The microcanonical variational approaches had been intro-
duced in various forms®~26 already prior to the statistical
adiabatic channel model and have been reviewed before.l17
One has the interesting sequence (120) of inequalities (subject

to certain conditions):

hoo o WHED)  WEJT)  WE.J)
variational = hQ(E,J) = hQ(E,J) (et th(E,J)
= (k(E, J)rue) (120

Quack and Troe!” suggested that the microcanonical varia-
tional theory is conceptually interesting but hardly worthwhile
computationally (when viewed as an approximation to the
SACM, although such computations may find use in other
methods).
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Similar to a microcanonical variational optimization, one
can also carry out a canonical variational transition state theory
defining a g-dependent partition function by equation (121):

0@ =Y ew [_Z“T(q)] (121)
One obviously has again the inequality (122):
Q(q) = 0" (122)

and hence the best choice of an activated complex at g* by
means of equation (123):

Q' (T) = (g, T)min 2t g*(T) (123)

The notation takes explicitly into account that these quantities
are temperature dependent, and in particular ¢*(7T'), which is
in general different from g*(E).

One may use the statistical thermodynamical free energy
function A defined in equation (124) by means of the partition
function:

A(g) = —kTtn [Q(q)] (124)

Equation (123) results then in a maximum free energy criterion
in equation (125):

ANT) =A@, Tmax 2t ¢*(T) (125)
The idea that the best canonical choice of the transition state
is given by the location of a maximum in the free energy is
about as old as transition state theory, where one must note,
however, that A(g) is not the same as a normal molecular A(T’).
It seems that the first quantitative calculation and graphical
representation of a free energy function with a nontrivial
dependence of its maximum on T, i.e., ¢*(T), was given®
for unimolecular reactions with the example of the ethane
dissociation methyl radical recombination reaction (see also
the early work?® for the reaction H + H,). There have been
numerous applications of the canonical variational transition
state theory both in relation to the adiabatic channel model
and other related procedures,so and we refer to the article by
Truhlar in this encyclopedia (see Transition State Theory) as
well as our earlier reviews*!7 and the diagram presented in
Figure 1. There is no doubt that canonical variational transition
state theory can be made the starting point of very simple
and efficient computational procedures. However, the resulting
approximation may sometimes not be good.*!” One of the
simplest approaches involves interpolation for In Q.2

4.4.2 Product State and Product Translational Energy
Distributions

Product state and product translational energy distribution
from the statistical adiabatic channel model for collision exper-
iments have been discussed in detail.!” They are in essence
contained in the number of open adiabatic channels W (E, J, b)
leading to product levels of a specified characteristic, labeled
by a quantum number b. For instance, in the case of product
translational energy distributions arising from the unimolecu-
lar decomposition of molecules at total energy E, and angu-
lar momentum J, one would count all channels leading to
translational energy in the range between E; = E — Ej and

E.+ AE, as expressed by the sum ' in equation (126)328!
(E1 = internal quantum state energy of reaction products):

P(E., AE,E,J) = W(E,J)! Z/W(E, J,b) (126)

b(E;,AE)

Measurable product translational energy distributions are then
given by the weighted sum and integral with the distributions
P(E, J) of the reactant in equation (127):

o0 o0
P(E,, AE) = / dE> " P(E,J)P(E,, AE,E,J)
0

J=0

(127)

If necessary, one can furthermore take into account symmetry
labels I and the adiabatic channel model can in principle be
extended to account for ‘inelastic’ transitions between the adia-
batic channels of the separating fragments, which are neglected
in the above expressions.>!” Of course, the complementary
distribution over internal quantum state energies Ej of the
reaction products is given by perfectly similar, complementary
expressions already used for the photodissociation of NO,3*
which has found recent interest again.®? As another interesting
application we may mention the infrared multiphoton excita-
tion and dissociation CF3CN — CF; + CN.33

Particularly for the reverse problem of the analysis (for
instance by least squares) of experimental product energy dis-
tributions in the framework of the SACM, the explicit use
of the above equations may become quite demanding, com-
putationally. It has been suggested!’8485 that the following
expression (128) is used with an adjustable parameter n.

P(E\) = CE]o(E — E) (128)
C is a normalization constant. o(E — E;) is the total (com-
bined) density of product internal states at total internal energy
Ey = E — E, given by the convolution in equation (129):

Ey

o€ = [ ov(Ei —xextn) o (129)
oy and gz are the complete internal (rovibrational) densities of
states of the reaction products Y and Z. One can very roughly
correlate the exponent n to the main potential parameters «
and B in the adiabatic channel model.!” »n = 0 corresponds
to the ‘loose’ adynamic limit @ = oo, 8 = 0, and n = 3 corre-
sponds to the ‘tight” limit, to « = 0 and ordinary values of 8 in
typical model calculations. Reasonable values of n, consistent
with the statistical adiabatic channel model, should thus fall
in the range 0 < n < 3. Using efficient algorithms for g(Ey),
the expression (128) with a single free parameter n can be
used in least squares adjustments. As a recent application of
this kind we may mention product translational energy distri-
butions obtained from Doppler line profiles (300 MHz widths)
measured at about 1 MHz resolution in the unimolecular reac-
tions (130) after infrared multiphoton excitation.

mhv

C.Fpnl——C,Fn + (130)

This kind of analysis has also been used for Doppler line
shapes of H-atom products in allyl photochemistry.%¢

The limit with o = co in the adiabatic channel model
corresponds to phase space theory*~® (PST, see Figure 1).
PST can thus be considered to be a simplified limiting model
of the SACM. From this simple fact one can conclude that if
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an experimental result agrees with PST, it agrees also with a
dynamical limiting case of the SACM. This has been known
for quite some time,2~# but should be remembered in view
of occasional discussions of apparent discrepancies between
the SACM and experimental results, which are claimed to be
consistent with PST.87 This would be a logically inconsistent
conclusion, as clearly pointed out in several places.*38
Another, more extreme simplification arises in the so called
‘prior’ distribution.” The most frequently used prior distribu-
tion corresponds to equation (128) with n = 0.5. However, the
most consistent logical choice corresponding to the adynamic
postulate of the statistical prior distributions would correspond
to n =08 This question has been discussed critically in
Ref. 17, where further references can be found. In terms of the
statistical S-matrix the adynamic prior distribution corresponds
simply to replacing W(E, J) in equation (9) by N(E, J).

5 CONCLUSIONS AND OUTLOOK

The statistical adiabatic channel model (SACM) provides
an easy computational access to the large class of chemi-
cal primary processes involving metastable intermediates, in
particular unimolecular and bimolecular reactions. While in
the present article we have concentrated on developing the
principles and methods, the SACM has been in particu-
lar an enormously fruitful model for numerous applications.
These include reactions important for atmospheric chemis-
try, combustion, pyrolysis and cracking processes, evaporation
and condensation phenomena in hydrogen bonded complexes,
ion-molecule reactions, reactions in interstellar space, ion
fragmentations in mass spectroscopy, molecular beam scat-
tering, vibrational relaxation, and infrared laser chemistry (see
Multiphoton Excitation). There are far too many of these app-
lications to include them in this review, but some exemplary
applications of current interest have been mentioned and oth-
ers can be found in the reviews cited. In the past, certainly,
the emphasis was on applications of the simple empirical
implementation of the SACM, often even with further simpli-
fications. With the increasing power of ab initio methods (see
Refs. 90, 91 and numerous articles in this encyclopedia), the
future emphasis of the use of the SACM will be increasingly
on its ab initio implementation. The fruitful interplay of ab
initio potential hypersurface calculations and the SACM may
indeed start a new era in the theory of inelastic and reactive
processes involving metastable intermediate complexes.
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