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The electronic dissociation energies and barriers to concerted hydrogen exchange of (HF),
oligomers with n=2,...,5 are computed by means of a many-body decomposition of the
total electronic energy. The one- and two-body terms are obtained from explicitly correlated
coupled cluster calculations including singles, doubles, and a perturbative triples correction
(CCSD(T)-R12), in a large Gaussian basis set consisting of 276 contracted atomic functions.
The three-body term is computed at the conventional CCSD(T) level in a basis set containing
228 functions. The four- and five-body terms are obtained from explicitly correlated second-
order perturbation theory calculations (MP2-R12), using basis sets with 305 (tetramer) and
380 (pentamer) functions. Since the many-body terms are computed using the same basis set
(i.e. the basis of the largest fragment) for all fragments and subfragments, our calculations
implicitly include a counterpoise correction. The results of the calculations are compared with
semi-empirical one-, two-, and three-body potentials, and new best estimates of the electronic
dissociation energies and barriers are inferred. For (HF),, (HF)3;, (HF)4, and (HF)s, respect-
ively, we obtain for the electronic dissociation energies into monomers 19.1(2), 64(2), 116(3)
and 158(4)kImol™!, and for the electronic barriers to concerted hydrogen exchange 175(10),
85(10), 60(10) and 65(10)kJ mol™!. The results are shown to be consistent with NMR line

broadening data within the framework of transition state theory.

1. Introduction

The thermodynamics and kinetics of the fundamental
processes of hydrogen bond dynamics in hydrogen
bonded clusters are of wide ranging importance in chem-
istry, physics and biology. The first step in our theor-
etical understanding of such processes is provided by a
good characterization of the most important parts of the
electronic potential hypersurfaces for such systems [1],
prototypes being clearly (HF),. These clusters show
rearrangements of the three basic types, illustrated
here for the dimer [2, 3]:

(i) Hydrogen bond dissociation

H

\F--- H—F = HF + HF (1)

(ii)) Hydrogen bond switching or concerted ex-
change between bonding and free positions

§Present address: Institut fiir Physikalische Chemie,
Universitidt Gottingen, Tammannstr. 6, D-37077 Gottingen,
Germany.

HD
g T :
F ... H> —fF = F—g® ... F 2)

L N0

(iii) Concerted hydrogen exchange between binding
sites

HD HD
i o

F® ... HO—_F® = g®_H® ... F (3)

These processes being exemplified here for the dimer
occur in a similar fashion also for larger complexes
(HF), with n>3. Whereas at least for the dimer
(HF), there is considerable experimental and theoretical
work available for the first two processes (i) and (ii),
little is known about process (iii), and much less is
known in general about all three processes in the
larger clusters (HF),- 3 (see [1] and references cited
therein). Some initial theoretical work to fill this gap
has been carried out recently [4]. It is the aim of the
present investigation to provide a more detailed ab
initio investigation of the important properties of the
electronic potential, particularly for the processes (i)
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and (iii) which are perhaps competitive in the larger
clusters (HF),. In essence we aim for the highest possible
level of electronic structure calculation which is cur-
rently practical for the (HF), system. These results
should thus provide a benchmark for simpler theoretical
approaches and should also be useful for testing and
improving empirical potential hypersurfaces for the
larger clusters, somewhat similar in spirit to our inves-
tigation on (HF), [5].

Cohesion in molecular solids and liquids is often
described as a superposition of all individual molecular
pair interactions, thus neglecting any cooperative effects.
For electrostatic forces represented by the Coulomb law
between point particles, this would be rigorously true.
Given the success of electrostatic models for hydrogen
bonding [6], pairwise additive approaches may therefore
seem to be quite appropriate for this important class of
intermolecular interactions. Hydrogen fluoride (HF)
provides an interesting test case. Its charge distribution
is highly polar and very compact, with only ten strongly
bound electrons and a correspondingly small polariz-
ability. Since important cooperative interaction mechan-
isms are proportional to the polarizability [7] (induction)
or even to its cube [8] (dispersion), one might expect the
pairwise additive approximation to be excellent for clus-
ters of this molecule. The opposite is true. Upon aggre-
gation, the molecular charge distribution is significantly
distorted. As a consequence, the FH---F bond geo-
metry, energetics, and dynamics vary over a wide
range with increasing cluster size [4, 9-19]. Rather
than trying to interpret these changes in terms of
mechanistic contributions to the hydrogen bond, such
as exchange or covalent terms, we will adopt the more
formal approach of many-body decomposition.
Regarding HF as the building block, we will evaluate
which fraction of the total interaction energy can be
reduced to pairs, triples, etc. of these molecular units.

A further reason to study hydrogen fluoride is that
clusters of four to seven molecules are more abundant
in the vapour phase of HF than in any other known
gaseous hydrogen bonded system [18] under ordinary
pressure and temperature conditions. A remarkable fea-
ture of this vapour phase is the coalescence of the
'H-°F spin—spin coupling doublet in NMR spectra
down to the lowest pressures that have been investigated
[20, 21]. This means that beyond rapid cluster dissocia-
tion/association processes, there must be an exchange of
hydrogen atoms among the fluorine atoms [12, 22] on a
microsecond or even shorter timescale [21]. Given the
large dissociation energy of monomeric HF (D, =
590.5kJ mol~!), more efficient paths have to be present
in the clusters. It is now well established by theoretical
calculations [4, 12, 19, 22-25] that these pathways

involve a concerted cyclic hydrogen exchange, repre-
sented schematically as

for the cyclic HF tetramer. The key quantities for an
understanding of these thermodynamic and kinetic
anomalies of the HF vapour are cluster dissociation
energies D, and hydrogen exchange barriers AE as a
function of size. The main objective of the present
study is to compute these quantities by means of a
many-body decomposition of the total interaction
energy. An optimal coverage of electron correlation con-
tributions in these extended hydrogen bond systems is
achieved by using different electronic structure
approaches for the various k-body terms in the spirit
of [16, 26].

2, Computational details
2.1. Geometries

In the present study, we apply a many-body decom-
position of the total electronic energy of the HF oligo-
mers [15] and employ different levels of ab initio theory
and one-particle basis sets to compute the individual
many-body terms. The use of a variety of computational
methods is a key ingredient of our approach, and there
is no fundamental difficulty in computing analytical first
and second derivatives of the total energy with respect to
the nuclear replacements, as these derivatives can be
evaluated separately for each energy that contributes
to a given many-body term. Thus, at least in principle,
it is straightforward to optimize the geometries or, if
desired, to compute the harmonic vibrational frequen-
cies at such a mixed level of theory. At present, however,
we have at our disposal neither the computational tools
to carry out these optimizations nor, more importantly,
the computing resources to do so at the very high levels
of calculation that are applied in the present study.
Therefore, due to the technical limitations, we concen-
trate on the computation of the total electronic energy
of the HF oligomers at fixed geometries. These geome-
tries are sketched in figure 1, and the corresponding
geometrical parameters are given in table 1. The geome-
tries correspond to the ‘best estimates’ derived by
Maerker et al. [1, 4], except for the minimum energy
structure of the trimer, which is taken from table 2 of
[1]. This exception was made because the trimer struc-
ture of [1] has already served as a point of reference in
previous ab initio investigations by Tschumper et al.
[27]. The difference between the two trimer structures
of [4] and [1] is so small that it is irrelevant for the
purpose of the present study. The structure of [1] is
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Figure 1. Superimposed representation of the minimum energy structure (upper) and the concerted hydrogen exchange saddle

point structure (lower) of the cyclic (HF), oligomers (n = 2,.

fixed in the present study and are given in table 1.

Table 1. Geometrical parameters of the (HF), oligomers. All
parameters were kept fixed in the present study. Given are
the F-F internuclear separation and the H-F bond length
and H-F-F bond angle of the H atom engaged in the
hydrogen bond. For the dimer, the H-F bond length
and H-F-F bond angle of the ‘free’ H atom are given
in parentheses.

n Symmetry Rgg/pm Ryg/pm /HFF/°
(a) Minimum energy structures

1 Chy 91.7

2 (5 273.5 92.3 (92.0) 7 (68)
3 Ca 257 93.3 23

4 Ca 251 94.4 12

5 Cs 248 94.8 6

(b) Concerted hydrogen exchange saddle points

2 Doy, 206 118

3 Dy, 224 115

4 Dy 226 113.5

5 Ds, 226 113

based on semi-empirical one-, two-, and three-body
potentials, and is supposed to be rather accurate.
Based on the semi-empirical potential energy hypersur-
face, harmonic vibrational frequencies have been com-
puted [1], and a detailed comparison with corresponding
ab initio CCSD(T) results is found in [27].

2.2. Many-body decomposition

The quantity E"(k), with k < n, is defined as the total
(adiabatic) electronic and internuclear energy of the
(HF), fragment of the oligomer (HF), for a given,
fixed nuclear structure. This energy is obtained from
an ab initio calculation of the fragment, taking as
nuclear coordinates the positions of the nuclei in the
(HF), oligomer. In terms of these fragment energies, a
many-body decomposition of the total energy can be
carried out in the usual manner (cf. [1]). Due to the

..,5). The corresponding geometrical parameters [1, 4] were kept

high point group symmetry of the (HF), structures in
the present study, the oligomers contain many equiva-
lent fragments, and the m-body contributions can be
expressed in terms of relatively few fragment energies
E"(k), with k < m. The final expressions are displayed
in table 2. Throughout the present study, all fragment
energies E"(k) that contribute to the m-body term V, of
the oligomer (HF),, were computed employing the same
basis set for all fragments (HF), with k=1,...,m. The
basis set used corresponds to the basis of the (HF),,
fragment itself or of the whole (HF), oligomer. Any
difference between these two choices will vanish in the
limit of an infinite basis. Thus, the counterpoise proce-
dure [28] is incorporated automatically in all our calcu-
lations, and in the present study, we report only
counterpoise corrected m-body terms. The basis sets
used for the computation of a many-body term V,, are
denoted as (HF),-‘basis’, where /> m and ‘basis’ is
either DZP, T/Q, or Q/5 (cf. section 2.4).

The high symmetry of the oligomers cannot be
exploited when the calculations are carried out in a
basis set of a fragment smaller than the oligomer itself.
For example, when the three-body term V3 of the pen-
tamer is computed using for all calculations the basis set
of the trimer fragment of interest, the three calculations
of the monomer units within the trimer fragment are no
longer equivalent because the one-particle basis set is
different for the three monomer units. This also applies
to the calculation of the dimer fragments within the
trimer fragment, and thus, the determination of a
three-body term of the pentamer involves seven elec-
tronic structure calculations when the trimer fragment
basis set is used (1 trimer, 3 dimer, and 3 monomer
calculations). Using the whole pentamer basis set, the
number of calculations is only four (1 trimer, 2 dimer,
and 1 monomer calculations).

We emphasize that a meaningful discussion of many-
body contributions to cluster interaction energies
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Table 2. Many-body decomposition of the total electronic
energy of (HF), oligomers in terms of many-body contri-
butions ¥ ,,, where E"(k) is the energy of the (HF), frag-
ment in the geometry of the (HF), oligomer. For the
geometries considered in the present study, the dimer con-
tains two different HF monomer fragments (hydrogen
bond donor and acceptor, denoted as 1 and 1), the tetra-
mer contains two different (HF), fragments, denoted as 2
and 2’, and the pentamer contains two different (HF), as
well as two different (HF); fragments, denoted as 2/2’
and 3/3’, respectively. The k' fragments refer to structures
where one monomer unit is not neighbouring the other
monomer unit(s). See also figure 1 of [1].

n Vo

2V, =E(1)+E(1)-2E' (1)
vy = E*(2) — E*(1) — E*(1")
3 v, =3[E1) —Elgl)]
V, = 3[E*(2) - 2E°(1)]
Vs = E(3) — 3E°(2) + 3E3(1)

4 V1 =4[E4(1) —E' 1)]
= 4[E4(2) - 2E°(1)]
V2 =2[E*(2") 2E4(1)]
Vs =4[E*(3) — 2E*(2) — E*(2") + 3E*(1))]
Vi = E*(4) — 4E*(3) + 4E*(2) + 2E*(2') — 4E*(1)

5 V,=35E1)= Elgl)]

V, = 5[E3(2) — 2E°(1)]

Vv, = 5[E5(2") - 2E°(1)]

Vs =S[E°(3) — 2E°(2) — E3(2") 4+ 3E%(1))]

Vi=S5[E>(3") — E°(2) - 2E°(2") + 3E°(1)]

V4= 5[E(4) — 2E°(3) — 2E°(3") + 3E°(2)
+3E°(2") — 4E°(1)]

Vs = E(5) — 5E°(4) + 5E°(3) + 5E°(3")
—5E°(2) — 5E°(2') + 5E°(1)

requires realistic and uniform geometries due to the
strong dependence of these contributions on the cluster
structure. Comparison of dimer-derived geometries [29]
or among different minimum structures for various elec-
tronic structure levels [30] are less useful.

Finally, the many-body decomposition of the total
electronic energy of the oligomers is not completely
straightforward for the concerted hydrogen exchange
saddle points. In these structures, the monomer frag-
ments lose their identity. Nevertheless, we decompose
the energies in the same manner as for the equilibrium
structures. This would not be a problem, if the structure
is displaced infinitesimally from the symmetric structure,

anyway.

2.3. Electronic structure calculations
The main objective of the present work is to compute
the electronic dissociation energies D, and the barriers
to concerted hydrogen exchange AE as close as techni-
cally possible to the limit of a complete one-particle
basis set, preferably to the highest level of electronic

structure calculations that is currently available and
affordable.

For the one- and two-body terms, we employ the
CCSD(T)-R12 method. This method is identical to the
usual CCSD(T) model, but exploits many-electron basis
functions that depend explicitly on the interelectronic
coordinates r;. In contrast to the CCSD(T)-R12
method, conventional ab initio calculations employ
many-electron basis functions that consist of (anti-
symmetrized) products of one-electron orbitals. The
explicitly r;-dependent basis functions solve the inter-
electronic cusp problem, and vyield a significantly
improved convergence to the limit of a complete one-
particle basis set for the computed energy. The
CCSD(T)-R12 theory, as developed by Noga, Klopper
and Kutzelnigg [31-34], has been applied very recently
in the framework of benchmark coupled cluster calcula-
tions of the ten-electron systems CHY [35] and H,O [36],
demonstrating its great potential with respect to the
quantitatively accurate computation of absolute energies.

For the three-body terms, we employ the conventional
CCSD(T) method, that is, without explicit r;-depen-
dence. Using an aug-cc-pVTZ/aug-cc-pVQZ-type basis
set, these calculations represent presumably the most
accurate level of ab initio theory that can be applied
today for the computation of the three-body terms.

Finally, for the four- and five-body terms, we employ
explicitly correlated second-order Moller—Plesset pertur-
bation theory (MP2-R12) using the same aug-cc-pVTZ/
aug-cc-pVQZ-type basis set.

The 1s core orbitals of the F atoms were not corre-
lated in any of the electron correlation treatments
applied in the present work. This is in contrast to pre-
vious MP2/DZP calculations, where the core orbitals
were included [16).

The SCF calculations of all fragments up to the pen-
tamer were performed with the SORE program [37] on
the Cray Origin 2000 of the University of Bergen. Sub-
sequently, this program was run on the NEC SX-4
supercomputer of the Swiss Center for Scientific Com-
puting (CSCS/SCSC) to provide the corresponding MP2
and MP2-R12 second-order correlation energies. The
CCSD(T)-R12 calculations of the monomer and dimer
fragments were carried out with the DIRCCR12-95
program [38] on the IBM RS/6000 workstations cluster
of the University of Oslo. The conventional CCSD(T)
calculations using the T/Q basis set (see section 2.4) of
the dimer and trimer fragments were performed with the
Gaussian 94 program [39] on the NEC SX-4 of the
CSCS/SCSC computing centre. The corresponding cal-
culations of the monomer fragments as well as all calcu-
lation with the DZP basis set were obtained with the
same program on the DEC 8400 5/300 Alpha servers
of the ETH Ziirich (C* project).
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2.4. Basis sets

Three basis sets have been used in the present study.
The first basis set is the DZP basis set that was used in
previous calculations of the three-body potential of
(HF),, clusters [1, 16]. These calculations led to the
HF3BG potential, which is an anaytical fit to about
3000 counterpoise corrected MP2/DZP points, without
further adjustments [1].

The second basis set is the aug-cc-pV(T/Q)Z basis set
(abbreviated as T/Q) that was used in previous calcula-
tions of the two-body potential [5]. Employing this basis
set, counterpoise corrected MP2-R12 calculations were
performed for 3284 points on the six-dimensional hyper-
surface of the HF dimer. Applying empirical adjust-
ments, the analytical two-body potentials SC-2.9 and
SO-3 were derived [5, 40].

The third basis set has been constructed for the pres-
ent CCSD(T)-R12 study. It is denoted as aug-cc-pV(Q/
5)Z basis (abbreviated as Q/5), and has been constructed
in analogy with the T/Q basis. The Q/5 basis set for the
F atom is 15s9p4d3f2g contracted to 10s7p4d3f2g. The
s- and p-type primitive functions were taken from the
aug-cc-pV5Z basis and contracted to 10s7p by the seg-
mented contraction scheme (6111111111) for s and
(3111111) for p, using the contraction coefficients of
the innermost aug-cc-pV5Z orbitals. The 4d3f2g polar-
ization functions were taken from the aug-cc-pVQZ
basis. The Q/5 basis set for the H atom is 9s4p3d2f
contracted to 7s4p3d2f. The s-type primitive functions
were taken from the aug-cc-pV5Z basis and contracted
to 7s by the segmented contraction scheme (3111111).
The 4p3d2f set was taken from the aug-cc-pVQZ basis.

For completeness, the exponents and contraction
coefficients of the three basis sets are given in table 3.
All the parameters of the aug-cc-pVXZ X =T,Q,5)
basis sets [41—43] were downloaded from the EMSL
basis set database [44]. Only the pure spherical harmonic
components of the basis functions (5d, 7f and 9g) were
used in the calculations carried out in the course of the
present work. Note that in our previous MP2/DZP cal-
culations, six d-components were used [16].

As noted before, the fragment basis sets are denoted
as (HF)-‘basis’. For example, the (HF);-DZP basis set
contains 60, the (HF);-T/Q basis set contains 228, the
(HF),-Q/5 basis set contains 276, and the (HF)s-T/Q
basis set contains 380 basis functions.

3. Results
Table 4 displays the computed many-body decompo-
sition of the total energy of the (HF), oligomers for the
minimum energy structures (a) and the concerted
hydrogen exchange saddle points (b). This table collects
our most accurate results, which are compared with the
semi-empirical one- and two-body potentials [40] and

the analytical fit (HF3BG) to the MP2/DZP-level
three-body terms [16].

The CCSD(T)-R12/HF-Q/5 calculations of the one-
body or monomer relaxation [45, 46] term agree ex-
cellently with the generalized Poschi-Teller (GPT)
monomer potential [40]. For the minimum energy struc-
tures, the difference between the ab initio computations
and the GPT values is not larger than 0.05kJmol™" per
HF monomer fragment, and for the saddle points, this
difference is not larger than 0.1 kJ mol™! per fragment. It
is very satisfactory to find that the CCSD(T)-R12 calcu-
lations describe the monomer potential so accurately,
especially in view of the substantial HF bond elongation
(by 20-25%) in the saddle point stuctures.

Concerning the two-body term, it is apparent that the
semi-empirical SO-3 potential cannot be used to
describe the two-body term of the saddle point struc-
tures. The very short FF distances in these structures
lie outside the range of distances where the potential is
valid. In contrast, the two-body terms V5 for the inter-
action between two non-neighbouring monomer frag-
ments as present in the tetramer and pentamer agree
well with the ab initio calculations, as do the SO-3
values for the minimum energy structures. Comparison
of the MP2-R12, CCSD(T)-R12 and SO-3 resuits for V,
in table 4, part (a) suggests that the empirical modifica-
tion of the SO-3 potential relative to the raw MP2-R12
ab initio potential is generally a refinement in the vicinity
of the minimum energy structures. In conclusion, the
SO-3 potential can be employed to describe the
minimum energy structures, but not the saddle points.
For the dimer the range of validity is expected to extend
to about 100kJmol™! above the minimum, still far
below the exchange saddle point in this case. For the
higher oligomers, the range of validity is restricted .to
even smaller total energies for some hydrogen exchange
configurations.

Similar conclusions can be inferred from the compar-
ison of the three-body terms. The HF3BG fit [16] of the
MP2/DZP calculations fails for the saddle point struc-
tures, as no configurations near these structures had
been incorporated into the fitting procedure. This is
due to fundamental limitations of the current analytical
V,,V; expressions for situations where chemical bonds
and hydrogen bonds are of comparable length [1]. In
fact, the analytical surfaces are by design too repulsive
in this situation, so that adiabatic symmetrization
schemes [1, 47] can in principle be applied for refine-
ment. In contrast, the inaccuracy of the HF3BG fit for
the relatively small V§ three-body term (where one
monomer fragment is not neighbouring the other two)
of the minimum energy structure of (HF); is within the
expected error bars of the analytical fit (which has a rms
deviation of 1.8kJmol™", to be multiplied by 5 due to
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Table 3. Gaussian basis sets used in the present study. ¢ is the exponent of the basis function and ¢ is the coefficient of the

segmented contraction of the normalized primitive Gaussians.

d f g
¢ ¢ ¢ ¢ ¢ & ¢
DZPp
Fluorine 9994.790 0.002017 44.355 50 0.020 868 1.200 000
1506.030 0.015295 10.082 00 0.130092
350.2690 0.073110 2.995900 0.396219
104.0530 0.246420 0.938 300 0.620 368
34.84320 0.612593 0.273300
4.368 800 0.242 489
12.21640
1.207 800
0.363400
T/Q
74 530.00 0.000 095 80.39000 0.006 347 3.107 000 1.917 000
11170.00 0.000 738 18.630 00 0.044 204 0.855000 0.724 000
2543.000 0.003 858 5.694 000 0.168 514 0.292 000
721.0000 0.015926 1.953 000
235.9000 0.054 289 0.670200
85.60000 0.149 513 0.216 600
33.55000 0.065 680
13.93000
5.915000
1.843 000
0.712400
0.263 700
0.085940
Q/5
211400.0 0.000026 241.9000 0.001 002 5.014000 3.562000 2.376 000
31660.00 0.000 201 57.17000 0.008 054 1.725000 1.148 000 0.924 000
7202.000 0.001056 18.13000 0.038 048 0.586 000 0.460 000
2040.000 0.004 432 6.624 000 0.207 000
666.4000 0.015766 2.622000
242.0000 0.048 112 1.057 000
95.53000 0.417 600
40.2300 0.157400
17.72000 0.055000
8.005000
3.538 000
1.458 000
0.588 700
0.232400
0.080 600
DZp
Hydrogen 19.240 60 0.032 828 1.000 000
2.899200 0.231208
0.653400 0.817238
0.177 600
T/Q
82.64000 0.002 006 1.407 000 1.057 000
12.41000 0.015343 0.388 000 0.247 000
2.824000 0.075579 0.102 000
0.797 700
0.258 100
0.089 890
0.023 630
Q/5
402.0000 0.000279 2.292000 2.062 000 1.397 000
60.24000 0.002 165 0.838 000 0.662 000 0.360 000
13.73000 0.011201 0.292000 0.190000
3.905000 0.084 800
1.283 000
0.465 500
0.181100
0.072790

0.020 700
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Table 4. Computed and semi-empirical m-body contributions ¥V,, to the electronic dissociation energy for
minimum (a) and saddle point structures (b) with respect to fragmentation of (HF), oligomers into separate
monomers. The two- and three-body terms are decomposed into two contributions: V,/V; from structures
with neighbouring monomer units, and V;/V3 from structures where one of the monomer units is not
neighbouring the other(s). All energies are given in kJ mol™!.

V.. n=2 n=3 n=4 n=>5 Method Basis”
(a) Minimum energy structures
vV, 0.11 2.07 7.79 12.75 CCSD(T)-R12 HF-Q/5
0.13 2.17 7.98 13.02 GPT®
vV, —19.07 —50.21 —64.21 —70.99 CCSD(T)-R12 (HF),-Q/5
—19.21 —51.66 —66.89 —74.96 S0O-3¢
—18.22 —46.74 —60.25 —66.63 MP2-R12 (HF),-T/Q
V; —14.47 —26.09 CCSD(T)-R12 (HF),-Q/5
—16.06 —26.24 SO-3¢
—15.17 —26.09 MP2-R12 (HF),-T/Q
V; —14.66 —38.98 —52.02 CCSD(T) (HF);-T/Q
—14.98 —36.86 —53.39 HF3BG*
Vi —10.53 CCSD(T) (HF),:-T/Q
—495 HF3BG?
V, —3.60 —843 MP2-R12 (HF),-T/Q
Vs —0.66 MP2-R12 (HF),-T/Q
(b) Concerted hydrogen exchange saddle points
Vi 225.80 282.22 339.56 409.35 CCSD(T)-R12 HF-Q/5
225.59 282.27 339.78 409.68 GPT?
V, —66.72 —31.28 —8.66 13.65 CCSD(T)-R12 (HF),-Q/5
101.08 12.53 21.02 48.37 SO-3¢
—72.02 —40.08 —17.90 2.73 MP2-R12 (HF),-T/Q
V3 —35.21 —55.99 CCSD(T)-R12 (HF);-Q/5
—32.64 —51.29 SO-3¢
—36.12 —57.77 MP2-R12 (HF),-T/Q
V, —226.35 —310.39 —318.95 CCSD(T) (HF);-T/Q
—105.28 —263.72 —313.62 HF3BG*
V3 —58.31 CCSD(T) (HF);-T/Q
—25.92 HF3BG?
V, —35.05 —75.08 MP2-R12 (HF),-T/Q
Vs —0.54 MP2-R12 (HF),-T/Q

“ The notation (HF),-‘basis’ indicates that the particular m-body term is obtained from a series of calculations
of different fragments that all use the composite basis set of the whole (HF), oligomer, centred as its coordinates.

b Generalized Péschl-Teller oscillator [5, 40].
¢ Semi-empirical pair potential [5, 40].
4 Three-body term fitted to MP2/DZP results [16].

the fivefold occurrence of the same three-body inter-
action in V' of (HF)s).

To gain insight into the basis set effects, second-order
correlation effects, and higher-order correlation effects
on the three-, four-, and five-body terms, we have com-
puted these many-body terms using the DZP and T/Q
basis sets in the framework of the SCF, MP2, and
CCSD(T) methods. The results of these calculations
are collected in table 5, and can be used to assess the
accuracy or reliability of the three- and higher-body
terms in table 4.

For the three-body term of the tetramer and pen-
tamer, we have employed either the basis set of the
trimer fragment of interest for all the calculations of
this particular fragment and subfragments (denoted as
(HF);-DZP or -T/Q), or the basis set of the whole (HF),,
oligomer (denoted as (HF),-DZP or -T/Q). For the T/Q
basis set, the differences between the results obtained
with the (HF);- and (HF),-type basis sets are very
small, with a maximum for the saddle points of ca.
0.4kTmol™! at the MP2 level, but for the DZP basis
set, we observe relatively large differences, up to
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Table 5. Comparison of three-, four-, and five-body contributions obtained from different methods and basis sets. The term V4
denotes the three-body contribution from a structure where one monomer unit is not neighbouring the other two units. All

energies are given in kJmol ™!,

n=3 n=4 n=4 n=>5 n.=:5 n=>5 n=>5
Method Basis® V3 V3 V4 V3 V; V4 V5
(a) Minimum energy structures
SCF (HF);-DZP —1348 —37.39 —52.05 —-947
MP2 (HF);-DZP —14.49 —39.04 —53.77 —9.52
CCSD(T) (HF);-DZP —14.44 -38.98 —53.85 —9.46
SCF (HF),-DZP —13.48 —38.83 —2.72 —52.60 —10.30 —6.56 —0.40
MP2 (HF),-DZP —14.49 —40.30 —3.22 —54.67 —10.76 —-7.71 —0.54
CCSD(T) (HF),-DZP —14.44 —40.27 —3.32 —54.78 —10.68 —7.87 -0.57
SCF (HF);-T/Q —14.43 —38.79 —52.09 —10.60
MP2 (HF);-T/Q —14.86 —39.18 —51.90 —10.66
CCSD(T) (HF);-T/Q —14.66 —38.98 —52.02 —10.53
SCF (HF),-T/Q —14.43 —38.83 —3.16 —52.12 —10.63 —7.44 —0.51
MP2 (HF),-T/Q —14.86 —39.24 —3.63 —51.96 —10.73 —8.50 —0.66
MP2-R12 HF),-T/Q —14.83 —39.17 —3.60 —51.89 —10.73 —8.43 —0.66
(b) Concerted hydrogen exchange saddle points
SCF (HF);-DZP —239.05 —324.86 —343.64 —57.79
MP2 (HF);-DZP —237.18 —322.06 —335.87 —5591
CCSD(T) (HF);-DZP —244.72 —330.15 —344.10 —56.02
SCF (HF),-DZP —239.05 —330.74 —32.66 —347.73 —62.14 —68.31 0.11
MP2 (HF),-DZP —237.18 —331.08 —34.68 —342.75 —62.45 —77.61 1.19
CCSD(T) (HF),-DZP —244.72 —339.43 —36.26 —351.16 —62.45 —81.64 1.60
SCF (HF);-T/Q —230.08 —315.66 —329.05 —60.18
MP2 (HF);-T/Q —219.80 —302.98 —310.82 —58.36
CCSD(T) (HF);-T/Q —226.35 —310.39 —318.95 —58.31
SCF (HF),-T/Q —~230.08 —315.82 —33.42 —329.21 —60.29 —68.37 —0.93
MP2 (HF),-T/Q —219.80 —303.38 —35.37 —311.24 —58.65 —75.93 —0.51
MP2-R12 (HF),-T/Q —218.69 —302.35 —35.05 —310.56 —58.63 —175.08 —0.54

4 The notation (HF);-‘basis’ indicates that the three-body term is obtained from calculations using the basis set of the correspond-

ing (HF), fragment that is part of the (HF), oligomer.

1.3kJmol ™! for the minimum energy structures and up
to ~10kJ mol~! for the saddle points.

A comparison of the DZP and T/Q results reveals that
the four- and five-body terms are not very sensitive to
the quality of the basis set, neither for the minimum
energy structures, nor for the saddle points. The effects
are of the order of 1-2kJ mol~!. This is in sharp con-
trast to the three-body term, in particular for the saddle
point structures. For these structures, for example, the
CCSD(T) values obtained from the two different basis
sets differ by as much as 20-30kJmol ™.

The difference between the MP2 and CCSD(T) values
is very small for the many-body terms of the minimum
energy structures. For the saddle point structures, how-
ever, the magnitude of the V; terms increases by as
much as 7-8kJmol~! from MP2 to CCSD(T). Interest-
ingly, exactly the same increase due to higher-order
correlation effects is observed for both basis sets, indi-
cating that this effect is not very basis set dependent. A
moderate increase in magnitude with higher order

correlation contributions is also found for the Vg,
terms.

Based on the above observations, we conclude the
following: first, the three-body terms of the minimum
energy structures computed at the CCSD(T)/(HF);-T/Q
level are accurate to within 1kJmol™', or perhaps
2kJmol ~! for the pentamer. Second, noting the small
difference between the MP2 and CCSD(T) results for
the four- and five-body terms of the minimum energy
structures at the DZP level, we conclude that the MP2-
R12/(HF),-T/Q values are our most accurate four- and
five-body terms, probably to within 1kJmol~'. Third,
the accuracy of the three-body terms of the saddle point
structures remains quite uncertain. It appears that these
terms, which are up to an order of magnitude larger
than the pair attractions, are the most critical contribu-
tions. Owing to their uncertainty, we will not be able to
reduce the error bars on our previous best estimates of
the barrier to concerted hydrogen exchange significantly
below 10k mol~" [4].



Concerted hydrogen exchange of (HF), oligomers

Table 6. Electronic dissociation energies and barriers to concerted hydrogen exchange
of cyclic (HF), oligomers (n = 2,...,5). All energies in kJmol~!. The dissociation
energies in the upper part of the table refer to fragmentation into monomers.
Stepwise dissociation energies can be obtained as the difference between adjacent
D, values and are explained and shown in figure 2. The values in brackets [...] do
not include the four- and five-body terms and correspond to relaxed geometries in
the respective potential.

(a) Electronic dissociation energy

SQSBDEHF3BG [3, 16, 48] 18.7 61.3 [113.6]  [152.9]
GPT|SC-2.9|HF3BG [1] 19.1 64.3 [111.6]  [147.0]
GPT|SO-3|HF3BG 19.1 64.5 [112.0]  [147.4]
B3LYP/6-311 + +G(3df, 3pd) [4] 20.2 66.3 125.6 173.5
MP2/6-311 + +G(3df, 3pd) [4] 20.7 64.7 1217 168.1
MP2/[8s6p2d/6s3p] [16] 60.9
MP2/aug-cc-pV(T/Q)Z* 18.8 61.4 114.6 158.1
17.8¢ 58.3% 108.6” 149.0°
CCSD(T)/aug-cc-pV(T/Q)Z* 19.2 62.8
18.2 59.8°
CPF/[3s2p1d/3slp] [23] 20.8 64.6 120.8
CCSD(T)/[4s3p2d1£/3s2p1d] [24] 60.2
‘QCISD(T)/6-3114+G(3df, 2p)’ [49] 20.5 65.8
CCSD(T)/TZ2P(f, d) [50] 19.8
CCSD(T)/TZ2P(f, d) [27] 20.7 67.9
CCSD(T)/aug-cc-pVQZ [51] 19.7b
18.8
CCSD(T)/aug-cc-pVTZ [52] 66.2
60.1°
Extrapolated CCSD(T) limit [51] 19.2
D, (ab initio) ° present work® 19.0 62.8 113.5 156.0
D, (semi-empirical),” present work® 19.1 64.2 117.6 159.8
Previous best estimate [1, 4, 5] 19.12) 63(3) 117(4) 161(5)
New estimate, present work 19.1(2) 64(2) 116(3) 158(4)
(b) Barrier to concerted hydrogen exchange
B3LYP/6-311 + +G(3df, 3pd) [4] 157.8 69.6 436 40.8
MP2/6-311 + +G(3df, 3pd) [19] 167.4 78.2 53.1 52.7
MP2/aug-cc-pV(T/Q)Z* 169.1 77.3 51.6 52.9
173.7° 85.2 61.4° 64.3°
CCSD(T)/aug-cc-pV(T/Q)Z* 176.8 84.6
180.9° 91.9°
CPF/[3s2p1d/3slp] [23] 185 86.6 61.9
CCSD(T)/[4s3p2d1f/3s2p1d] [24] 75.3
CCSD(T)/aug-cc-pVTZ [52] 81.9
‘QCISD(T)/6-311+G(3df, 2p)’ [49] 186.4 95.4
CCSD(T)/6-311 + G** [4] 102.0 75.8
AE (ab initio),® present work® 178.0 87.4 63.7 70.1
Previous best estimate [1, 4, 5] 170(10) 80(10) 55(10) 50(10)
New estimate, present work 175(10) 85(10) 60(10) 65(10)

? With respect to the fixed geometries of table 1.
b Corrected for the BSSE by the counterpoise procedure.

“ D, (ab initio) = — (V15 [CCSD(T)-R12/(HF), ,-Q/5] + V3 3, [CCSD(T)/(HF);-T/Q]
+ V4 s[MP2-R12/(HF),-T/Q]).
ip, (semi-empirical) = —(V|[GPT] 4 V;,/[SO-3] + V3 3:[CCSD(T)/(HF);-T/Q]
+V 4 s[MP2-R12/(HF),-T/Q)).
*AE = AV, »[CCSD(T)-R12/(HF), ,-Q/5] + AV 3 3/ [CCSD(T)/(HF);-T/Q]
+AV, s[MP2-R12/(HF),-T/Q].

113
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4. Discussion
4.1. Dissociation energies

Our final results for the potential energies of the rele-
vant high energy stationary points with respect to global
minima are displayed in table 6. The electronic dissocia-
tion energies (D) computed in the present study are
compared with other ab initio calculations and with
our previous best estimates of D, = 19.1(2)kJmol™
for the dimer, D, = 63(3) kJmol~! for the trimer, D, =
117(4)kImol™" for the tetramer, and D, = 161(5)
kJmol™! for the pentamer [1, 4].

Concerning the HF dimer, there is little doubt that the
value obtained from the analytical GPT|SO-3 potential
is very close (i.e. within 0.2kJ mol™!) to the true elec-
tronic dissociation energy. Our GPT|SO-3 value is con-
sistent with the CCSD(T) limit of 19.2kJ mol™!
extrapolated by Peterson and Dunning [51] and with
the corresponding CCSD(T)-R12/(HF),-Q/S value of
19.0kJ mol~'. With respect to the ab initio calculations
we note that it is crucial to employ the counterpoise
procedure to avoid spurious BSSE effects. The
uncorrected ab initio calculations in table 6 yield a
much too large D, ranging from 19.7 to 20.8kJ mol™".
Considering the BSSE, it is worth noting that the two
almost identical CCSD(T)/TZ2P(f,d) calculations of [50]
and [27] differ by as much as 0.9kJmol~! for D,. This
difference is mainly due to the calculations of [S0] having
been performed in a basis set that included all Cartesian
components of the basis functions (6d, 10f), whereas the
calculations of [27] employed only the spherical har-
monic components (5d, 7f). It appears that the BSSE
due to the spherical harmonic basis set (=2.5kJ mol™!)
is roughly 1kJmol™' larger than for the basis set with
Cartesian components (=1.5kJ mol™}). In view of the
BSSE, we also note that the counterpoise correction
for the aug-cc-pVQZ basis set amounts to 1.0kJ mo] ™!
[51]. Thus, the corrected CCSD(T)/aug-cc-pVQZ result
is D, = 18.8kJ mol ™", about 0.3 kJmol ™' below the esti-
mated limit [51]. These findings confirm that BSSE and
other basis set incompleteness effects remains a chal-
lenge for traditional correlated treatments of hydrogen
bonded systems [53].

For the HF trimer, we have computed an electronic
dissociation energy of D, (ab initio) = 62.8kJmol™". As
the magnitude of the computed two-body interaction is
about 1.5kJ mol~! smaller than the value obtained from
the SO-3 potential (cf. table 4, part (a)), the computed
value might be too low by a similar amount. We may
safely assume that the ab initio computed dissociation
energy represents a lower bound to the true limit, not
only for the trimer, but also for the other oligomers,
including the dimer. Thus, assuming that the
CCSD(T)-R12/(HF),-Q/5 level of theory still under-
estimates the magnitude of the pair interaction by a

few per cent, we obtain a very realistic value of
D.(semi-empirical)=64.2kImol~' by replacing the
CCSD(T)-R12/(HF),-Q/5 one- and two-body terms by
the GPT|SO-3 potential. In any case, both results are
well within the uncertainty of the previous best estimate
of D, =63 t3KkJ mol~!. From the present calculations,
we infer a new estimate of D, = 64 & 2kJ mol~!, which
is only a small change with respect to our previous esti-
mate. This value is also in good agreement with an
unpublished geometry minimization at CCSD(T)/aug-
cc-pVTZ level [52], which yields 60.1kJ mol™! with
and 66.2kJmol~' without counterpoise correction.
Based partly on a fortuitous cancellation of the BSSE
and (other) basis set truncation errors, the results of the
other ab initio calculations displayed in table 6 are close
to our new estimate. Only the CCSD(T) value of 60.2
kJmol™! obtained by Kormonicki et al. [24] is surpris-
ingly low. These authors employed a [4s3p2d1f/3s2p1d]
basis set of atomic natural orbitals (ANO). If we were to
correct their value for the BSSE by means of the
counterpoise correction, the dissociation energy would
be reduced further, notably by more than 6kJmol™!
[24]. Thus, the corresponding counterpoise corrected
CCSD(T)/[4s3p2d1£f/3s2pld] value would be in error
by about 10kJ mol~! or roughly 20%. As already antici-
pated by Komornicki ez al., this large error is presum-
ably due to the lack of an appropriate augmentation of
the ANO basis set.

Our previous estimates of the dissociation energies of
the HF tetramer (117(4)kJ mol™") and pentamer (161(5)
kJmol~!) are well confirmed by the present caculations
(113.5-117.6 and 156.0-159.9 kImol™!, respectively),
and there is little reason to revise these estimates. Never-
theless, we infer new estimates of 116(3) for the tetramer
and 158(4)kJmol™! for the pentamer. Again, previous
ab initio calculations [4, 23] yielded too large dissocia-
tion energies. The contribution of four- and five-body
terms to the binding energy of (HF); and (HF)s is
notable, but smaller than (and opposed to) the contribu-
tion from monomer non-rigidity (V).

If we take a best estimate of the anharmonic zero
point energy difference between (HF), and 4 HF of
about 29(2)kJ mol~! [16] and combine this with the
experimental bounds for dissociation of a single HF
from (HF)4 (ADy =4243k] mol™!) [18], for dissocia-
tion of a single HF from (HF); (ADy=29-32
kImol™') [54], and for dissociation of (HF),
(Do = 12.70(2) kT mol™') [55], all in the sense of equa-
tion (1), we obtain D.((HF),) ~ 111 to 119kJmol ™,
fully consistent with the present theoretical result. The
new results support our previous conjecture [56] that
(HF), should be stable with respect to dissociation
upon HF stretching fundamental excitation, rendering



Concerted hydrogen exchange of (HF), oligomers 115

a reinterpretation [56, 57] of recent predissociation-scat-
tering experiments [58] quite likely.

4.2. Barriers to concerted hydrogen exchange

The computation of the barriers has proven to be
significantly more difficult than the calculation of the
dissociation energies. In fact, it is not possible to identify
individual monomer fragments in the saddle point struc-
tures, and many-body decompositions and counterpoise
corrections are not well defined. In any case, however, it
is guaranteed that the procedure adopted in the present
work will lead to the correct answers when the ab initio
methods and basis sets are subsequently improved.
Moreover, we are convinced that the calculations of
the present work provide results that are as close to
the true barriers as is achievable today from a computa-
tional point of view.

For the dimer and trimer, the computed barriers
(178.0 and 87.4kJ mol~!, respectively) are 7-8kJ mol ™!
higher than our previous estimates. This is a satisfactory
agreement in view of the large error bars of 10kJ mol~!,
which result from the very slow and counterpropagating
convergence of this quantity with basis size and elec-
tronic structure level [4]. Thus, our best estimates for
the barrier are coincidentally close to earlier DZP
MP2 predictions [4, 16], while improvement of the
basis set or the correlation treatment alone would lead
to larger discrepancies. For the trimer, an unpublished
full CCSD(T)/aug-cc-pVTZ saddle point optimization
[52] confirms our structure assumption and yields a
BSSE uncorrected barrier of 81.9kJmol™" (table 6).

More pronounced changes in the same direction are
obtained for the tetramer and in particular for the pen-
tamer. We find considerably larger barriers for these
oligomers than anticipated in our earlier investigations.
Note that there is a sizeable correlation contribution
even for the four- and five-body terms. This contribu-
tion is not fully captured at MP2 level, but we can esti-
mate the higher order effects from the DZP resuits.
Thus, in the present study, we find that the tetramer
may have a slightly lower barrier to concerted hydrogen
exchange than the pentamer. There are only a few ab
initio calculations available for comparison. Liedl et al.
[19] and Maerker et al. [4] have performed MP2 and
density functional calculations using a 6-3114++ G(3df,
3pd) basis set, but the barriers computed with this basis
set suffer from noticeable basis set limitations, as
expected [4]. To illustrate the order of magnitude of
the basis set effects, we include in table 6 our MP2
results obtained with the T/Q basis set, which is roughly
comparable with the 6-311++G(3df, 3pd) basis set, even
if it is slightly larger. For the dissociation energies, we
observe counterpoise corrections of 6.0kJmol™" for the
tetramer and 9.1 kJ mol~! for the pentamer. Due to the
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Figure 2. Dissociation energy (D.(n), stars, full line) for frag-
mentation of (HF), into n HF molecules, hydrogen bond
dissociation energy of (HF), into (HF),_; and HF
(AD(n) = Do(n) — D.(n— 1), stars, dashed line), energy
barrier (AE(n), circles, full line) for the concerted hydro-
gen exchange between binding sites (see equation (4)), and
energy barrier (AR(n), triangles, dashed line) for hydro-
gen bond switching (see equation (2)), all as a function of
cluster size n. Beyond n = 3, the simultaneous hydrogen
exchange in the cluster becomes more facile than complete
cluster dissociation into monomers, but dissociation of a
single HF from the cluster requires less or comparable
energy. Asymptotically, for large ring clusters, both
D.(n) and AE(n) should become proportional to n,
whereas AD,(n) will approach a finite, constant value.

much shorter FF distances in the saddle point struc-
tures, we expect a larger BSSE for these structures
than for the minimum energy structures. Indeed, the
corresponding counterpoise corrections for the saddle
points—assuming that they can be computed in the
usual manner—are 15.8 and 20.5kJmol ™!, respectively.
Thus, the barriers are increased by as much as 9.8 and
11.4kYmol™" by the counterpoise correction. At this
point, of course, we do not consider changes in the
geometries due to the BSSE, but without doubt, a cor-
rection of ca. 10k mol~! is a reasonable estimate for the
order of magnitude of the 6-3114++4+G(3df, 3pd)-related
BSSE at the MP2 level. Figures 2 and 3 provide a sum-
mary of various energies computed here, in a suitable
graphical representation.

Despite the current uncertainty of the electronic bar-
riers, an analysis of the unimolecular isomerization pro-
cess in terms of simple transition state theory is useful
[4]. In this framework, the thermal rate constant k3 (T)
corresponding to the process of equation (3) is
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Figure 3. As figure 2, but now including zero point energy
contributions to the dissociation energy into monomers
(D), to the dissociation energy of a single monomer
(ADy), to the barrier for hydrogen transfer (AE,, esti-
mated harmonically) and to the barrier for hydrogen
bond switching (AR, estimated harmonicaily, see, how-
ever [59], where the harmonic approximation for this
quantity was shown to be poor).

given by

i
(1) =T 8t exp (AEG/RT).  (5)
Gint

The ratio of internal partition functions g, = Gvindrot/C
between the D,, transition state (f, symmetry number
ot = 2n) and the C,;, ground state (without superscript,
o = n) can be estimated in the harmonic approximation
from ab initio calculations. For the experimentally rele-
vant temperature range of 250-330K, qu /Gine 1s found
to be 0.04 & 0.02 for the tetramer and 0.02 &+ 0.01 for the
pentamer, based on MP2 DZP [16], B3LYP and
BHHLYP calculations [4]. A more significant uncer-
tainty is inherent in the zero-point energy corrected
transition state barriers, which we estimate to be
AE; =40+ 10KkJ mol~! for both the tetramer and the
pentamer of HF (figure 3). These estimates are based on
the best available electronic barriers derived in this work
together with harmonic zero-point energy contributions
at MP2 DZP [16] and density functional levels [4], which
agree within +10%.

Very little is known experimentally about these con-
certed hydrogen exchange barriers in cyclic HF clusters.
From the absence of a spin—spin coupling doublet in the
vapour NMR spectra, Mackor et al. [21] concluded
within the framework of simple transition state theory
(neglecting differences in the partition functions for the
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Figure 4. Decadic logarithm of the unimolecular hydrogen
transfer rate k;;y in HF tetramers and pentamers from
transition state theory without tunnelling (thick lines,
the hatched region marks the theoretical uncertainty,
which is dominated by the error bar for the barriers) as
a function of reciprocal temperature 1/T. For compari-
son, an experimental lower bound obtained in the gas
phase at 299K (independent of pressure) [21] is shown
(triangle, the lower bound character is marked with
dashes). Tunnelling will increase the rate by allowing
transmission coefficients -y, > 0 on each channel for ener-
gies E < E; (and < channel maxima) but will also lead to
a contribution decreasing the rate because of v, < 1 for
E > E; (and > channel maxima), say, in the framework
of the adiabatic channel model [61]. Recent calculations
by Loerting et al. [25(b)] seem to indicate tunnelling cor-
rections of about two orders of magnitude.

D,;, and C,, structures) that AE, < 48kJ mol~'. Given
the small ratio of D, to C,;, partition functions for
(HF),4 and (HF)s (vide supra), this upper bound is prob-
ably overestimated [4], although quantum tunnelling
[25] may in part compensate for the partition function
contribution even at room temperature [60] and anhar-
monic contributions represent a sizeable additional
uncertainty [59]. Figure 4 compares experimental [21]
and theoretical (equation (5)) results for the thermal
rate constant k) (T). It is seen that the tetramer and
the pentamer exhibit quite comparable exchange rates,
which are close to the experimental lower bound of the
gas phase rate at 299 K [21], namely 5 x 10*s7!. Both
larger [4] and smaller clusters will contribute much less
to the exchange rate (see figure 3). Given the progress in
NMR spectroscopy over the last three decades [62, 63],
our results suggest that a reinvestigation of the vapour
NMR spectra at lower temperatures (and pressures)
might permit a detailed characterization of the spin
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coupling doublet coalescence. This would provide
important experimental information on this proto-
typical hydrogen transfer process and on the subsequent
cluster dissociation kinetics. As shown in figures 2 and 3,
the latter two processes have similar activation energies
for (HF), (with n =4 and 5). Hydrogen exchange in
collisional complexes between HF  oligomers
(2 < n < 5) and HF molecules is thus already feasibie
at low collisional energies without quantum tunnelling
contributions [25]. At very low vapour pressures, the
collision process itself may become rate limiting, thus
allowing for a study of the cluster association/dissocia-
tion kinetics. This might be feasible with modern high-
field NMR spectrometers but is also within reach of
current IR spectroscopic methods.

Two restrictions apply to our prediction of a micro-
second or only slightly faster timescale for the loss of
monomer integrity in clustered HF vapour at moder-
ately low temperatures. (a) There could be sizeable
quantum tunnelling [64] corrections to the transition
state rate. A recent investigation [25] does not seem to
support rate enhancements over many orders of magni-
tude for the temperatures and cluster sizes considered
here, although large-curvature corrections seem to con-
tribute about two orders of magnitude [25 (b)]. The cur-
rent uncertainty in the exchange barrier height
(£10kYmol™") may still dominate the overall uncer-
tainty in the exchange rate, but in contrast to tunnelling
contributions, it can increase or decrease the rate.
Clearly, tunnelling is not efficient enough to lead to
easily detectable splittings in the IR spectra [57], but a
nanosecond exchange timescale would not be excluded
by current experimental evidence. (b) There might be
other tunnelling pathways with even lower barriers pres-
ent in larger clusters, e.g. via ionic intermediates [49].
Strictly speaking, the existence of such competitive path-
ways cannot be rigorously excluded, although the enor-
mous three-body enhancement (see table 4, part (b)) of
the concerted process renders competitive non-concerted
mechanisms rather unlikely. The fact that NMR spin-
doublet coalescence can be suppressed in carefully neu-
tralized liquid HF [21] would also tend to exclude such
pathways.

In this context, one should note that hydrogen bond
switching processes such as the well-characterized
donor-acceptor hydrogen bond exchange (equation
(2)) in the dimer [2, 59, 65] fully conserve monomer
integrity. In figures 2 and 3, the barriers for these pro-
cesses are given for the dimer and for the trimer [1], as
obtained for the SO-3 potential energy hypersurface in
combination with the HF3BG three-body potential. The
barriers (AR) lie below the lowest dissociation thresholds
(AD) for (HF), with n = 2 and 3 but may in principle be
larger for n > 4. However, one should note that sequen-

tial single monomer dissociation and association path-
ways for hydrogen bond switching are almost barrierless
on the association side [16,18], in particular including
zero-point energy. Therefore, a likely hydrogen bond
switching scenario for larger ring clusters is the forma-
tion of the next smaller ring with a monomer loosely
attached to it [18, 56, 66]. These attached monomers
have a high peripheral mobility and can insert into the
ring at another position, after which the next monomer
can go to the periphery, etc. Such a sequential
mechanism for hydrogen bond switching is unlikely to
have a barrier AR significantly above the lowest disso-
ciation threshold AD. In contrast, concerted hydrogen
bond rearrangements tend to be become disfavoured for
larger rings due to the strengthening of the hydrogen
bond. Finally, there is obviously more than one result
of concerted rearrangements for n > 3, giving rise to
different saddle points. These will be studied in more
detail elsewhere together with several dozens of local
cluster minima which we have characterized on the ana-
lytical potentials for n = 4-8 [16].

5. Conclusion

The potential hypersurfaces for hydrogen bonded sys-
tems govern some of the most important chemical pro-
cesses, from inorganic vapour condensation and
evaporation phenomena to biochemical DNA replica-
tion reactions and dynamics of enzymes. The coopera-
tive nature of hydrogen bonding presents a substantial
challenge to high level quantum chemistry approaches
due to their unfavourable scaling with the number of
atoms involved. Quantitative insights have been
obtained here for the simple and well studied prototype
system (HF), through judicious decomposition into
separately calculated many-body contributions. An
important result is the rapid decline of n-body contribu-
tions with increasing n after the three-body term,
whereas two- and three-body terms are both essential
for a description of the hydrogen bond in larger HF
clusters. The detailed convergence pattern naturally
depends on the investigated quantities, the geometries
and the required accuracy. For a cluster of size n > 3,
there will usually be special conformations for which
even the highest (i.e. n-body) term is important, but in
general these conformations will not be relevant for the
hydrogen bond dynamics. Truncation after the three-
body term is often found to be satisfactory for the
hydrogen bond geometry and energetics, while hydrogen
transfer barriers and some vibrational frequencies
demand four-body contributions as well.

From (HF), to (HF)s, the electronic binding energy
per hydrogen bond increases by 65%, the contribution
of the pair potential to the hydrogen bond falls from 100
to about 60%, the three-body contribution rises from 0
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to 40% and the concerted hydrogen exchange barrier
per hydrogen drops to about 15% of its value in
(HF),. Inclusion of zero-point energy further enhances
some of the changes. The failure of density functional
methods to describe the hydrogen exchange process
turns out to be even more pronounced than expected.
Further refinements on the cluster binding energies
should include an explicit geometry optimization. The
present results support previous IR spectroscopic ana-
lyses [56] and suggest that state of the art NMR gas
phase studies should be able to quantitatively analyse
the hydrogen exchange dynamics, whereas other types
of kinetics studies would also be useful to investigate
exchange processes in various mixed isotopomers
[(HF),(DF),), etc.
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