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A theory of unimolecular reactions induced by coherent, monochromatic infrared radiation (URIMIR) in
the absence of collisions is presented. It is shown that the set of first order linear differential equations for
the amplitudes of molecular states (Schrodinger equation) can be reduced, under specified conditions, to a
much smaller set of first order linear differential equations for the coarse grained populations of levels for
polyatomic molecules (master equation). Four limiting situations are identified in which such linear rate
equations provide a reasonable approximation. Rate coefficients are obtained as a function of spectroscopic
parameters (energy levels and transition moments). Solutions for the master equations are given as a
function of time and at steady-state. Simple limiting cases (Strong Field Limit, Weak Field Limit,
Reaction Threshold Bottleneck, etc.) are identified and very simple rate expressions are obtained for these
cases. A complete statistical mechanical theory of URIMIR is formulated and the computational
approaches for the quantitative treatment for any molecule are summarized. Predictions are made
concerning the dependence of the unimolecular rate constant and product (state) distributions upon
radiation intensity. In particular at high intensities a less than proportional increase of the rate constant
with intensity is predicted. The possibility of specific pumping of reaction paths with high energy
thresholds is discarded. Comparison with thermal unimolecular reactions shows that collisionless URIMIR
are quite different in all respects. Fundamentally these differences are traced to the fact that the
underlying molecular distribution functions are different. They are Boltzmann distributions for thermal
reactions and ‘“microcanonical” [without exp(— E/kT)] in URIMIR. Although real distribution functions
are still different in general, the underlying distribution functions often dominate the dynamical behavior.

I. INTRODUCTION above the threshold (assuming exponential decay). The
populations p, of molecular states move according to the

In the early days of the theory of unimolecular reac- rate equation (in matrix notation),

tions it was a common view that they were induced by
the interaction of igsolated molecules with the radiation
field.! This “radiation theory of chemical action” had
been developed because of the supposedly experimentally
established fact that unimolecular reactions were inde-
pendent of total gas pressure. As F. A, Lindemann
pointed out in a very brief discussion remark, ! the ap-~
parent independence of the reaction rate upon the total
gas pressure can be explained by assuming a two-step J

p=Kp . (1.4)

(The point denotes derivation with respect to time.)
The off-diagonal matrix elements are given by

mechanism: r2(1 )+ r2(2)
A+M=A*+M (1.1) — /
A* & products (1.2) - -

Threshold 2
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Threshold 1

with a finite intrinsic lifetime for the excited molecules
A*. Lindemann predicted a dependence of the unimo-
lecular rate constant, T

s =(-dIn([A] +[A*])/d8) , (1.3)

upon the total gas pressure (or [M]). This prediction
was later verified experimentally. mn

(1)

—1

Figure 1 gives a schematic view of our present under-
standing of thermal unimolecular reactions of polyatomic 1,
molecules, which is a somewhat more complicated ver- 9
sion of the Lindemann mechanism. The multistep exci-
tation mechanism includes transitions between all mo-
lecular states, which are stable below the dissociation
threshold and can dissociate with rate constants k&
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FIG. 1. A common scheme for the multistep excitation in ther-
mal unimolecular reactions and URIMIR. R, and 7; symbolize
rate processes of an unspecified nature,
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o (%2)1/2 [(%)c,ﬁ(g) exp(—;—?—)(z—?—)[M] , (L5)

if the translational motions are thermalized in an inert
heat bath., The oy are the inelastic cross sections in
collisions of reactant and heat bath molecules. The
diagonal matrix elements are

-K”=j>;K“+k, . (1.6)

Equation (4) is a valid approximation neglecting radia-

tion, The solutions are

p(t) = Y(¢, t)plty) , (1.7)
with

Y(2, to)=exp[K(s~ )] . (1.8)

The parts of a theoretical treatment of thermal unimo-
lecular reactions can be formulated as

(i) Determination of the properties (energies ¢; and
lifetimes) of molecular states ¢, This concerns the
solution of the Schrodinger equation for isolated mole-
cules (The “diagonal” problem in terms of an appro-
priate molecular Hamiltonian).

(i1) Determination of collisional cross sections oy, or
rates K, (The “off~-diagonal” coupling or energy trans-
fer problem).

{(iii) The solution of the kinetic equation of motion,
which is a master equation (1. 4) under the conditions
specified, Difficulties arise because the oy, and the ¢;
and &, are difficult to obtain and because of the huge size
of the matrices for polyatomic systems. The theory of
thermal unimolecular reactions®® has been concerned
with various approximation schemes for the three parts
of the problem and has, on the whole (and on a variety
of levels of sophistication), been quite successful in
qualitatively and quantitatively explaining and predicting
experiments (i.e., B, as a function of specified experi-
mental parameters). The reason for the possibility of
neglecting thermal radiation in the process is the rela-
tive weakness of the interaction compared to collisional
activation at normally available pressures. On the other
hand true photochemical reactions have always (see,
e.g., Ref. 1) been known too, using radiation which is
not in thermal equilibrium with the reactive molecules.
These reactions follow a mechanism which is quite dif-
ferent from the one shown in Fig. 1. Usually we have a
one step excitation above the reaction threshold, involv-
ing excited electronic states, and subsequent reactive
processes (eventually competing with collisions), *

In recent years photochemical reactions induced by
strong ir-laser radiation have been observed, which fol-
low a mechanism quite different from conventional pho-
i:ochemistry.s"'13 Indeed, the absorption of many pho-
tons is needed for reaction to occur and the excitation
process follows a multistep mechanism as shown in Fig,
1. We leave the question of the natfure of the rate pro-
cesses R_, open, at present, but we anticipate some
similarities to thermal reactions, Although in many
experiments collisions play a considerable but often ill
defined role, it has been proven that unimolecular reac-
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tions can be induced by ir-lasers under molecular beam
conditions where eollisions do not interfere seriously
with the radiative process.!® It is this collisionless pro-
cess which is the main concern of the present paper.
The process has also been shown to be isotopically se-
lective in certain cases.™®!? In the absence of colli-
sions the latter fact would appear to be rather less sur-
prising, in view of the possibility of selectively pumping
rovibrational transitions for specific isotopomeres with
a highly monochromatic radiation.

Due to the recent discovery of unimolecular reactions
induced by monochromatic infrared radiation (we shall
use the acronym URIMIR hereafter), little theoretical
work is available compared to thermal reactions. We
should mention in particular the pioneer work by Bloem-
bergen, Cantrell, and Larsen, 2*-22 Mukamel and Jort-
ner, ** and Stone, Goodman, and Dows.?* These authors
have been able to explain the possibility of collisionless
dissociation, the gualitative dependence upon laser
power density and the isotopic selectivity., However,
one may find (with apologies to these authors) that none
of the proposed treatments is sufficiently general to pro-
vide a framework for a complete theory of URIMIR,
They do not provide a completely realistic, quantitative
description of the excitation process at high levels of
molecular excitation, nor do they describe the mono-
molecular reaction above threshold in a quantitative
manner (as would be possible using modern unimolecu-
lar rate theory®). We shall see below, however, that
these treatments are under certain limiting conditions
perfectly justified approximations for the computation
of the overall dissociation rate and isotopic selectivity
{provided that the spectroscopic part of the treatment is
done properly®®). Recently, it has also been proposed
to use a simple rate equation of the type (1. 4) for
URIMIR, with phenomenological rate constants (taken to
be essentially free parameters) for photoexcitation, and
RRKM?>?%® rate constants for dissociation. #+%6 Although
it is not at all self-evident that the use of a master equa-
tion (1. 4) should be justified for a coherent laser excita-
tion, qualitatively very satisfactory agreement of cal-
culated and measured product translational energy dis-
tributions in molecular beam experiments was ob-
tained.'®%" We shall see that, indeed, the use of a mas-
ter equation is justified in a limiting situation which is
somewhat complementary to the situations covered by
the treatments in Refs, 20-22, To do this, we need a
more general theory of URIMIR, which is the subject of
the present paper.

The logical development follows the one for thermal
unimolecular reactions.

(i) The “diagonal” part of the problem is the game as
for thermal unimolecular reactions and for (low power,
high resolution) molecular spectroscopy. We do not
start from some “convenient zero order Hamiltonian, ”
but rather from the full molecular Hamiltonian (with
certain reservations to be made below).

(ii) The molecular states are coupled by the laser
field through the electric dipole interaction (neglecting
other terms). This leads to equations of motion of the
form
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ib=H(tb , (1.9)

where H(#) may usually be supposed to be complex sym-
metric and approximately periodic in time

H(t+7)=H(?) . (1.10)

The amplitudes in Eq. (1.9) are connected to the popu-
lations in Eq. (1.4) by

byb¥ =1, . (1.11)

(iii) Solutions to Eq. (1.9) are considered in Sec. II.
They are of the form

b(t) =U(z, t,)b(2y) . (1.12)

U is more difficult to obtain than Y (Eq. 1.8). We know,
however, that Eq. (1.9) is reducible in the sense of Lia-
punoff.?® The solution can be formally obtained with the
aid of a Liapunoff matrix, satisfying

L(z+7)=L(f) , (1.13)

and
U=LX. (1.14)

X satisfies a differential equation with constant coeffi~
cients A

X =AX, (1.15)
therefore (£,=0)
U=Lexp(Ad) . (1.186)

While this establishes the foym of the solution, it does
not provide an obvious practical method. Approxima-
tions will be discussed. We note that the treatment of
Refs. 20-22 (and other related treatments) consisted
essentially of a rotating wave approximation solution of
Eq. (1,9) with only a relatively small number of molec-
ular states being retained explicitly in highly simplified
molecular models. A complete solution along these
lines including all molecular states is prevented by the
size of the problem (easily of the order 10!’ and more
for medium sized polyatomic molecules), Therefore

we shall, in Sec, III pay particular attention to statis-
tical simplifications arising when many molecular states
are coupled. It will be shown in which situations master
equations of the form (1. 4) and of low order can be de-
rived to be reasonable approximations to Eq. (1.9).
Four typical cases will be distinguished and the matrix
elements for the corresponding master equations will

be connected to molecular (spectroscopic) properties.
Model calculations will illustrate the results.

In Sec. IV we shall investigate some dynamical limit-
ing cases which lend themselves to simple approxima-
tions. We shall introduce some new concepts in URIMIR
(strong field limit, weak field limit, early bottleneck,
reaction threshold bottleneck, etc.). Some of these
have a correspondence to similar concepts in thermal
unimolecular reactions (high pressure limit, low pres-
sure limit, strong collision asgsumption, etc.) which we
shall discuss. However, some differences are also
noted. Simple approximation formulas and model cal-
culations are presented. In Sec., V a complete statis-
tical theory of URIMIR is presented, including consid-
eration of all constants of motion, following recent de-

Martin Quack: Unimolecular reactions induced by infrared radiation

1 Z

FIG. 2.
crossing a molecular beam,

The ideal experiment: a z-polarized laser beam

velopments in statistical unimolecular rate theory.
Finally, in the Conclusion the more important qualita-
tive conclusions and predictions from the present treat-
ment are summarized. Again differences and similari-
ties to thermal unimolecular reactions are noted. A
flow chart is given for the approximate computational
procedures to follow for a realistic quantitative treat-
ment of URIMIR using results of the present paper and
of previous authors.

Il. EQUATIONS OF MOTION OF MULTILEVEL
SYSTEMS (POLYATOMIC MOLECULES) SUBJECT TO
STRONG MONOCHROMATIC ir-LASER RADIATION
AND METHODS OF SOLUTION

We shall derive here useful equations for the time-
dependent populations of molecular states subject to co-
herent, monochromatic radiation. Great care will be
taken to clearly point out the physical assumptions and
approximations at each stage.

A. Precise formulation of the idealized problem

We consider a sample of diluted gas molecules sub-
jected to strong ir-laser radiation. For the typical
strong fields used in URIMIR the field can be treated
classically to a very good approximation, indeed®*~"!
(the number of photons per mode is easily 10'° and
more). We assume the field to be z polarized, mono-
chromatic with frequency w, and propagating in the y
direction (Fig. 2). We then have for the real part of the
electric field

E4(y, ) =Re{E, expli(wt - 2,1} .

In a molecular beam experiment, as in Ref. 18, which
is particularly useful for theoretical idealization, we
may furthermore agsume that the y component of the
molecular velocities is negligible, if the molecular
beam propagates in the x direction (see Fig. 2). The
local field for each molecule with coordinate y at time ¢
is then given by Eq. (2.1). I the y components of mo-
lecular velocities are not zero, we have to introduce a
Doppler shift k,v, (&, is the wave number of the field
and v, is the y component of molecular velocities), and
eventually average over an ensemble at the end of the
calculation. Usually, the beam diameter d is much

(2.1)
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larger than the wavelength X (say, typically, d=1 mm)
‘and we would have to average the phases &,y at the end
of the calculation, This phase average is of a trivial
nature for the present problem and we omit the phases
for brevity of notation.

For a more general light source we have to use
Eq. (2.2)

E (v, t)=Re%ZEo,,f,.(y,t) expli{wt - £,y +n,,)]} . (2.2

Here the f,(y, ) are slowly varying over one wavelength
or period. 3 Although present day CO,-laser pulses
often vary appreciably during the time scales relevant
for URIMIR, and therefore the use of Eq. (2.2) would be
necessary for a realistic description, most often the ex-
perimental parameters needed for Eq. (2.2) are not suf-
ficiently characterized anyway. Therefore we shall re-
strict most of our considerations to the more ideal case
of Eq, (2,1), with the understanding that this case can
be approximated by an appropriate experimental setup
or that it can be generalized to Eq. (2. 2) by means of
numerical simulation,

The molecular Hamiltonian can now be represented in

the form
H=H,+1H, . (2.3)

flo is the molecular Hamiltonian, neglecting the field,
For practical purposes we shall exclude the coupling
with nuclear spin and with molecular states which are
not accessible (isomers separated by high barriers) but
we stress that I;To is otherwise completely general in-
cluding all interactions. For ﬁ1 we can use the electric
dipole approximation for the problem at hand,

iﬂ:"}‘-E(y, D . (2.9

p is the molecular dipole moment operator (5, e,r,).

We consider the “diagonal” molecular problem to be
solved (experimentally this is the problem of high res-
olution molecular spectroscopy®> )

Hypy=Tw,9, . (2.5)

Expanding the time dependent wave function in this basis
(Schrodinger picture), we obtain

WD) =2 by - (2.6)
k
From the time dependent Schrodinger equation
imp=Hy, @2.7)

we obtain in a standard way?® the set of linear equations

iDy=w,b, +cOSWE Y Vb, . (2.8)
E)

The V;, contain the space dependent part of the electric

dipole interaction

Vk15‘<¢h|ﬂez‘¢3>‘Eo‘/h' .

€, is the unit vector in the z direction (laboratory
frame, Fig. 2).

(2.9)

At low energies these matrix elements can be com-
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puted using the usual approximations of molecular spec-
troscopy”"34 for the z component of the transition mo-

ment (J, T, M, vy, Vgy ... | pgld’, 7, M, v{,v5...). In ma-
trix notation Eq. (2.8) becomes
ib={W+cos(wt)V}ib, (2.10)

which is a special case of Eq. (1.9).

Rewriting (2.7) in the form (2. 10) is completely stan-
dard. The implicit assumptions concern only the space
and time dependence of the field {Eq. (2.1)] and the non-
essential use of the electric dipole approximation. Fur-
thermore, the Hamiltonian Eq. (2.3) is not exact due to
the classical approximation to the field and to the ne-
glect of interactions with surrounding molecules (colli-
sions). This is justified if collisional transition times
and lifetimes for spontaneous infrared emission are long
compared to the time scale of the experiment (this is
usually the case for URIMIR)., In order to properly de-
fine the spectrum of fIO, strictly speaking, we must re-
quire that nondegenerate molecular states are well sep-
arated with respect to their natural width (say 1 kHz),
or collisional width, if collisions are present. Even for
polyatomic molecules this is fulfilled up to quite high
energies (see Table I), Even if this is not the case, we
believe that the treatment remains approximately valid.

We shall allow the diagonal matrix W to be complex,
namely,

W = Relw,) - #7,/2 , (2.11)

if there is monomolecular decay of an unstable state

into a continuum (or quasicontinuum). The real widths
v,(FWHM) represent effective decay rates. This is not
exact if the line shape is not Lorentzian.?® We shall dis-
cuss the actual approximations involved and how to ob-
tain the y, in more detail below, We can take further-
more V to be real symmetric without loss of generality.
With all the appropriate reservations in mind, Eq.

(2.10) is a valid representation of the physical problem.

For later use we define a statistical matrix P in the
basis ¢,

ijzbkb; » (2.12)
with the additional definition
pk=Pkk=‘bk(2'> (2.13)

For real W, P is a density matrix. Equation (2.10)
in particular provides us with the time dependent popu-
lations p, of molecular states., We shall hereafter con-
sider Eq. (2.10) to be a problem of finite (possibly very
large) order N. This is reasonable, since in any actual
experiment only a finite number of molecular states will
have nonvanishing b, during a finite reaction time and
since we have eliminated any continua, using complex
energies,?® The matrices W and V can be obtained by
solving the time independent Schrddinger equation for the
molecule alone. They also can be obtained experimen-
tally, using information from high resolution spectros-
copy and molecular beam scattering, Practically, one
would of course construct some molecular model using
as much information as possible from these sources,
from thermochemistry and from bulk kinetics. In the
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present paper we shall not make any particular model
assumptions, but rather investigate the general nature
of the solutions of Eq. (2.10) making some very broad
assumptions about W and V and considering dynamical
limiting cases.

Surprisingly, in spite of the apparent simplicity of
Eq. (2.10) and its formal solution Eqs. (1.12)—(1.16),
an actual exact solution presents an exceedingly difficult
problem. Already the case with just two coupled equa-
tions has a literature of its own, with a variety of tech-
niques available, none of which appears to be very suit-
able for extension to large N. ‘' We shall therefore
congider realistic approximations below. We note,
however, one particular case for which exact solutions
can be easily found, namely if W and V commute. Since
W is diagonal it must then be a constant for any general
(nonzero) off-diagonal V. The solution of Eq. (2.10) is
then

b(z) =U(¢, 0)b(0) ,

U(#, 0)=exp(-i W1) exp [— i 'Z,: sin(wt)] . (2.14)
This involves only diagonalisation of V, which is easy

to do for moderate order N, We shall use this below for
comparison. If W were not strictly constant but had a
range of values < V,; then we could use Eq. (2,.14) as a
starting point for a perturbation treatment, However,
just the opposite is the case for our problem.

B. Weak field approximation (quasiresonant or
rotating wave approximation)

We substitute into Eq. (2. 10) the interaction picture
amplitudes

¢, = by expliw,t) . (2.15)
We introduce furthermore the matrix

Dy =w,~w;~w for w,>w, ,

D,=w,-w,+w for w,<w, . (2.16)
We now obtain from Eq. (2.10)

icy =—;—;Vk,c, exp(itD,;) (1 + exp(z 2iwd)] . (2.1

If D,; and V,; are much smaller than w, we can estimate
the relative contribution from the terms in the paren-
thesis by integrating over a short time interval A¢
<Vl A<D i.e., c,~const., but with At> w™l,
The average relative contribution of the high frequency
term is given by .

e | <(atw) .

Since by assumption Ajw >>1, we can neglect the high
frequency term

(2.18)

. 1
i6 = 5 2VaC; €XD(LD,,) . (2.19)
i
The conditions of validity obviously are
Vi <w , (2.20)
Dy <w . (2.21)

The first can always be made to be fulfilled by a proper
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choice of the field strength, whereas the second is
strictly never fulfilled for a quasicontinuous multilevel
spectrum. For the two level case, for which this ap-
proximation was originally developed, Eq. (2.21) can be
made to be fulfilled by a proper choice of w.*? In the
multilevel case we can make a further simplification, to
the extent that we can neglect transitions far off reso-
nance altogether, by introducing a level scheme with
integer #n,

Wy =m0 +x, , (2.22)
-w/2<x,<w/2, (2.23)
Dyy=(ny—my2)w +x,—x; . (2.24)

Equation (2. 19) may now be rewritten

iék=-1- Z

2 j, imgemgl=t

Loy

KN Ink-njl=0;2

Ve, explilx, — x;)t]

V,sc; explilx, - x,)t] exp(x iw?)

+terms with exp( miwt); m=2,3,... . (2.25)

Since by definition |x, - x;| <w we find by the same
argument as above that the terms with exp(+ miw?), (m
=1,2,...) can be safely neglected. By making the sub-
stitution

a, =exp(~inyt)c, , (2.26)

we finally obtain the system with constant coefficients
XKpe=13)
ia={X+3iVia.
We note that p,()=1b,12=1¢,|*=1a,/%. The matrix
{X +3 V} may be considered to act as a time independent
(possibly complex) “effective Hamiltonian”?® for the
problem. In the definition of a level scheme it is im-
plicitly assumed that the spread of initial energies A,
«w, say, for a thermal situation 2T <Jiw, This third
condition for the validity of Eq. (2.27) can however be
relaxed by approximately superposing solutions of sev-
eral independent systems for each of which we have
A, <w,

(2.27)

This so-called rotating wave approximation has been
used in one or another form by previous authors treat-
ing the problem (see Refs. 20~-24 and related papers).
We have tried here to clearly point out the conditions of
validity, namely Eqs. (2.20) and (2. 21) [usually in con-
nection with Eqs. (2.22)-(2.25)]. I only Eq. (2.20) is
satisfied but not (2, 21) the approximation breaks down
even for the two-level case. This can be easily seen by
comparing with the exact solution for the degenerate
case, Eq. (2.14). Equation (2.27) is easily solved, %
obtaining for the initial condition p,(0) =1

@) =[V¥/(D* +V ){sin[(t/2)(v?+ DY)} . (2.28)
From the exact solution, Eq. (2.14), one obtains
p$(8) = {sin[(V/w) sin(wd ]} . (2.29)

For the degenerate case we have D? =w?, and with V
< w we obtain from the rotating wave approximation
(sinx ~x)
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b5 = (V3 /w))sin(wt/2)] (2.30)
whereas from the exact solution we get
b)) ~ (v /) [sin(wn) ], (2.31)

which differs by a factor of 2 in the period of motion.

In a multilevel situation there are of course many levels
even further off resonance. However, the time averaged
populations of these are estimated to be of the order of
{v¥(D*+ v?)] which becomes very small if D is large.
Therefore one does not expect appreciable contributions
from those states anyway. This consideration does,
however, not apply to true multiphoton resonances. 3
The application of Eq. (2.27) is not justified if there
are no appreciable molecular transitions close to the
laser frequency. So far in those cases no URIMIR has
been observed; usually strong transitions were close to
resonance, with V,, in the GHz region, that is much less
than w for a CO,-laser. Therefore, the use of Eq.

(2. 27) would appear to be justified in those cases. This
can, indeed, be tested by numerical computations (see
below), A terminology which stresses the conditions of
validity (Eqs. 2.20 and 2, 21) would be weak field (i.e.,
small V,;), quasiresonant (i.e., small D,;) approxima-
tion, which we shall use hereafter (with the abbrevia-
tion WF-QRA). In order to get a more complete pic-
ture, we shall now treat the case of strong fields as
well.

C. Short time (strong field) approximation

We reconsider the linear system Eq. (2.10). Let us
now assume that all relevant V; > w, The time evolu-
tion of the populations will be appreciable for times
which are short compared to a period of the field, We
may therefore seek a short time expansion. Expanding
cos(w?) and neglecting quadratic and higher terms we
simply obtain

ib={w+Vlb. (2.32)

We can extend the justification for the validity of (2.32)
and also obtain a somewhat improved approximation by
using the first terms of a Magnus expansion. ‘% The
Magnus expansion solves Eq. (2.10) in the form

U(t, to) = exp(ﬂ) ,

e=Y.9,.

n=(

(2.33)

The convergence of this series has been discussed. **
&, contains integrals over commutators of H(#) of com-
plexity n. The first two terms of Eq. (2.10) are ob-
tained through

iy = [ 0 dt’H‘t’) , (2.34)

iRy =- % fdt"{f"dt’[n(t'), H(t")]} ) (2.35)
[} 0 4

(€ + Q) =Wt + V[sin(wt)/w] + :[W, V]
x{(4/wh)[sin(wt/2)]? - tsin(wt)/w} . (2.36)

If we now expand sinx =~ x, we obtain
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U(t, 0) =exp[- i{W+V)] . (2.37)

This is the same as the solution of Eq. (2.32)., We note
that the expansion sinx = x is somewhat better than cosx
=~1, wvalid for about one-tenth of a period. To this or-
der all &, ., vanish, i.e., the series terminates after
the first term.* The use of Eq. (2.36) leads to a fur-
ther improvement at somewhat longer times. We should
mention, however, that such a short time expansion of
a “monochromatic” perturbation is somewhat artificial,
since in order to define the time zero for the perturba-
tion to within 8¢ <w™ one must have a pulse with a very
sharp rise, and therefore very high frequency compo-
nents as well. In the weak field limit this problem is
much less serious. Nevertheless, we think that Eq.
(2.37) gives a sufficiently correct qualitative picture of
the strong field limiting situation in order to proceed.
We note, that in both limiting situations we can reduce
the system with time dependent coefficients, Eq. (2.10),
to systems with constant coefficients, Eqs. (2.27) and
(2.32). This will be our starting point in the next sec-
tion.

We conclude the present section by noting that Eqgs.
(2.34)-(2. 36) also provide a good starting point for nu-
merical (stepwise) integration of the system (2.10). We
find, indeed, that the Magnus expansion is more suitable
to be adapted to multilevel systems than any of the pre-
viously proposed methods. *~4' The computational ef-
fort of any stepwise integration scheme is further al-
leviated by the use of Egs. (1.13)-(1,16), and the sim-
ple relationship (2. 38)

UL, ty) =0, t U4y, £o) - (2.38)
Therefore we need to integrate only over one period of
the field (actually, for symmetry reasons, one-half
period is sufficient as well) in order to obtain solutions
of Eq. (2.10) at all times, eventhough, at very long
times (much longer than one period of the field) errors
accumulate in the higher matrix products and no step-
wise numerical integration scheme can circumvent this
problem. Therefore it must be stressed that an analyti-
cal solution of Eq. (2. 10) would be extremely desirable,
So far none has been available, but also no proof has ap-
parently been given that an exact analytical solution (in
the sense of a simple functional expression for L and A
in Eq. (1.16) or in the sense of a terminating algorithm)
should be impossible.

Before proceeding we should also add a note concern-
ing the actual evaluation of the exponential function of
the various matrices needed for U. These matrices
have been allowed (and required) to be complex (sym-
metric) in order to obtain finite problems even with de-
cay into continuua. The easiest procedure for comput-
ing the exponential function (although not the only one) is
the computation of a similarity transformation which
diagonalizes the matrix, using standard algorithms. ¢
Such a similarity transformation cannot always be found
unless all elementary divisors are different. This
statement is contrary to some statements in the litera-
ture of the problem, but it is easily proven by counter-
examples., However, the difficulty arises only in rare
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TABLE I. Densities of states {p(E,J)) for three size ranges
of polyatomic molecules. {p(E,J)) is the average number of
states in one wave number interval with given total angular
momentum, averaged over 200 em! (see Ref. 3; 1 em™ cor-
responds to a frequency of 2mx 3x10' Hz),

CDy CyH,Cly(cis)
E/cm™ J=0 J=32 J=0 J=32 J=0 J=32
1000 5-10% 0.03 1.5°10% 0.05 2,6
3000 1.5°10% 0.35 0.08 e 2.2 110
5000 50107 1.2 0.26 4.2 27, 1.4°16°
8000 0,12 4.4 0.81 35, 454 2,.5°10%
10000  0.19 8.1 2.5 93. 2.1-10° 1.2-10°
15000 0,35 21. 50. 616, 4.5-10 2,6-10°
20000 0,46 29, 306. 6.6°10° 4.9-10° 2.9-10°

exceptions in real physical situations and is easily rec-
ognized whenever it occurs.

lIl. STATISTICAL SIMPLIFICATIONS. MASTER
EQUATIONS FOR MULTIPHOTON EXCITATION OF
MULTILEVEL SYSTEMS

We have seen in Sec. II that for the limiting cases of
weak and strong fields an approximate treatment re-
quires the solution of linear systems with constant coef-
ficients [Eqs. (2.27) and (2.32)]. This is equivalent to
solving the Schrédinger equation with a time independent
perturbation. This is readily done with conventional
matrix techniques. For polyatomic molecules this is
not a practical solution because of the large size of the
matrices involved. We have collected the densities of
states p(E,J) (see Sec. V and Ref. 3) for some “typi-
cal” polyatomic molecules in Table I. The overall size
of the matrix to be handled would be about ¥, [5° o(E, J)
XdE. Although of course the AJ and other selection
rules create many zeroes, the block for a priovi al-
lowed transitions from J =32 to J =33 would contain
about 10* elements for ozone, if we include only states
below the rather low-lying dissociation threshold of this
molecule. There are many connected blocks of this
size which cannot be decoupled., With the most advanced
computational techniques it appears to be out of the
question to solve such a problem exactly, even for
ozone, which would be one of the most favorable ex-
amples as far as the size of the problem is concerned.

For the larger molecules the situation is much worse
and we are not aware of any molecule for which URIMIR
has been observed and for which the matrix problem
would be of an order less than 10, There are two ways
to approach the problem. Firstly, one might reduce the
effective dimensionality of the problem (by separating
out the “ir-active vibration, ” which is coupled in some—
often not so well specified—way to “the other degrees
of freedom”). Such model treatments, which have been
popular so far, have their merits in explaining some of
the qualitative features of URIMIR, but we prefer a sec-
ond, namely statistical-mechanical approach. Table I
suggests, indeed, that even for weak fields, with cou-
pling matrix elements in the GHz region, at each level
of excitation a large number of states are coupled for
the larger molecules. We are interested in the time
evolution of the overall population of such groups of
states or “levels” in some frequency range A, composed

Martin Quack: Unimolecular reactions induced by infrared radiation

of N="FpA states, At low field strength such levels are
naturally introduced by the stepwise excitation, which
at least at first sight leads to a problem of low order.
More generally we may group all states of similar en-
ergy and the same relevant quantum numbers with re-
spect to the dipole selection rules (J, M, parity etc.,
see Sec. V) into one “level,”

If a linear rate law were valid for the individual stafes
[Eq. (1.4)] we could sum (average) over final (initial}
states in each level and obtain the simpler equation

§=K§ s (3. 1)
where p is a smaller vector given by
Nk
PK:IZ;PNK) (3.2)
and K by
Ny Ny
Kis =N}1‘X_; ;Kmm . (3.3)

Hereafter we shall drop the bar over the averaged K and
p and we will use capital indices for levels. Equations
(3.1)—(3. 3) are known to be good approximations to Eq.
(1. 4) if the K,; are “reasonably” distributed. For inco-
herent excitation with “white” light one may actually use
Egs. (3.1)—(3. 3) directly, using the Einstein coeffi-
cients for stimulated absorption and emission. A simi-
lar averaging cannot be done 8o trivially for the ampli-
tudes of Egs. (2.27) and (2.32) because of the possibil-
ity of coherence and interference effects. Nevertheless,
statistical simplifications are expected because of the
large numbers of states involved at each level.

In real experiments18 the molecules are characterized
initially by some temperature (typically 200-300 K). If
many of the thermally populated states effectively ab-
sorb the laser frequency it is unnecessary (and incor-
rect) to describe the time evolution of the molecular
system with Eq. (1.12) and some initial state vector
b{0). Rather we have an initially diagonal density ma-
trix (we restrict the treatment of the present section to
unitary time evolution matrices)*

P(#) =U{z, 0)P(0)U’(2, 0) , (3.4
giving
pult) = 2’:] Unt|%,(0) . (3.5)

Equation (3. 5) is still exact [for diagonal P(0)] and de-
pends upon a knowledge of U. It is no simplification and
allows for strongly oscillatory solutions as they have
been observed in previous work (e.g., Ref, 24), which
was based upon Eq. (1.12). The question arises as to
whether from Eq. (3.5) and the coarse-grained Eq.
(3.2) we can get Eq. (3.1) or another simple linear rate
law [rot Eq. (1.4)]. This is the problem of deducing the
master equation from the Schrodinger equation—the
“hard” problem of statistical mechanics. **%' We shall
“do” this problem (in a simple way) for URIMIR. Some
of the material uses standard results from statistical
mechanics whereas other results are of a more con-
jectural nature with a few apparently new considerations.
We shall pay proper attention to the fact that we are in-
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FIG. 3. Level scheme for Case A. (b) corresponds to the ef-
fectively time independent Hamiltonian of Eq. (2,27),

terested in relatively small molecular systems, rela-
tively short times, and a coherent (nonstochastic) per-
turbation. We shall ask the following questions:

(i) Under which conditions are the solutions to Eq.
(3. 4), evaluated for the coarse-grained p, of Eq. (3.2),
approximately nonoscillatory of the relaxation type?

(ii) Is the rate law effectively linear? If yes, what
are the effective rate constants as a function of molecu-
lar parameters?

(iii) What are the level populations at long times com-
pared to the relaxation time but short compared to the
recurrence time (“relaxed” populations)?

(iv) Is this relaxed distribution independent of the ini-
tial state?

Concerning question (ii) we shall allow for small
oscillations superimposed on a linear overall rate
law. Concerning (iii) we anticipate that for unitary U a
constant diagonal P always satisfies the requirement of
a stationary distribution. Derived from this is the
coarse-grained microcanonical equilibrium distribution
(P Ng). However, this may not be the only stationary
distribution and not the one actually obtained in a par-
ticular instance. This also concerns question (iv), the
answer to which is not obvious, as we shall see.

Four cases in which statistical simplifications arise
are presented. They have different ranges of validity
characterized by the following parameters (for two
levels): the average squared coupling matrix element
{¥,;1%, the frequency range over which the coupling
is of this order (A; and A,, these are the level
“widths™), and the average frequency distance between
states in each level (5; and 6,;). All of these can, in
principle, be obtained from high resolution molecular
spectroscopy. (| V;;!% can be controlled to some ex-
tent by the experimentalist through the laser power.

A. Case A. Fermi's golden rule for the decay of an
isolated state into a quasicontinuum

We consider Eq. (2.27) with a weak perturbation which
couples one initially populated state to a manifold of
quite densely spaced states. The physical situation for
URIMIR is drawn in Fig. 3(a) together with the equiva-
lent representation from Eq. (2.27) in Fig. 3(b). At
the lower energy E; we assume 6,> | V,,| where V,, is
the coupling of each state in Group 1 to the states of
Group 2 (if kT > Iib, several states of Group 1 may ini-
tially be populated). We can then decouple the equations
of motion by considering the coupling of each individual
state in Group 1 to its own quasicontinuum in Group 2.
At the energy of one laser quantum above Group 1 we
require that 6, <« | V!, which may not be unreasonable
after a glance at the sharp rise in the densities of states
of Table I. The states % in this quasicontinuum are sup-
posed to have couplings of the same order

N2
lV12\2=N51kzl: | Viean 1%,

over a range of at least A,. By a well-known argument®®
one gets an exponential decay of the states of Group 1
into states of Group 2 known as Fermi’s golden rule,

with a rate constant
Ky =27|V4,|%/6, . (3.6)

Equation (3, 6) is a valid representation of Eq. (2.27) if
we have

8> Vi 3.7
8 << |Vl , (3.8)
By > 42| Vi, |%/6, . (3.9

Also, as always, the 5 and the | V| must be “reasonably”
distributed, Furthermore there are two conditions con-
cerning the time range under consideration

>na3t (3.10)

t<<2mb3! . (3.11)

Condition (3.10) is not serious, because not much decay
occurs during this period. Condition (3.11) is of no
practical importance if the Level 2 is sufficiently strong-
iy coupled to the next higher level and so forth, It will
then be depopulated long before the times of Eq, (3.11).
We do not give any derivation for the Case A because it
is so well known and it is very similar to the derivation
for Case B, which we give in the Appendix. Figure 4
may illustrate that astronomical numbers of states N,
in Level 2 are by no means required for such an expo-
nential decay, The curve (a) for the decay of one state
coupled to 61 states is practically indistinguishable from
an exponential decay computed from Eq. (3. 6) (we have,
therefore, not drawn the exponential curve in addition).
Curve (b) is for the decay of one state into a “quasicon-
tinuum” of 13 states. For this model the conditions
(3.7—(3.9) are by no means fulfilled. Nevertheless we
have some irreversible decay with a rate law at least
qualitatively similar to the exponential [curve (a)].
Figure 5 shows the “recurrence” of state one for the
model of one state decaying into 61 states at long times
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FIG. 4. Quasiexponential decay for Case A. The curve (a) is
for one state coupled to 61 states. An exponential curve would
be distinguishable from this only in the initial range. The
curve (b) is for decay of one state into just 13 states—this de-
cay is nonexponential and slower, but still “irreversible.”

violating Eq. (3.11). As we noted above, these recur-
rences may or may not be important, depending on the
time evolution of Level 2, etc.

A glance at Table I might convince the reader that the
conditions for Case A may be easily satisfied after the
absorption of a few CO,-laser quanta for most poly-
atomic molecules. However, this may be illusory, be-
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FIG. 5. Exponential decay and recurrence for one state cou-
pled to 61 states in level 2. The system is the same as in Fig.
4, but for longer times. (b) gives a “high resolution” view of
the time range near the recurrence time 2#62‘1.
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FIG. 6. Level scheme for Case B, see text for explanation of
symbols.

cause strong optical selection rules may considerably
reduce the effective density of states useful for Egs.
(3.7)-(3.9). Furthermore A, may not be sufficiently
large in all cases. Therefore it is necessary to con-
sider further possibilities. We may note, before pro-
ceeding, that in the work of Bloembergen and Larsen?!
Case A is implicitly assumed at the highest states of
their “Region 1.” They characterize these states by an
effective decay width into the “quasicontinuum of Re-
gion 2” whereas they use Eq. (2.27) for the Region 1,
As we see, this may be justified. Of course the treat-
ment of the rate processes after the threshold of the
quasicontinuum is left open. The “leakage” idea is also
rather related. #

We wish to stress that all the parameters of Egs.
(3. 6)=(3.9) can be either measured by high resolution
spectroscopy or obtained from ab initio calculations, al-
though neither may be simple for polyatomic molecules,
At the risk of being pedantic we also stress that Eq.
(3. 6) describes transitions from one state to a group
of molecular states and not to states in this group in-
dividually—this is the statistical-mechanical aspect.
In particular this transition rate cannot be obtained by
summing over the Einstein coefficients for absorption,
which govern the transitions between individual states
at low power induced by “white” light.

B. Case B. Pauli master equation for transitions
between groups of states with a weak global interaction

We now consider the case that we have for both levels
I and J

bp,r < IVIJI ;

and that a large number N, of states of level J is ini-
tially randomly populated, say, from a thermal dis-
tribution with 27> #%6,. For URIMIR this may apply if
for very large molecules at higher temperatures the ini-
tial thermal population already covers the dense region
of the spectrum. More generally Case B may apply at
higher excitation energies for all larger molecules.

The situation is shown in Fig. 6. The effective level
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widths again are given by the condition that the individ-
ual coupling matrix elements must be of the order of the
average | V,;| for all states in this range. The prob-
lem of deriving a master equation for such a situation is
well known from statistical mechanics with the early
derivation by Pauli’’ and much later work, =51 we give
a simple derivation for the case of discrete molecular
spectra in the Appendix. Here we state only the result,
namely a rate equation for levels of the form (3.1) with
rate constants

Ky =2n|V,;|%/8;, (3.12)

Ny Ng

lV"|2=\V”|2=(N,N,-)“?_:1:jz_l:lV,,(”)lz . (3-13)

The following assumptions have to be made (see, how-
ever, below) in order to derive Egs. (3.1) and (3.12)

P, (0)=5,,p,(0)NF , (3.14)
A(and A)) > 47|V, |%; (and 551 , (3.15)
8,(and 6,) < |V, | . (3.16)

The frequency spacings and coupling matrix elements
must furthermore be distributed reasonably (smoothly)
around their average values 6, and 6;, and | V,;|. The
times considered must satisfy (similar to Case A)

t>majl(and A7) ,
t<2x(67' + 87 (3.18)

These conditions are probably fulfilled in a number of
cases where URIMIR has been observed. We are faced,
however, with an additional problem. For weak cou-
pling [Eq. (2.27)], which is of interest here, URIMIR
must be considered as a sequence of many excitation
steps from Level 1 to Level 2, from Level 2 to Level 3,
and so forth. If we are allowed (and required in the
thermal case) to assume initially a diagonal density ma-
trix, this need not be true any more for the density ma-
trix of Level 2 (3, 4, etc.) at time ¢ and therefore, the
transitions from Level 2 to 3 and so on may perhaps not
be described by the simple rate law Eqs. (3.1) and
(3.12). We therefore either have to make a vepeated
random phase assumption®’ for the various levels, or
we have to argue that Eq. (3. 14) is too stringent a con-
dition. The former may lead to contradictions. We
shall show with a simple example that the latter is a
proper assertion for all practical purposes. For the
full details of the theory we refer to the extensive liter-
ature on the subject, 4851 5356

In Fig. 7 we have shown the time evolution for a three
level system, each level comprising 19 states, as it
follows from the solution of Eq. (2.27) using Eq. (3.5).
Level 1 is assumed not to be coupled directly to level 3
(WF-QRA see Sec. ). Figure 7(a) shows the time evo-
lution for an ensemble satisfying Eq. (3.14), being in
level 1 at =0, Figure T(b) is the result of simple three
level kinetics, Eqs. (3.1) and (3.12). We find that the
differences are small and actually due to the fact that
the conditions (3. 15) and (3. 16) could not be completely
satisfied in the model. It is important to note that the
kinetics for level 3 need not follow Eq. (3.1), in prin-
ciple, but it does! This can be understood from looking
at Fig. 7(c) which is a “quantum mechanical trajectory”

3.17)
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FIG. 7. (a) Three level kinetics computed from Egs. (2.27)
and (3,5). There are 19 states in each level. (b) Three level
kinetics from Eq. (3.1) with rate constants from Eq. (3,12).
(c) Three level kinetics from Egs. (2,27) and (1.12) assuming
an irregular choice of initial phases for the same spectrum
as (a).
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FIG, 8. Time evolution for the same system as in Fig. 7(c)
but with equal initial phases for all states in Level 1,

from Eq. (1.12) but for the same system, being in Level
1 initially, now with some arbitrary irregular choice
for the phases of the initial state vector. Although the
fluctuations are now rather large (19 is not a very large
number!) the overall time evolution is still similar to
simple three level kinetics. We note that Fig. 7(a) cor-
responds to the average of (infinitely) many trajectories
like the one shown in Fig. T(c). Figure 7(c) illustrates
that the random phase assumption is not really neces-
sary. One must avoid, however, too specific a choice
of phases. If we assume equal phases for the initial
state vector (still for the same system) we obtain the
result of Fig, 8 which is oscillatory and unrelated to
simple three level kinetics. However, it is extremely
improbable that such a gituation would occur in URIMIR.
The real state of any particular molecular system with
all probability is characterized by some irregular com-
bination of phases even if the vandom phases of the ini-
tial thermal distribution are lost at higher levels of ex-
citation,

We think that the conditions of Case B are actually
fulfilled at higher energies for many polyatomic mole-
cules making some reasonable assumption about A
(1011-10'® Hz, related to anharmonic couplings known
from Fermi Resonances of near degenerate states) and
with the present day relatively weak laser fields leading
to | VI in the GHz region, rapidly decreasing at higher
energies. However, these estimates may be too opti-
mistic and with very low intensities Eq. (3.16) may be
violated, whereas at very high intensities Eq. (3. 15)
may be violated. Therefore, we consider now two more
unusual cases, which cover this range of possibilities.

C. Case C. Transitions between groups of states with
specific pairwise interactions

The situation is similar to Cage B, Fig. 6, but now
we require
w» b, ;> |V, . (3.19)

The first inequality is not essential, but it enables us to

Martin Quack: Unimolecular reactions induced by infrared radiation

use the quasi-resonance-approximation. Due to the
second inequality we shall have mainly effective pair-
wise interactions between states closest to resonance.
Even those states will on the average be quite far off
resonance, so we may anticipate relatively weak exci-
tation. Physically Case C can be obtained by irradiat-
ing large polyatomic molecules with relatively low la-
ser intensities. We also can require pairwise interac-
tions artificially, due to some selection rule, without
restrictions upon the 5, ,.

In either case the problem breaks up into many prob-
lems of order 2, which are easily solved within the WF-
QRA, Eq. (2.28). Suppose we have N pairs between
levels I and J, and at {=0

$4(0) =jz_1:1’1(.n(0)=1 ,

then we obtain for the population of Level I at time ¢
[with p; 710} =pys)(0)]

N
pA8) =N _[V¥/(vE+ DY) {sin[(t/2)(V E + DHI2]Y
=t (3.20)

D; and V; are the off-resonance shift and coupling ma-
trix elements for pair i, respectively. If N is very
large and D and V are distributed according to some
smooth (independent) distribution functions F(D) and
G(V), then we can replace the sum by an integral, ne-
glecting terms of order 1/N

Ve

pi(D) = f ; dD F(D) f :e AV 6V e

oo o -1
><{sin[(t/Z)(V2+D2)“2]}2{ f dD f dVF(D)G(V)} .

(3.21)
The distribution functions F(D) and G(V) must be such
that in spite of the formal integration limits our require-
ments on & and V are satisfied [Eq. (3.19)].

We shall investigate some particular solutions of Eq.
(3.21). First we choose F(D)=56(D}, i.e., all pairs are
in exact resonance. This is not realistic but simple.
Furthermore, we take G(V)=const. for -V, sV<+V,
and zero outside this interval. This gives

Do) =3{1 - [sin(V,t)/ Vot I} .

Although oscillatory in the beginning, this finally relaxes
to p,() =2. We can define a half relaxation time #;,,

by pp(tys) =% py() giving (V,t1,5) =1.9. If we assume
F(D)=6(D) and G(V) =V, [m(VZ+ V)] (Lorentzian), we
obtain the interesting result

pt) =z {1 —exp(- V. 0},

with the truly exponential half relaxation time (Vt/,)
=1n2. We stress that the assumptions on F(D) and G{(V)
are not realistic and violate the ideas of Eq. (3.19).
However, Eqgs. (3.22) and (3. 23) give an interesting,
simple analytical insight into the statistical behavior of
systems which are not characterized by strong global
interactions but rather by very specific, pairwise (“non-
ergodic”) couplings. Statistical behavior arises through
the initial condition (p,(s) =p1(s), Which is satisfied if

(3.22)

(3.23)
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ET > F8,;) and through our low resolution look only at
level populations.

We turn now to a physically more realistic descrip-
tion, with distribution functions F(D)=const. in the in-
terval (- D, <D< +D,) and G(V) =const. in the interval
(-v,, <V <+V,) and zero outside these intervals. Equa-
tion (3. 21) then becomes

P (t)—V'lD"fvm av fDmdD v sin f_(vz +Dz)1/z] 2
T g b VZ+D? 2

(3.24)
Since we consider only pairwise, close neighbor inter-
actions, Eq. (3.19) becomes

(3.25)

Equation (3, 24) is difficult to evaluate analytically for

w>»D, >V, .

general values of the parameters V,,, D, and {. As ¢
~ 0 we obtain the typical quadratic behavior
Pty = VEE . (3.26)

The relaxed distribution at ¢{— * is given by
p*)=(V,/8D,) +{1-[(VE+D%)/V,D,larctan(V,/D,)} .

(3.27)
Because we assume D, >V this is approximately
equal to

pi(=)~nV,/8D, . (3.28)

The kinetically most interesting time range is given by
D;l «<¢<<Vv;! and for this we obtain

py<0.25V2D; ¢, (3.29)

i.e., an approximately constant “relaxation rate con-
stant” (note that p; < p, at all times).

Figure 9 gives the result of the numerical integration
of Eq. (3.24) with V,,=0.1D,, (full line). The damped
oscillations remind one of Eq. (3.22). The points are
from a solution of Eq. (2.27) for two levels containing

[ ] * b

0.06 — . .. -
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FIG. 9. Case C. The full line is from Eq. (3.24) with V,
=0.1D,, (Level 1 is initially populated). The points are from
the matrix problem Eq. (2.27) with 2x 31 states and the same
distribution functions for V and D (V,,=0.1 D,) but unrestricted
couplings (not just pairwise) between all states. An average
over three spectra has been made to improve the statistics.
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FIG. 10, Time evolution for Level 2 from Eq. (3.21) assum-
ing Lorentzian distributions with half-widths (V,/D;)= 0.1
{solid line), The points give the time dependent relaxation rate
coefficient,

31 states each and satisfying Eq. (3.19), but retaining
all interactions )i.e., all states in levels 1 and 2 are
coupled—not just pairwise—but they are mostly far off
resonance). We see that Eq. (3.21) gives indeed a good
description of the physical case under investigation.
The differences are the fluctuations for the finite spec-
trum [these are large, since N=31 is a small number
compared to N=<, Eq. (3.21)], and the higher relaxed
Py due to the next closest neighbor and higher interac-
tions in the “real” case. We do not consider here an
analytical inclusion of higher interactions and the treat-
ment for two levels with very different 5; and §,, but
we note that we always can use the estimates for Case C
(“real”)

pl(oo)Caae B Z.Dl(oo)ronl épt(w)ideal pairwise ° (3' 30)
Figure 10 illustrates that the ogcillations disappear
if one assumes “smoother” distribution functions F(D)
and G(V), for example, two Lorentzians with half-widths
(Vy/Dy) =0.1, truncated at 10V, and 10 D,, respectively.
in order to remain (roughly speaking) within the ideas
of Eq. (3.19). The decay looks rather exponential with
rate “constants” &(V,t) indicated by the points. Assum-
ing untruncated Lorentzians for F(D) and G(V) one gets
a clean exponential decay [see also Eq. (3.23)] but this
is an unphysical assumption, violating Eq. (3.19). An
interesting question is, of course, what the best F(D)
and G(V) for polyatomic molecules might be (assuming
that there is one best one).

Although Case C leads to nonoscillatory {or weakly oscil -
latory) behavior with ultimate relaxation, a rather interest-
ing feature is the dependence of p() upon p(0). Indeed there
is an infinity of p(«) as a function of p(0). Still, we may
use for many practical purposes and to within some rea-
sonable approximations (neglecting oscillations, etc.)
an effectively linear rate law Eq. (3.1) with K being de-
pendent on p(0) but roughly independent of time. This is
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vl

<Apy W wl?>

FIG, 11. Possible vibrational ir spectrum of a highly excited
polyatomic molecule at w’’ [see text, Case DI.

still a useful simplification. It is not necessary for
Case C to require a diagonal initial density matrix, how-
ever, we must require the initial populations p; »(0) to
be equal (or slowly varying with respect to the index 7).
If Case C applied at all levels of excitation one could
rule out an appreciable excitation because of Eq. (3.28).
However, Case C may sometimes apply at low energies,
with Case B becoming relevant at higher energies. In
such a situation the bottleneck for URIMIR would be at
low energies with a steady-state distribution, which is
strongly peaked at low levels of excitation [see also
Sec. IV and Eqs. (3.28) and (3.30)]. We also note the
relationship of the parameter D, in Eq. (3.29) to the
density of states, i.e., D, x0;. Therefore we have in
all three Cases A, B, and C

Ky lV”P/G, s

however, with the “asymmetric” dependence upon the
initial state noted for Case C.

(3.31)

D. Case D. Transitions between groups of states with
a strong global interaction

We consider a situation again similar to the one shown
in Fig. 6, but now with a choice of parameters

A=A < |V . (3.32)

The physical situation, which may correspond to such
an agssumption, it sketched in Fig, 11. There we have
shown the possible coarse structure of an ir spectrum
of a highly excited polyatomic molecule, disregarding
rotation for the sake of a simple argument. Shown is
the vibrational transition moment (| u,(w’,w’’){% aver-
aged over a small interval A; corresponding to the ini-
tial excitation or any other small interval containing
many vibrational states (see Table I!). It may (although
it need not) be that there are still a few very pronounced
resonance frequencies wy, w,, ... on a broader back-
ground. However, due to various rovibrational interac-
tions it may be taken for granted that many different
states contribute to the absorption in the range &. The
spectrum will then have a complicated substructure and
possibly a much more complicated coarse structure than
shown in Fig. 11. However, with strong laser irradia-
tion at w{, one may have average coupling matrix ele-
ments | V,;| > A, the overall width of the coarse struc-

Martin Quack: Unimolecular reactions induced by infrared radiation

ture—this corresponds to the assumption (3. 32). Al-
though we do not believe that with the present experi-
mental laser powers (in the GW/cm? range at most) such
an assumption applies we shall consider this case for
completeness. Degenerate oscillator model systems
have been investigated previously,?* Making rather
special assumptions, typically oscillatory behavior in
time has been found for the level populations, We shall
see here that with the proper statistical agsumptions
(random or irregular initial phases!) even in Case D
one gets relaxation as observed in the other cases, how-
ever, with some additional complications.

We start with an extreme case, which is easily treated
analytically, namely A;=A,=0 and a constant interac-
tion C between states belonging to different levels

ib=CBb . (3.33)

The matrix B,, has zero elements for % and j in the same
level and By; =1 if k and j belong to different levels. We
assume the initial condition (3.14), with p,(0)=1, and
we congider the time dependence of p,

Ny Ng

p0=NF2 2|0, (3.39)
n={ m=1
N 2

| U |2 = kzl:kaT,,kexp(- iCeut)| . (3.35)

Note that we use no double indices here, i.e., 1<nsN
=N;+N,, ete. T is the eigenvector matrix of B

BT =TE . (3.36)

B is a matrix of rank 2 with zero trace. Therefore we
have only two eigenvalues ¢, different from zero which
we write e; =+e¢, ¢;=- e with a positive e. Further-
more, B is invariant with respect to a permutation
Qj), if 2 and j are in the same level

QunB=BQy; ,
QBT =BQ,T ,

=(Quy)TE . (3.37)

This immediately gives us the eigenvectors for the non-
zero eigenvalues of B

Ty =T =N, for k<N, , (3.38)

Ty == Ty =(2N;)V? for k>N, , (3.39)
and

e=VN;N; . (3. 40)
Therefore we have for n and m <N;

| Upm| =84 = (2/N;)sin(Cet/2)F . (3.41)

We have used the fact that TTT=1. We finally obtain for
the time dependent population

ps() =1 - N3l[sin(Ct VNN .

This is obviously a periodic solution which goes over
into the resonant two state case, Eq. (2.28), for N,=N,
=1. However, if N, is large (= <) the amplitude of this
motion goes to zero. Therefore, neglecting terms of
the order 1/N, there is no time evolution for the ran-

(3.42)
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dom phase, two level case. We can consider this as a
special case of a master equation (3.1) with K=0. If
we had assumed some definite, special phase relation-
ship between the initial states, e.g., b (0)=N " (1<m
<N,), then we would have obtained

p(0) =[cos(CtVN, NI .

This is always a large amplitude periodic motion as in
the two state case, with the period of motion decreased
by the factor VN,N,. This is just another illustration of
the tremendous difference in the behavior of random
phase and specific phase systems. For the degenerate,
random phase system with large N,, a constant, pos-
sibly large off-diagonal coupling does not contribute to
the time evolution at all.

(3.43)

We now turn fo the more interesting general problem
of quagidegenerate levels coupled by some arbitrary in-
teraction matrix elements V, which are distributed ac-
cording to some distribution function G(V) (see Case C
also). An analytical solution for p(¢), given some p(0),
as it is possible for the other three cases, presents a
formidable, although probably soluble mathematical
problem which we do not undertake the labor here to
treat. We shall, instead, state the results of system-
atic numerical investigations of large matrices (2 and
3 level systems) satisfying the conditions for Case D.

(i) Assuming random (or “irregular”) initial phases
one obtains irreversible relaxation behavior {for times
less than the recurrence time for finite systems).

(ii) Depending somewhat on the agsumed G(V) the re-
laxation is exponential or strongly damped oscillatory
as in Case C, The relaxation rate constant 2, =K,
+K,;,, as obtained from the half-relaxation time if the
decay is oscillatory, is given by

k27 V(VE = (V) (3.44)

Assuming a “flat” distribution G(V) the proportionality
constant is close to 1. Unlike all the other cases k, is
independent of the initial and final density of states as
long as we have

A;and A ,<VH =7, (3.45)

(iii) The relaxed distributions depend upon the initial
distribution, as in Case C but unlike Case B, If we have
N;=n and N;=n+m (positive m) then the relaxed dis-
tribution with the system being initially in Level I

pirelaxed) = (m +n/2)(m +n)™! (3.46)

and having only level J initially populated we get
pi(relaxed) =0.5 .

In the absence of analytical proofs we have to put these
results forward as conjectures about the limiting be-
havior of very large matrices, which are nearly degen-
erate in the diagonal and have some arbitrary (not too
different from ‘“flat”) distribution function G(V) for the
matrix elements V. Figure 12 shows a typical result
for a two level system with 21 states in Level 1 and 43
states in Level 2. The curve a gives p,(#) with p(0)=1
and b gives py(f) with p,(0)=0. Again, in spite of the
small numbers involved, the time evolution corresponds
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FIG. 12, Case D. Time evolution for Level 1 of a two level

system with 21 and 43 quasidegenerate states in Levels 1 and
2, respectively. Curve (a) has p4(0)=1 and curve (b) p4(0)=0,
leading to different relaxed distributions.

quite well to the stated limiting results with relatively
small oscillations superimposed on a relaxation. Our
“experimental” (i.e., numerical) results may help to
suggest ways for more general analytical solutions for
Case D, which is interesting in its own statistical me-
chanical context. However we think that for present day
experiments on URIMIR, Case D is less relevant than
the other cases and we do not go into more detail here.
We note that for V being symmetrically distributed
around zero we get the maximum possible relaxation
rate constant k,= 271 V;;| from Eq. (3.44). Since in
Case D by necessity 8, and 6, < |V, | the excitation rate
constant is much lower than the one obtained hypotheti-
cally with the Case B formula, Eq. (3.12), As one
makes the transition from Case B to Case D (possibly!)
by increasing the laser intensity, one will get an in~
crease in the effective rate constant for excitation which
is much less than proportional to | V,, | ? (which itself is
proportional to | Eyl%, i.e., the intensity).

The cases investigated here, together with the pos-
sible intermediate cases, cover essentially all the situ-
ations where we can expect statistical simplifications
leading to a rate Eq. (3.1) with approximately time in-
dependent rate constants, which may, however, depend
upon the initial state, Table II summarizes the main
features of these four cases. The results for Cases A
and B depend upon the use of perturbation theory. For
Cases C and D only the functional dependence of the rate
constant and the relaxed distributions upon molecular
parameters has been given. More detailed formulae
for certain cases have been given in the appropriate
subsections [see, e.g., Egs. (3.46), (3.28) and (3.29),
(3. 44) with proportionality constants close to 1], It
must be noted that throughout Sec. I the coupling ma-~
trix elements [ V;;| correspond to some general effec-
tive off-diagonal matrix elements for linear systems
with constant coefficients. In connection with Eq. (2.27)
we have the correspondence V' — (V,,/2) whereas in
connection with Eq. (2.32) we have V{i' — V,,, with vV,
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TABLE II. Summary of cases with relaxation rate laws, see Sec. IIL.

Case A C D
Irreversible relaxation? yes yes yes yes
Approximate relaxation rate 21 Vyg 1%/, 21V Vs 12071+ 630 SV, G(V),FD), (5,6, ATVDH ZH2,6(v))

constant k, =K, +K ;; #f16, 6,1
Nonlinear effects? unimportant unimportant moderate moderate
Relaxed distribution (p;/p;), () 8,/ AFD),G V), 6;,6,] SN NGy L=y 1]

=f16;, 8,]

Is (p;/p ), =flp(0)] 2 no no yes yes
Characteristic relationships o< Vsl 07,0, << Vs Op, 0 <w A=A,

for range of validity S>> | Vsl Ay and &, O, 6, | Vgt VAV~ (V)

B> An? [ Vg 12/6; 4% (Vg 12/
o(and 8;)

Conditions for initial state L

“Irregular phases”
or density matrix
diagonal—piece-
wise constant,

Piecewise constant
populations—any phases

“Irregular phases,”
or density matrix
diagonal—piecewise
constant

being defined in Eq. (2.9). This multiple use of Vi
should not lead to confusion. A similar consideration
applies to the diagonal elements, In principle, all the
information required for the calculation of the relevant
kinetic parameters in Table II, and for deciding which
case applies, is contained in the hypothetically available
complete ir spectrum of the molecule under considera-
tion. This information may be obtained either from
measurements or ab initio calculations or from simple
models.

IV. DYNAMICAL LIMITING CASES WITH SIMPLE
APPROXIMATIONS

In this section we shall investigate the form of the
solutions of the differential equations derived in the pre-
vious sections, as a function of time and at steady state.
Dynamical limiting cases are considered, in some of
which very simple formulas are obtained. For each
situation we shall discuss the total reaction rate, the
possibility of isotopic selectivity and product ratios.
For the specific dissociation rate constants we shall
make use of the statistical theory of unimolecular reac-
tiong®®

(By) ax=P(E) S W(E)/hp(E) .

W(E) is the total number of dynamically accessible re-
action chax‘mels3 and p(E) is the density of metastable
molecular states. For the time being we shall also as-
sume the equality in Eq. (4.1) (for simple, spin-allowed
reactions) and suppress for convenience all diagonal in-
dices except for the energy. A complete statistical -
theory for the general case, including all diagonal in-
dices (J, M, I etc. }*" will be formulated in the next sec-
tion. We shall mainly use the master equations derived
in Sec. III as a starting point, but we shall also present
a few model solutions based on the WF-QRA Eq. (2.27).
This will further illustrate the validity of the master
equation approach even for relatively few coupled levels.
We shall mention it particularly, whenever there is a
correspondence to thermal unimolecular reactions.

(4.1)

A. Strong field limit

In this limit we assume that all the up and down tran-
gitions in Fig. 1 are much faster than all the reaction
rates 'r,(k). In thermal unimolecular reactions this cor-
responds to the “high pressure” limit, The monomo-
lecular dissociation is the rate determining step. Since
for example for simple bond fission reactions k(E) levels
off at a maximum value of typically 10'3~10' s°! (see
Refs, 58, 59, e.g.), this implies effective coupling ma-
trix elements | V,,| > 10°~10° GHz. This is outside the
present experimental possibilities. Typically we have
| V! ~1-10 GHz at most for the first few transitions,
where the density of states is low. At higher levels of
excitation the excitation rate constants may be as high
as 271 V,,1%/5,, but | V,,| may be assumed to decrease
with increasing &, (see below). We treat this case
nevertheless, for completeness. Also the situation may
be more favorable for spin-forbidden reactions. Since
in the strong field limit we have in general V,, » w we
shall assume the validity of the short time approxima-
tion Eq. (2, 32) with constant coefficients and assume the
validity of a master equation Case B, It is well pos-
gible that sometimes Case D would be more appropriate,
but no simple general results can be obtained then, so
we discard this case at present,

In the strong field limit practically no dissociation
occurs until steady-state (relaxed) distributions are
established. We introduce the relaxed relative level
populations

qr =Pt/;1’t ’

and obtain for the steady-state rate constant (formally)

(4.2)

ksm.:‘tz:,qlkt . (4.3)
Here, k; is the specific average reaction rate constant
for Level I, We introduce a continuous scale and note
that for Case B we have for the relaxed distribution
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g
¢(E)dE = p(E)dE / fo " ME)dE . (4.4)
We have introduced an arbitrary upper integration limit
E;. Indeed, unlike the thermal case the “partition func-
tion” [§ p(E)dE would diverge. In this sense the strong
field limit is not as well defined as the high pressure
limit in thermal unimolecular reactions, where we have
the partition function [§ p(E) exp(~ E/2T)dE which in
general converges, However, the introduction of some
E,; may appear to be justified on practical grounds, if
the excitation rate decreases appreciably at some en-
ergy E, such that below E; we have Kp g/ _po > F(E )
but Kp .5, <k (E;). As we shall see below, such an
assumption is not unreasonable qualitatively, although
E, will always remain rather fuzzy and, in addition, de-
pendent upon the laser intensity. However, the strong
field limit can only be defined to within such uncertain-
ties and we wish to investigate the consequences in spite
of this uncertainty.

We obtain the rate constant

kgpy, = ./,;EL p(E)E(E) dE/-{EL p(E) dE , (4.5)
T

Er Er

kSFL=h"f W(E) dE/f o(E) dE . (4.6)

Ep 0
We have expressed explicitly the fact that R(E<E,)=0
and have used Eq. (4.1). E, is the threshold energy for
reaction. Given E;, Eq. (4.6) is easily evaluated with
the usual methods of unimolecular reaction rate the-
ory. ‘UE 1 were independent of the laser power, kgpy
would also be independent of the laser power. We note
that Eq. (4. 6) is significantly different from the equa-
tion for the high pressure limit of thermal unimolecular
reactions, namely,

ko{T) =(Zh)™? fE ) W(E) exp(- E/kT) dE 4.7
T

=kT(Zh) ‘z; exp(- V, /kT) . (4.8)
Z is the internal molecular partition function at tempera-
ture T [Z =[5 o(E) exp(— E/kT) dE]. Equation (4.8) con-
tains a sum over maxima of adiabatic channel potentials
Vimae i the terminology of Ref. 3. If there are two
chemically different reaction channels 1 and 2 we obtain
for URIMIR the product ratio (in the SFL)

EL
o) _£ Wy(E) dE
S
SFL f L W2( E) dE
Er2
Since £, can probably be pushed to any desired limit,
this shows that in URIMIR the chemical channel with the
higher threshold (say E ;) can always be pumped ap-
preciably, although not selectively. In particular, if
there is a low energy threshold E y for a complex elimi-
nation reaction or for an isomerization and a higher
threshold E 4, for a simple bond fission reaction, then
at gufficiently high laser power the bond fission reaction
may become dominant, because of the faster increase
of Wy(E) compared to W{(E), even if (Ep, ~ Epy) is quite

(4.9)

s
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FIG. 13. Time evolution of a three level system in the strong
field limit [from Eq. (3.5) with Level 1 populated initially, 21
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large. Such an idea has already been used on a more
intuitive level in experiments.!® In thermal reactions
there is an additional factor exp{— (E;y - E5)/%T] which
usually suppresses the contributions from higher chan-
nels quite effectively

war L W) expl- £/eT) d
© Eﬂ
kw

= . (4.10)

[ WyE) exp(- E/oT) dE
Er2

Thus, ir-laser photochemistry at very high intensities
is quite different from thermal chemistry in the high

pressure limit. These qualitative conclusions are inde-

pendent of how precisely E; can be defined.

In conclusion we show a model calculation in Fig, 13
for three levels, coupled successively, with Levels 2
and 3 having average decay widths ¥, =0.5 y;< | Vy,l
> | V,3i, based upon Eq. (2.27) [or {2.32)]. Only 21
states are in each level. Nevertheless one has a simple
three level kinetics with a rapid initial equilibration
phase and slow subsequent decay with the rate constant
given by Eq. (4.3) and the product ratio equal to (y,/v5)
which is the equivalent to Eq. (4.9). Of course all this
follows from our general considerations, once the
master equation has been shown to be valid, The point
we want to make is the very high degree of validity for
relatively small numbers of coupled states at each level.

B. Weak field limit

In this limit we assume that the excitation rate near
the reaction threshold is much smaller than all the
specific reaction rates above threshold. The vari-
ous excitation processes shown in Fig. 1 will then be
the rate determining steps. With the typical laser inten-
sities presently available and coupling matrix elements
of a few GHz for the first few transitions it appears
probabie that URIMIR experiments 8o far correspond
more closely to this limit, We note, however, that
typical statistical threshold lifetimes for triatomics are
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of the order of nanoseconds and less, whereas for the
larger polyatomic molecules investigated so far the
threshold lifetimes are of the order of micro- and milli-
seconds. **»%® It can be shown that real lifetimes are
on the average then at least that long (see Eq. (4.1) and
Refs. 3 and 60). Therefore, depending on the excitation
rate at higher energies, which is not yet known with cer-
tainty, the experiments may also be somewhat above the
weak field limit, But it is conceivable to select laser
powers and molecules such that the weak field limit
actually applies.

An assumption consistent with the weak field limit
concerns the validity of a master equation Case B

p=Kp. (4.11)

K is now a tridiagonal matrix coupling only adjacent
“levels” in the sense of Sec. III. We take here only the
energy scale into account and treat the general case in
Sec. V. By definition of the weak field limit equation
(4.11) is of finite order L since the populations above
threshold vanish. The explicit solution is most easily
obtained by diagonalizing K [see Eq. (1.7)]

p(t) =Y(&)p(0) , (4.12)
Y(t) =FGexp(AH)GTF! , (4.13)
Here G is orthogonal and F diagonal
L] 12,M -1/2
Fou= (H K,,,M) (pz KN_I,N) , (4.14)

Fy=1.

F transforms K into a tridiagonal symmetric matrix S,
as is easily seen

FKF=S. (4.15)

G diagonalizes S by an orthogonal transformation

G'SG=A . (4.16)
In simple cases this can be done analytically, or else,
powerful numerical methods are available for this type
of matrix.*® Equations (4.12)~(4. 16) therefore provide
an easy solution to Eq, {4.11). We have used the fact
that K is real and that Ky y.(Ky.1,»>0, which is always
true for our physical problem. Otherwise Eqs. (4.12)-
(4. 16) are general,

The eigenvalues of the matrix K with strictly positive
Ky 4y and ky and strictly negative

~Kyy=Ky.g,x +Kya, v+ 2y) , (4.17)

are real, strictly negative, or zero if there is no

loss. ©17% I we assume that the largest eigenvalue A,
is the only one close to zero (or equal to zero), then
after a sufficiently long time the contributions from all
exp(A,t) but Ay are negligible. The populations for this
“steady-state” situation are obtained from Eqs. (4.12)
and (4.13)

L
pa() = expAt)FynGr1 ZiF;}”Gm 54(0) (4.18)
M=

For the relative populations [cf, Eq. (4.2)] we get

-1
gy(steady state) =F Gy (ZFuqu) . {4.19)
M=1

Martin Quack: Unimolecular reactions induced by infrared radiation

We note that, depending on the distribution of eigen-
values the “steady state” need not be physically meaning-
ful, unless we have A =0, where it corresponds to the
equilibrium state, Summing up Eq. (4.18) over all N
and differentiating with respect to time we find [cf.

Eq. (1.3)]

din py(t)

e g ==

gl und = (4. 20)

In order to proceed, one has to make asgsumptions about
K. One extreme case which might arise is that the cou-
pling K, decreases drastically with energy, particu-
larly near the reaction threshold. We shall call this the
reaction threshold bottleneck (RTB) assumption. We
can then put approximately for the last diagonal element

~Kpp=Kp, 0 v K, 1K1 - (4.21)

The loss term K, 4 , for excitation above threshold is
only a small perturbation, Within this approximation
the steady-state distribution using the rate constants
from Case B becomes

L -1
gq,(steady-state) ~ p,(}:1 pN> . (4.22)
N=
Note the similarity to Eqs. (4.2) and (4.4). Since the
distribution (4. 22) may be derived from a (microcanoni-
cal) equilibrium distribution, but truncated at some
level L (the reaction threshold) we shall call such a dis-
tribution a truncated equilibvium distribution (TED).
We shall discuss the physical meaning of the density of
states p; in Eq. (4.22) in more detail in Sec. V. With
Eqs. (4.21) and (4.22) we obtain for the largest eigen-
value to first order

L -
~ M =kprg =Kz.1,1P;1 (NZI pN) . (4.23)
Using the Case B rate constant for K,y ;, we get (see
Table II)

L -1
ks = 27H| Vi, L | szpLol(I; PN) . (4.24)
If the order of the matrix L is sufficiently large and the
variation of p over an interval N, N+1 is small, we can
replace the sums by integrals

ke =217 "w| Vg penar2, Ep-nwr2 |*o(By —7iw/2)

E -1

xp(ET+h'w/2)[f Tp(E) dE] . (4.25)
0

We note that kg is proportional to the laser intensity
(< | Eyl%< | VI%). Please also note that | V| is the effec-
tive coupling matrix element, which is derived from
(V,;/2) defined in Eq. (2.9) in the WF-QRA [cf. Eq.
(2.27)]. To the extent that the RTB-assumption holds
true, we can obtain an average coupling matrix element
from a measured value kprp at dissociation threshold,
namely | Vgpumwr2, gonwra! 2 since the densities of states
are relatively well known (see however Sec. V).

We can compare the RTB-assumption with the strong
collision assumption for the low pressure limit of ther-
mal unimolecular reactions.?® There as well one has
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“equilibrium” populations up to the threshold energy E,
(however, Boltzmann!) and essentially zero populations
above E,. The unimolecular rate constant at steady
state then becomes (considering only the energy scale)®?

B =k, j; ) p(E) exp(- E/RT) dE
T

- -1
x {J o(E) exp(~ E/T) dE} : (4.26)
0
This can be written in a slightly more suggestive form,
assuming that p(E) = p(E ;) varies slightly compared to
the exponential function above E,

-1
g"':kc(kT)p(ET)[ I ETp(E)exp(—E/kT)dE] . (4.27)
0

Equation (4. 27) shows some formal similarities to Egs.
(4.23) and (4.25). The total rate constant for collisional
deactivation of excited molecules, %k, is introduced to-
gether with the integral [ 3, p(E) exp(- E/kT) dE instead
of the activation rate constant through a well-known
argument using detailed balance, 2 The advantage is that
k. can be eguated approximately to total collision num-
bers, e.g., the Lennard-Jones collision numbers. The
formal argument in obtaining %}° is otherwise similar to
our derivation of kpn. However, the results are com-
pletely different, even the partition functions have dif-
ferent meanings. This is similar to our remarks in
Sec, IV, A.

It is well known® % ® that the strong collision assump-
tion does not often pertain to thermal unimolecular re-
actions. Similarly, we may not expect our RTB-as-
sumption to apply, as a rule, in URIMIR. A less drastic
assumption would be that K,, decreases only rather
smoothly with energy or even remains constant. Then
the perturbation due to dissociation cannot be neglected
and the steady-state populations from Eq. (4.19) may be
quite different from their “equilibrium” value (4.22),
We shall investigate solutions for such a case which we
shall call intermediate bottleneck in more detail below
(Sec. IV.D.).

The products in the true weak field limit always cor-
respond to the lowest threshold, if the higher thresholds
are separated by more than #iw from the lowest thresh-
old. It appears that so far this has been actually ob-
served for most cases although there are quite a few
controversial systems. This would place most present
experiments rather close to the weak field limit as de-
fined here, To conclude our discussion of the reaction
threshold bottleneck we show in Fig. 14 the time evolu-
tion for a three level system similar to the one consid-
ered in Fig. 13 for the strong field limit [computed with
Eqs. (3.4) and (2.27)]. This time we assume decay
only from the third level but with y3>> | Vy3l 0,11V ,|,
Correspondingly, Level 3 is not populated and Levels 1
and 2 decay with a common rate constant given in Eq.
(4.23) after fast establishment of the steady-state popu-
lation (4.22). Again the fluctuations even with just 21
states in each level are quite small. Therefore, the
much simpler master equation treatment, and indeed
the use of Eq. (4.23) would be quite appropriate for all
practical purposes.
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FIG. 14, Time evolution for a three level system in the weak
field limit (RTB) [from Eq. (3.5) with 21 states in each level
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C. Early bottieneck assumption

With weak fields the rate determining step may some-
times be the first or the first few transitions at low en-
ergies (see Fig. 1) where the densities of states are
still low and a master equation treatment may not be ap-
propriate (however, still possibly Case C). We shall
call this the early bottl eneck assumption. This assump-
tion is implicit in the work of Bloembergen, Cantrell
and Larsen’®% who treat only the first few excitation
steps explicitly and characterize the subsequent loss by
a phenomenological decay term into the “quasicontinu-
um, ” which is assumed to begin after about 3-4 CO,
lager quanta have been absorbed (for SFg), The treat-
ment of Mukamel and Jortner?? is similarly valid for an
early bottleneck only, since their representation of the
higher excitation steps as coherent exact resonance
transitions between nondegenerate levels is quite un-
realistic (see Sec. IlI). However, the early bottleneck
assumption may indeed be appropriate for many of the
present experiments. In particular it allows for an easy
explanation of the isotopic selectivity of URIMIR, 20~24

Computing only the rate determining step indeed al-
lows one to obtain good estimates of the total reaction
rate (also relative rates for various isotopes), How-
ever this does not provide a quantitative understanding
of the dynamics of the dissociation process and the
product and product state distributions in the case of
competing channels above reaction threshold. We there-
fore propose a combined Schrddinger/master-equation
treatment as follows.

For a realistic level structure (from high resolution
molecular spectroscopy) one solves Eqs. (2.27) and
(3. 4) up to energies where one of the Cases A-D ap-
plies. At the top one uses in the first round a phenom-
enological decay term, whose absolute magnitude can
be estimated from the equations in Table II and Sec. III.
Now already at energies below the truncation limit the
rate law should be linear with a rate constant which can
be obtained from the results of the first round, In the
second round one can now truncate at a lower energy so
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FIG, 15. {(a) Time evolution for a five level system corre-
sponding to the early bottleneck situation [from Eq. (2.27)].
The lowest two states are off resonance by 2.8 (1Vy;1/2). The
higher three levels contain 21 states each, with 7310 Vi, |
and all other levels being stable. Curve 4 is close to 3 and
therefore not drawn. (b) Gives the fractional populations Eq.
(4. 2) with the establishment of a steady~-state. Small oscilla-
tions have not been drawn. See also text.

B I
X0

that above this truncation limit the rate law is linear,
whereas below the truncation limit one may have oscil-
lations. We can now compute the loss term for the os-
cillatory part and use it as a gain term in the first step
of a master equation treatment. This breaks the prob-
lem in two parts, each of which is readily solved, with-
out making arbitrary assumptions and using only valid
approximations in each case. We shall present calcu-
lations for specific molecules along these lines in a
later communication. Here we show only for a simple
model how well such a treatment actually works. Figure
15 shows the result of a calculation [based on Egs.
(2.27) and (3. 4)] for a five level system. The lowest
two levels (1 and 2) contain just one state each, being
slightly off resonance, whereas the upper three levels
contain 21 gtates each. The level structures are chosen
to satisfy approximately the conditions for Cases A and
B. The highest level is assumed to decay at a fast rate
Y5> | Vysl, it is therefore not populated appreciably.

As one might expect, Levels 1 and 2 show a strongly
oscillatory decay. However, Level 3 follows a smooth

Martin Quack: Unimolecular reactions induced by infrared radiation

rate law and similarly Level 4, which is always very
close to Level 3 and therefore not shown. Small oscil-
lations have not been drawn, for clarity. In the second
round of the calculation one solves the two level problem
with a decay term added on Level 2, as obtained from
the calculation, according to Eq. (2.27). This is very
easy for the example treated here, For the upper three
levels one uses a master equation (3.1) with a gain term
at the lowest Level 3, taken from the decay of Level 2.
Again such a master equation is very easy to solve and
the results one gets are almost indistinguishable from
the first computation which involves a matrix problem
of order 65. Figure 15(b) shows the fractional popula-
tions gy(#) [cf. Eq. (4.2)]. One finds that due to the off-
resonance shift Level 1 is always strongly populated
relative to the others in spite of its low statistical weight
(cf. Case C!). True steady-state is reached only after
most of the dissociation is over, but the fractional popu-
lation of Level 3 {which is almost equal to the one of
Level 4) varies little after (V¢) =40, at which time only
little product has been formed.

D. Model solutions for specific excitation matrices
and intermediate cases

We shall now consider solutions for the master equa~
tions resulting from Case B with more general and more
realistic assumptions. As we have discussed already,
Case B applies probably to most polyatomic molecules
after the absorption of the first few laser quanta [and
with not too high laser intensities, see Case D)., The
Cases A, C, and D can be dealt with on similar lines,
We shall include the competition between excitation and
dissociation both before and at steady-state. The gen-
eral equation is again Eq. (4.11), which must be trun-
cated at some level where dissociation is much faster
than excitation. For the excitation of polyatomic mole-
cules with a CO,-laser this applies at much less than
100 steps on the energy scale, which is an easy problem
to solve along the lines of Eqs. (4.12)-(4.19).

Within the general purpose of the present paper we
present three models for the excitation matrix, none of
which is believed to be very realistic by itself, but which
we believe to “bracket” the total possible dynamical be-
havior. In Model 1 we require K,, =2nu|V,,!%;! with
constant | V,,] #f(I,J) and 6;'= p(E), the density of mo-
lecular states at energy E. This assumption will gross-
ly overestimate the excitation rate at high energies.

Model 2 is based upon the idea that we start from
some zero order basis in which only ore pair of states
for two levels is coupled with a large transition moment
(< v), which is constant and independent of the level of
excitation. This transition moment is now supposed to
be redistributed among all states through some pertur-
bation (as in Fermi and Coriolis resonances) over a
range A, assumed to be constant. We then obtain from
completeness at each level

2
Kppx %Gi ’

v

K.n‘xz‘f‘sx -

J. Chem. Phys., Vol. 69, No. 3, 1 August 1978

Downloaded 14 Mar 2006 to 129.132.218.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Martin Quack: Unimolecular reactions induced by infrared radiation

10

(+X.1 4

0.2

0.0

20 30
1 S 10 N
FIG. 16. Steady-state distributions for the levels (N) of a
typical molecule, assuming coupling models 1, 2 and 3 (see
text). TED is the truncated equilibrium distribution (RTB).
3a is before steady-state, with 25% of the molecules being dis-
sociated. See discussion in text.

This model tends to underestimate the transition rates
at high energies because one can easily show that there
will be more contributions than from just one pair,

In Model 3 we shall assume that the total logs rate
from each level {apart from reaction) is independent of
the level, i.e., K;;=constant, Together with K;;/K,,
=5,/5, this defines a coupling matrix. We shall allow
for modification of this model later by assuming a func-
tional behavior K;;o E™« 1™, for which some physical
reasons could be given,

We have solved the master equation with these model
assumptions for a 32-level system with realistic densi-
ties of states for a “typical” polyatomic molecule.
Level 32 was assumed to react at a very high rate, i.e.,
we consider at first the weak field limit, The results
are shown in Fig, 16, The curve “TED” is the distribu-
tion from Eq. (4.22) truncated at level 31. This corre-
sponds to the steady-state distribution of the reaction
threshold bottleneck assumption, All distributions are
normalized to their individual maxima for better visual-
ization. The crosses correspond to the discrete level
populations, the lines are drawn only to facilitate the
distinction between the points of different distributions.
For model 1 the rapid increase of the rate constant for
excitation with N makes essentially the first step rate
determining. This corresponds then to the early bottle-
neck assumption. Sec. IV.C. Indeed, from a master
equation Case C one would get a similar distribution at
low N. The total rate constant for dissociation (~ 1)
equals about ~ Ky, the loss rate from the first level,
The second eigenvalue is separated from this by about
a factor of six, which leads to a meaningful steady-state
distribution. By the time steady-state populations are
reached, about one-third of the molecules have already
reacted, the rest of the reaction takes place at steady-
state. Model 2 gives a steady-state distribution peaked
at high N, which is not too different from “TED.” This
is a consequence of the agsumed rapid decrease of the
excitation rate with N, The last transition is almost

1301

rate determining. We can compare the steady-state
rate constant of model 2 with the RTB rate consiant Eq.
(4.23) which gives an upper limit, through

(4.28)

Breay =Fgq° Brrs »

F,=q;(real)/q, (TED) . (4.29)

The correction factor F, has an obvious interpretation
as a depletion factor for the last level. For model 2,
F;=0.512, i.e., the steady-state rate constant is oniy
a factor of 2 lower than kgyy. Steady-state is reached
for model 2 after about 30% of the molecules have re-
acted, similar to model 1. The two largest eigenvalues
are separated by a factor of about 5, For the more
realistic model 3 there is not such an obvious rate de-
termining step. The largest eigenvalues are rather
close together (A 12 :23=1:1,7:2.5), and steady-state
is reached only at long times (curve “3”). The deple-
tion factor is nevertheless still F,=0,194, i,e., the
steady~state rate constant is only lower than kgyg by a
factor of 5. Curve 3(a) shows the distribution after 25%
of the reaction has taken place. This distribution is
still quite far from steady state. The time dependent
depletion factor is F,=0,067. We propose F, as a very
convenient way to characterize steady-state depletion
and nonsteady-state effects, since kpyy is easily com-
puted for real molecules as well. This upper limit rate
constant can be used as a first estimate, with correc-
tions F, computed from some models. Such a procedure
is meaningless for the early boitleneck situation, how-
ever. For model 1, F, would be 5x1071°

We turn now to the case where excitation and reaction
effectively compete above threshold. For the same
polyatomic molecule as considered above we have com-
puted specific rate constants k(E,J =0) Eq. (4.1) from
the adiabatic channel model* *® (see Sec. V for other
values of J) for a simple bond figsion reaction. For the
excitation process we use the modified model 3 with
Kyy < N1 below threshold, At very low laser intensity
(Ky, y.1 = intensity!) we again have the weak field limit
with k(E) > Ky, y.4 for all k(E)#0. This is shown in Fig,.
17(a). At steady state (“S™) no levels above threshold
(dashed line) are populated. The weak field depletion
factor for this model is 0.23, i.e., a factor of 4 cor-
rection compared to kgpg. This is between the values
for model 2 and for the unmodified model 3. In Fig.
17(b) we show the result of increasing the laser inten-
sity by a factor of 10", The steady~-state distribution
for unreacted molecules is now to a large extent above
the dissociation limit (the surface under the curve S to
the right of the dashed line). If the laser were switched
off after steady state is reached, all these molecules
would still dissociate. The open points indicate the
product energy distribution. In the weak field limit all
the products are formed with essentially zero energy
(<hw), see Fig. 17(a). By increasing the laser inten-~
sity, one favors the higher energy channels. Similar
conclusions apply of course in the case of chemically
different channels, as we have already seen in Sec.

IV. A. Another interesting conclusion concerns the time
dependence of the excitation process. Both in Figs.
17(a) and 17(b) we have shown the distributions at re-
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FIG. 17. Time dependent level (N) populations for a typical
polyatomic molecule. (a) is for low laser intensity (weak field
limit) as in Fig. 16, but for a modified model 3 (see text). ()
is the steady-state population. (b) is with 10'-fold increased
intensity and competition between excitation and decay. Note
that most of the steady-state population (S) is above threshold
(dashed line). The open circles give the product energy dis-
tribution at steady state (bond fission reaction), See also dis-
cussion in text,

duced times #; and ¢, such that the product (Kt,e,,) =#

(or &) is the same for both cases. K is a constant which
is proportional to the laser intensity (Ky, y.; <K

<! Vy, -] 2 intensity). As one would expect, the re-
duced time evolution is exactly the same, independent

of the laser intensity, as long as no dissociation occurs.
This is not true any more at long times. In particular
the steady-state rate constants in Figs. 17(a) and 17(b)
have the ratio

(-’il) =h@=6.19x10",
ka steady state ki(a)

and not 1x107 which one would expect if one assumed
the rate constant to be always proportional to the laser
intengity. This is an example of unimolecular fall-off
for laser excitation. We note that this provides an ad-
ditional means (other than via kp,g) to experimentally
determine average coupling matrix elements for optical
excitation of highly energized molecules. We have al-
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ready discussed the maximum rate that can be obtained
for strong fields in Sec. IV, A. We note that our theory
allows us to compute complete “fall-off curves” for la-
ser excitation, whenever experiments should become
available. It has sometimes been claimed that only en-
evgy fluence (i.e., the product intensity e time for a
laser pulse) is important for the rate of product forma-
tion. Our results show that this is only true for the
weak field limit excluding also the early bottleneck, that
is in practice for intermediate laser intensities. At low
laser intensities the rate will be strongly intensity de-
pendent due to early bottleneck effects (cf. Sec. IV.C,
and Case C Sec. III). At high laser intensities the rate
will be intengity dependent because of the “fall-off” ef-
fects. Still another conclusion can be obtained from Fig.
17. If one excites polyatomic molecules with a very
short, powerful laser pulse (say in the picosecond
range), then almost all of them may be above threshold
at the end of the pulse. If they are in an energy range
where 0<%(E)<10!! s, then all the reaction will go on
after the pulse, eventually competing with collisional
deactivation. This type of ir-laser photochemistry has
considerable similarities to the conventional one step
photochemistry and is quite different from the steady-
state ir-laser photochemistry. Most present experi-
ments with 100 ns pulses can be estimated to correspond
more closely to the “steady-state” type photochemistry,
where we do not wish to imply that steady state is ac-
tually reached during this period,

In this section we have obtained a considerable num-
ber of qualitative conclusions concerning the dynamics
of URIMIR., We have implicitly assumed throughout this
section that the internal energy is the only relevant pa-
rameter, For quantitative applications to real mole-
cules it is necessary to consider further quantum num-
bers in some more detail.

V. CONCISE FORMULATION OF A COMPLETE
STATISTICAL THEORY OF URIMIR

In the derivation of the master equations it was neces-
sary to assume that the matrix elements | V,,I 2 which
are used for the computation of the average | V! % are
“reasonably” distributed [see, e.g., Eq. (3.13)). This
means in particular that out of a large number of |V, |
not just one or a few are large and all the others are
zero. (It does not mean that all the | V;;] are equall)

In principle we can see from the true spectrum whether
this is true. In practice we want to find an approximate
way to compute the | V,,! 2, without knowing the true
spectrum, Similarly, in the use of the statistical rate
constant Eq. (4.1) one has to assume that all the chan-
nels [W(E)] are effectively (not necessarily equally!)
coupled to all the metastable states [p(E)].® When using
approximate models for computing any of these quanti-
ties [1 V1, &, 6,;, W(E), p(E)] it is therefore primor-
dial to identify at first all strong selection rules and dy-
pamical constraints.*® If this has been done, we can
then use the whole previous argument, using quantities
like | Vg, yo oo 5,0,... 15 BB, J,.00), W(E,J,...),
p(E,J,...). We shall retain in our notation mainly the
total angular momentum gquantum number J as represen-

J. Chem. Phys., Vol. 69, No. 3, 1 August 1978

Downloaded 14 Mar 2006 to 129.132.218.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Martin Quack: Unimolecular reactions induced by infrared radiation

tative for all the others, since it turns out to be the most
important “good quantum number.”

We have three kinds of (almost) good quantum num-
bers. Firstly, those which are good quantum numbers
for both the excitation process and the monomolecular
reaction. The most prominent one of this kind charac-
terizes the nuclear spin state. We can expect both nu-
clear spin species and motional species in the molecular
symmetry group®™ % to be approximately (1) conserved
during an electric dipole transition and reaction. This
type of selection rule has been discussed in much de-
tail elsewhere® and we shall assume that it has been
dealt with, Related constants of motion arise, when the
problem consists of dynamically uncoupled parts. For
instance an isomer (or some particular states) of the
molecule may be energetically accessible but neverthe~
leas dynamically decoupled, say, due to a high barrier,
etc, This first kind of decoupling breaks the whole
problem into various disconnected parts, and we shall
assume that this has been done.

The second kind of good quantum number is conserved
during the monomolecular step, but nof in the excitation
process. The total angular momentum quantum number
J is of this kind, since we have the electric dipole selec-
tion rule AJ =0, 1,
dependent populations, for various J, because of the
strong dependence of the monomolecular rate constant
k(E, J) upon J. %58~ Dparity, which also belongs to this
kind of good quantum number has much less importance
in practice and we shall not discuss details.

Thirdly, we may have selection rules which are im-
portant for electric dipole transitions but unimportant
for the monomolecular reaction. We think that these
are always molecule specific and have to be identified
in each particular case (e.g., the AK selection rule for
symmetric tops).

If we have identified all strong selection rules, the
rather irregular remaining couplings allow us to make
statistical assumptions for suitably averaged guantities.
We give an explicit treatment regarding J. The master
equation becomes a doubly tridiagonal form in both en-
ergy and angular momentum

K={KE§R@;J§O.“E;J ’ KE;J!E;.'} ’ (5° 1)
FALT L
~Kg sig, s =FE,J) +12;_ Kpanw, 5018, 5 +Kpenw, 7018, 5) -
(5.2)
The statistical decay rate constant is given by
k(E,J)SW(E,J)/np(E, J) . (5.3)

The densities of metastable states p(E,J) have to be in-
terpreted as averaged densitied of states given a total J
in an interval AE around E.* %% They can be computed
within the usual approximations of unimolecular rate
theory. The number of dynamically accessible channels
can be computed from the adiabatic channel model, for
example

W(E,)=2_ WE-V, P

alJ)

(5.4

We have to keep track of the time-
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is the maximum of the ath adiabatic channel
1(0) for x

Here V
with total angular momentum J % and h(x) =
>0(<0) is the unit step function,

In practice one wants to compute p(E, J), and | VKLI
from a zero order model Hamiltonian, with A= Ho +8 1
such that we have for averaged quantities

(PO(E’ J)>AE'="<p(E’ J))AE s
and
{V?(leg ‘VKLP s

or explicitly (see Sec, IM)

(5.5)

Ny Ng Np Ny

S e vl

1=1 k=l 1l k=i

(5.6)

The zero order Hamiltonian may be chosen such that the
individual | V?,I ? are quite unrealistic, if only the aver-~
aged quantities are good approximations. We note that
ﬁo is model dependent and not a basic feature of the
theory.

The master equation (3. 1) is obviously more difficult
to solve with the matrix in Eq. (5.1) than with the ma-
trices in Sec, IV. We give here only the simple analyti-
cal results for the strong field limit {cf. Sec. IV.A) and
the weak field limit reaction threshold bottleneck (cf.

Sec. IV.B). In the strong field limit we obtain
b=z S [ WiE, D aE, (5.7)
J=0 “Bp(J)
e Ep (N
Z,=2 f plE, ] dE . (5.8)
J=0 “¢
In the weak field limit we get
gl

Ryr, ——Z‘I(E:r(J) J) Z Kx,.(n.nw,:'wf(.n,.r

X h[E () + Fiw -ET(J’)] . (5.9)

hlx] is again the unit step function. We introduce the
reaction threshold bottleneck assumption

A(E (), J) =hiwplE (), NZ 7,
Z’I‘=Z fET(:)p(EyJ)dE ?
Ja0 70

kars =Z 1200w ZP(ET(J), J)
J=0

(5.10)

(5.11)

I+

x 3 |v . |2
Ep(L)nw, J*LEp{T), T
FiaTed T v T s

X p(E ) + 1w, SIE ) +Fiw - ExJd)] . (5.12)

Most of the considerations of Sec. IV can be taken over
with few changes. However, the depletion factor F, is
now a weighted average over all J and it is not possible
to obtain all the | V1? from one measured rate constant
any more, Still, we can compare the experjmental re-
sults with ky.p and a theoretical depletion factor com-
puted from the first eigenvalue and eigenvector of the
matrix (5.1)., The particular importance of kgprp arises
from the fact that is always provides a strict upper limit
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TABLE 0I. Flow chart for the computational approach to collisionless URIMIR.

L Is the Excitation Monachromatic, Coherent? J
Ys: Y I Yes N
Integrate Eq. s R effects £ istomi ?
(1.9) numerically desired? N <1507 Distori molecule? | ::J::ffrit_e liq. (3.1) with averaged Einstein
icients

No

No

l Triatomic molecule? j

. Yes
Use classical trajectories, cf. Ref. 67

v LYo

Relevant time < 10! §?

No
No Wiw or V1> w?
No Is only total rate and isotopic selectively r‘_;—es—L Early bottieneck? |\
desired?
Yes Yes No
Validity of master

Integrate Eq. (2.27) or (1.9),

[ Truncation possible at ¥ < 150?]

Use master equations test for equations not proven

cf, Refs. 20-25 ‘

Yes No

1/ TUse case A or C approx-
imations Sec. 111

Use combination approach, Sec. (V.C.
with connections for 7irst and second
part as given 2

cases A, B, C, D

Example: Case B

Use Egs. {4.5), (4.6), (4.9), (5.7) for
rates and product distributions

is the time dependence required? Yes Integrate Eq. (4.11)
resp. (5.1)
No
Strong field limit? Kg'g>>k(E')?
Yes Neo No
Weak field limit K 7 |_NC M) <17
< KEN
o ] Yes
Yes P
Compute relevant quantities

Yes

Is K ' rapidly decreas- at steady-state, Egs. (4.18)-

Accept kgrg Egs. (4.25) and (5.12) as
good estimate

for the rate constant, before and at steady state, at
weak and at strong fields. For the product and product
state distributions the equations of Sec. IV apply as
well, combined with the equations of this section.

SUMMARY AND CONCLUSIONS

The most important single result of the present paper
is the proof, in Sec. III, that linear or approximately
linear relaxation or master equations under certain con-
ditions properly describe the time dependent behavior
of polyatomic molecules subjected to cokerent mono-
chromatic radiation, We have been able to identify sev-
eral cases, in which relaxation rate laws pertain and
have given quantitative expressions for the effective
rate coefficients as a function of molecular (spectro-
scopic) parameters. This gives a solid foundation for
the use of linear rate equations in URIMIR, which has
been introduced recently on a more phenomenological
basis. ?# % We believe, indeed, that a use of master
equations will be necessary in a model independent the-
oretical treatment of URIMIR of truly polyatomic mole-
cules, Master equations will also provide a most con-
venient basis for model calculations as noted in Sec. V.
Any nonstatistical-mechanical approach will meet severe
difficulties for molecules with more than two atoms.

We show in Table III the possible theoretical approach

Vi.

ing with £7 (4.20) and Egs. (5.1), (5.9)

to URIMIR, in the convenient form of a flow chart. For
diatomic molecules the statistical considerations of
Sec. III do not apply. In this case one can either inte-
grate Eq. (1.9) numerically as discussed in Sec, II (see
also Refs. 67 and 68) or use classical mechanics, as
has been proposed recently. 8 N is the number of effec-
tively coupled states in a quantum-mechanical calcula-
tion which may be considered to be feasible as long as
N<150, For triatomic molecules we always have N
>>150, but classical trajectories can be calculated for
short times. For large polyatomic molecules the zero
point energy is a considerable fraction of the dissocia-
tion energy and the use of classical mechanics becomes
questionable. At this point the use of semiclassical
methods would appear to be more appropriate. 8

The rest of Table III is a largely self-explanatory
summary of the statistical mechanical and combination
methods discussed in the present paper, including the
quantum mechanical treatment of previous authors for
the “early bottleneck” case, 2*~%° The table is of course
not meant to be complete, in particular we have omitted
all methods which require the explicit introduction of
the “rate of intramolecular energy transfer.” To the
extent that this terminology corresponds to a physical
phenomenon, it is éimplicitly contained in the spectral
properties of the Hamiltonian in our treatment, It may
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be noted that there is still a lacuna in the treatment for
coupling matrix elements | V| being of the order of the
field frequency w. It remains to be shown whether mas-
ter equations are valid in this case as well. With pres-
ent experiments mostly the case | V| <w applies.

The fundamental validity of a master equation treat-
ment being justified, it is possible to obtain some gen-
eral theoretical predictions, which are rather indepen~
dent of particular molecular properties. Some of these
concern the dependence of the unimolecular rate coeffi-
cient upon lager intensity. An absolute upper limit at
all intensities is given by kypp Egs. (4.25) and (5.12).
Deviations from this value arise:

(a) at very low intensities due to “early bottleneck”
effects. These come from the fact that the intensity in-
dependent diagonal terms in Egs. (2.27) or (1.9) play a
dominant role compared to the intensity proportional
off-diagonal couplings | VI®. This leads to a strong,
more than proportional intensity dependence of URIMIR
which has been discussed previously (Refs. 20-25 and
many experimental papers).

(b) At moderate intensities we may be close to the
weak field limit of Sec. IV.B. In this limit the rate
constant may be rather close to kgyy, with deviations
given by the parameter F, as discussed in Sec. IV.B.
kgrs, and therefore the rate constants in the weak field
limit are proportional to the laser intensity,

(c) At even higher intensities the rate constant will
drop considerably below kg,y for two reasons. Firstly
we may make a transition from a master equation Case
B to Case D (Sec. III), where the off-diagonal rate coef-
ficients increase only with the square root of the inten-
sity at most. This may or may not happen depending
on molecular properties. Secondly, we always shall
have unimolecular ‘fall off.” This arises through the
fact that at very high intensities the intensity indepen-
dent terms in the diagonal of the rate coefficient matrix
K play a dominant role compared to the intensity propor-
tional off-diagonal terms, i.e., the monomolecular re-
action step becomes rate determining. Therefore it is
not quite true that the “energy fluence” of a laser pulse
‘ig the only relevant parameter in URIMIR at high inten-
sities, ™ So far no experiments concerning this effect
have been reported. We predict, however, that with
sufficiently precise measurements the effect could be
seen with present laser powers. The best candidates
would be large polyatomic molecules or spin-forbidden
reactions. Such experiments would provide an interest-~
ing check on the theory and also a way to learn more
about the dynamics of URIMIR,

(@) Finally, in many experiments with high intensities
and short pulses much of the actual reaction may go on
far from steady-state. Again, in these cases the time
dependent rate coefficient k(f) is always below the
steady-state rate coefficient (which is itself below kgqp).
In extreme situationg with picosecond excitation and
large polyatomic molecules the excitation and reaction
steps may be completely separated in time as we have
noted in Sec. IV.D.
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A second set of predictions concerns the product
(chemical channels) and product state (physieal channels)
distributions. In the weak field limit (in the sense of
Sec. IV.B.) only the channel with the lowest reaction
threshold E 5, should be populated if the next threshold
E 1, is more than 7w above E;. At intermediate and
high intensities the product ratio changes to become the
strong field limit ratio Eq. (4.9) at most (with appro-
priate changes in the nonsteady-state case). This ratio
is quite different from a “thermal” product ratio, It is
possible to pump a reaction with a higher threshold more
strongly than one with a lower threshold [depending on
W(E) and W,(E)], however, it is not possible to pump
the reaction with a higher threshold selectively. This
is perhaps the most easily tested prediction, using
present day experimental techniques, It is not the aim
of the present paper to discuss particular experiments,
but we do not think that there is any experimental evi-
dence against this prediction so far, The isotopic se-
lectivity arises through the early bottleneck effects and
has already been dealt with by other authors, 2925

Another aim of the present paper was to clarify®™ ™

the relationship between collision-induced thermal uni-
molecular reactions and collisionless unimolecular re-
actions induced by monochromatic infrared radiation.
The fundamental difference between the two types of re-~
action is the underlying distribution function. For ther-
mal reactions this is the Boltzmann distribution charac-
terized by the heat bath temperature T, For URIMIR
this is the truncated “microcanonical” equilibrium dis-
tribution Eqs. (4.4) and (4.22). We note that actual
steady -state (and nonsteady-state) distributions show
further deviations from these underlying distributions
both in thermal reactions and in URIMIR [e.g. , Eq.
(4.19)], The point we want to make is that there is no
theoretical justification for using a Boltzmann distribu-
tion for molecular states in collisionless URIMIR nor
for using an Arrhenjus equation for the rate constant,

Three important omissions of the present paper must
be noted at the end. We have not included the possible
influence of matter on radiation, i.e., our treatment
assumes that the field remains unaffected by URIMIR.
All sorts of interesting effects may arise if this is not
justified at higher gas densities. However, in order to
properly separate various effects one should choose the
experimental conditions such that our assumption is cor-
rect, as is certainly true for some experiments, %19
We secondly have disregarded the influence of collisions
important at higher gas densities. In the range where
master equations are valid for URIMIR one may think of
simply adding collisional terms [Eq. (1.5)] to the mas-
ter equation, using results on collisional energy transfer
from the theory of thermal unimolecular reactionsg, 2 %58
However such a procedure remains to be justified theo-
retically. Some aspects of the problem have been dis-
cussed in Refs. 68 and 71. Thirdly, we have not made
any quantitative calculations for specific experiments.
The major reason for this is theoretical, We think it
is best to separate the fundamental theory from the ex-
periment specific applications, which mostly depend on
additional model assumptions. A fit to an experimental
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result using some model parameters does not neces-
sarily justify a theory or the underlying physical as-
sumptions. In order to minimize the number of unknown
parameters, a theoretical calculation would best be done
for a molecule which satisfies the following criteria:

(1) The high resolution spectroscopy and at least all har-
monic force constants and large amplitude motions (in-
ternal rotations, etc.) should be well known. (2) The
various reaction thresholds should be known beyond
doubt. For this point simple bond fission reactions with
known thermochemistry are ideal. (3) The thermal uni-
molecular reaction in both low and high pressure limits
should be investigated quantitatively over a large tem-
perature range. These three criteria may be useful in
selecting an ideal test case for quantitative comparison
of experiment and theory.
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APPENDIX: DERIVATION OF THE RATE
COEFFICIENT FOR CASE B (EQ. 3.12)

We sum Eq (3. 5) over one level index
NI NJ

()= Zpa(t) E Z {Usar 1250 .

We assume the initial condition p,(0) =1, p,(0)=N;!
Ny Nr

(A1)

pit) =N7 Z Z ‘ Umu)‘ (A2)
From first order perturbation theory we obtain?®
lUmm|2=4lVulzwzi[sin(w”t/z)]z , (A3)
Ny Ny,
pr)= 4N-IZ 2 IVU(IJ)I ‘*’ml:)[sm(wuu.r)t/z)]
(A9)

The |V, are general off-diagonal matrix elements
[Eq. (2.27) or (2.32)], the w,; are general diagonal ele-
ments and wy;=w,; - w,;. We assume that the w, and w,
are mdependently dlstrlbuted according to F(w,) =53,
F(w;) =57 and that | V,;|* are independently distributed
over the frequency range A at least, such that we can
take the average value | V;;|* out of the sums. (A con-
stant |V, 1% would do, but is not necessary.) A is the
effective level width, N,5, ~N;6;=A. We can replace
the sums by integrals, if N, and N; are large

+A/2 (A 2
pr=457tat| v, |? f ] w3l [sm(—gf—)] dwjdwy . (AS5)
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The integral can be evaluated approximately by noting
that [ 2, y~(siny)®dy =, with contributions mainly from
the range — 7 <y <+, This restricts us to times AX¢
>n. We obtain for the value of the double integral 7xA
xt/2, and for the level population

pr=2m|V,,|%5t . (AS6)

We consider a time ¢ such that p,> 0 but p; ~1, there-
fore we obtain in this time range

i;r—‘:z”l V”[25;1 =K . (A7)

We can repeat now the argument starting with a new ini-
tial population in (Al). We note that (A1) is valid either
for random phases or irregular phases in contrast to
Eq. (3.5), which is valid for random phase ensembles.
Going through this in convenient time steps we get

br=Kisps~Ksubr,

which is valid for times short compared to the recur-
rence time, This derivation is not really different from
the original one. T We have given it in order to make the
connection with our coupling matrix elements and fre-
quency spacings. More general master equations can be
obtained with much less stringent assumptions, =%
however, less simple relationships to molecular param-
eters.
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