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A simple general method for obtaining selection rules for the ro-vibronic 
states of reactant and product molecules connected in a reactive collision is 
discussed. Neglecting only the coupling with nuclear spin, rather stringent 
restrictions are found to occur in systems involving three and more identical 
nuclei. Several radical and ion molecule reactions of current interest are used 
to illustrate this finding. Even more restrictive selection rules are found when 
assuming weak coupling (' incomplete exchange of identical nuclei ') in the 
intermediate reaction complex. These include the well-known selection rules 
for inelastic collisions of molecules with several identical nuclei, but less 
trivial examples with chemical reaction are also presented. The symmetry 
corrections and nuclear spin statistics in statistical theories of scattering 
(including the prior distributions for the information-theoretic approach) are 
derived. Further applications are discussed briefly. 

1. INTRODUCTION 

Symmetry  rules in chemical reactions have stimulated many discussions and 
applications since the advent of Shuler 's  rules [1-3] and the W o o d w ard -  
Hof fmann  rules [4, 5]. Both of these deal essentially with symmet ry  rules for 
the electronic states involved in chemical reactions. Although these rules are 
based on severe approximations,  as has been pointed out by George and Ross 
[6], they have been shown to be useful for predicting and unders tanding the 
nature of the electronic states populated in many chemical reactions. 

In  recent molecular beam, chemiluminescence,  and laser-induced fluo- 
rescence experiments,  it has been possible to obtain detailed ro-vibronic product  
state d is t r ibut ions--somet imes a sa  function of the reactant internal states [7-13]. 
T h e  question arises as to how to obtain detailed selection rules, if there are any, 
for such processes. Clearly, complete quantum-mechanical  (e.g. close coupling) 
calculations for cross sections automatically exhibit these selection rules [14-17] 
and so would detailed semiclassical calculations [18, .~9]. In this connection 
detailed symmet ry  selection rules for triatomic systems have been discussed 
previously [16, 17, 19]. However,  an extension of these treatments to more com- 
plicated systems does not appear to be easy. Also the much simpler classical 
trajectory [20] and statistical calculations [12, 21-23] cannot, by themselves, 
predict  such selection rules. 

In molecular spectroscopy, for example, the selection rules tell us which 
states cannot combine in an optical transition. In a similar way we would 
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like to obtain information about state-to-state transitions ' fo rb idden '  in a 
chemical reaction without even doing any dynamical calculations for systems of 
any molecular Complexity. The problem with which we are then faced may 
be seen from the following reaction : 

H++  CH 4->CH3++ H e AHo ~ = - 375 kJ mo1-1. (1) 

This reaction might proceed by the strongly bound intermediate CHs+ with 
the possibility of complete scrambling of the protons. Are there any restrictions 
on the final internal states of CH3+ and He, the initial ro-vibronic state of CH 4 
being specified ? The answer to this is yes. If, for example, the initial ro- 
vibronic state of CH4 is totally symmetric (species .41 in Ta) ,  simultaneous 
production of H 2 in an even rotational state and of CH3 + in a state of ro-vibronic 
symmetry E' or E" (in D3h ) will not be observed. 

We shall show in the present paper how such a result may be obtained, 
which groups are to be used and which assumptions form the basis for the 
approximate (!) selection rules. We shall first illustrate the physical concept 
involved with the simplest example. We then give a simple general method for 
the classification of the channel states of a chemical reaction according to the 
irreducible representations of an appropriate group. This group involves 
essentially the permutations of the indices of identical nuclei (and electrons) of 
all  reactant and product molecules in addition to the operations of the three- 
dimensional rotation-reflection group. In this connection it is necessary to 
discuss the relationship to the usual point group classification of molecular 
energy levels of the i nd i v idua l  reactant and product molecules (see, e.g., references 
[3] and [23]). This discussion owes much to the work of Hougen [25], Longuet- 
Higgins [26] and Watson [27] on the symmetry groups of rigid and non-rigid 
molecules. 

We then illustrate the resulting method for obtaining detailed selection rules 
with a number of pertinent examples, some of which may become experi- 
mentally accessible in the very near future. We finally point out, as another 
simple application, the symmetry corrections to the statistical dynamical theories 
of scattering [21-23] and similar corrections to be applied eventually [28] to the 
' prior distributions ' in the information-theoretic approach [29, 30]. 

2. BLOCK DIAGONAL FORM OF THE S-MATRIX 

The asymptotic scattering wave function for a binary collision event may be 
written, with an incoming wave in channel i only [31 ] : 

~b~O= ~bii- ~ S16bot (2) 
f 

with the incoming wave functions 

~bi, ~ occur -1 exp [ -  ( ikr  - br/2)] 

and the outgoing wave functions 

~bo, ~ oc r -1 exp [ + ( ikr  - br/2)]. 

The channel wave functions r depend only parametrically upon the inter- 
fragment separation r (l is the orbital angular momentum quantum number 
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(partial wave) for the collision). The absolute squares of the S-matrix elements 
Sli give the probability for the transition from a particular initial state li) to 
some final state If) during the collision. Cross sections are formally given by 
equation (3) : 

q7 

o([ +-i) = -~i ~ 181~ - Sli l ~ (3) 

with the channel wave number being given by ki ~= 2lzEti/h ~ (/~= reduced mass 
and Eti=initial translational energy for the collision). Observable cross sec- 
tions for elastic, inelastic, and reactive processes are actually given by appropriate 
sums and averages over expressions like equation (3). Selection rules for 
transitions arise from the S-matrix always being block diagonal in the good 
quantum numbers--corresponding to the constants of motion A which satisfy the 
relation (4) : 

 h=haV, (4) 

the S-matrix may, in addition, be diagonal in further collision constants [32]. 
Often these arise from the fact that the scattering problem may be treated (to a 
good approximation) with some approximate Hamiltonian o~r 0 and the corre- 
sponding additional approximate constants of motion A 0. It is therefore 
convenient to write the states li) and If) of the collision problem in terms of all 
the good and approximately good quantum numbers. 

The hamihonian of a molecular system is invariant with respect to [33] 
(i) any overall translation in space, 

(ii) any translation in time and time reversal, 
(iii) any rotation of all particle coordinates in space, 
(iv) the reflection of all particle coordinates in the centre of mass, 
(v) any permutation of the indices of identical particles (nuclei and 

electrons). 
Invariances (i) and (ii) lead to the conservation of total momentum, total 

energy and to the symmetry of the S-matrix [31]. Otherwise they have no 
consequences for the internal states involved in reactions like equation (1). 

Invariance (iii) leads to the conservation of total angular momentum, i.e. of 
the quantum numbers F for the absolute magnitude and M F for the z-component 
of the total angular momentum. Invariance (iv) leads to parity conservation for 
molecular interactions (quantum number H=_+1).  In the partial wave 
expansion for the integral cross section states with different parity of the frag- 
ment internal states are coupled by the odd values of the orbital angular mo- 
mentum quantum number I. Therefore, there will in general be no restriction 
on the parity of internal states of the fragments due to overall parity conservation, 
although there may be effects on the shape of the angular distributions. 

The major effects to be considered in the present paper stem from (v). The 
corresponding group is the direct product of several symmetric groups S,~, 

N 

s.,......= E s.,. (s) 
i = 1  

The product is taken over all species of particles, N. The scattering states li) 
and I[) may be written in terms of functions which transform as the irreducible 
representations of this group. Transitions between states which differ in these 

2t2 
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labels cannot occur upon collision. However, according to the Pauli principle, 
only states of one particular irreducible representation occur, in which the 
characters under the group operations Q are given by equation (6) : 

NF 

Xo= H ( -  1) v'~. (6) 
i=1 

P~o is the parity of the permutation of the ith kind of fermions (total 
number=  Nv) in the group element Q. If Q permutes only bosons, we have 
X= + 1. The general conservation law corresponding to (v) is then the rather 
obvious statement that before and after the collision only Pauli-allowed states 
occur. These can be easily evaluated for reactants and products using standard 
techniques [3, 24]. 

A more useful, though approximate, selection rule comes from the fact that 
the nuclear spin part of the total molecular wave function is only weakly coupled 
to the other degrees of freedom, i.e. 

- = ( 7 )  

with an approximate hamiltonian for the collision process satisfying Yf0#o = E0~b0. 
The additional approximate constants of motion A o (in the sense of equation 
(4)), may be expected to be collision constants. This leads to the additional 
approximate good quantum numbers I and M 1 for the total internal nuclear 
(' spin ') angular momentum and J and M s for the total ' motional ' (including 
electronic) angular momentum. Similarly, the nuclear spin species PK and 
the motional species Fm (i.e. the irreducible representations of the group defined 
by equation (5)) are additional approximate collision constants. This is the 
fundamental physical assumption for the selection rules derived in the present 
paper. We may note that in deriving the general selection rule for ro-vibronic 
electric dipole transitions (excluding nuclear spin) in optical spectra one starts 
from this same assumption [3, 26]. For the sake of simplicity we shall hereafter 
consider the reactions to occur with well-defined electronic states which are 
properly antisymmetrized with respect to all the electrons. This is no restric- 
tion, since we may allow transitions between these states to occur, and in par- 
ticular, electronic angular momentum including spin is not considered to be a 
collision constant. 

Let us consider, as a particularly simple example, the low energy scattering 
of protons off hydrogen molecules : 

H + + H~(v, j )  -+H + + H~(v', j ' ) .  (8) 

The scattering channels may be given by the quantum numbers J, M s ,  I,  M z, 
j ,  l, v. Below 1-8 eV the electronic state ( 'A'  in Cs) cannot change in this 
reaction. In figure 1 we show schematically one diagonal block S(E-~0.07 eV, 
J = 5 )  of the S-matrix. There are 2 J+  1 equal diagonal blocks with different 
M s . Each may be decomposed as shown into blocks of positive and negative 
motional parity depending on whether ( - 1)J+~is positive or negative. Assuming 
that the electronic wave function has been dealt with, we still have to discuss the 
transformation properties of the motional and nuclear spin wave functions with 
respect to the symmetric group of the permutations of the three protons (whose 
character table is shown in table 1). We can write the nuclear spin functions 
[I, M I X  in the basis of the products of spin functions ~(m = �89 and fi(m = - � 8 9  
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Character table for Sa with the subduced representation 1~($8)~S~ and the in- 
duced representation I'(S3)TS4. 

E 

(12) 
(132) (23) F(S3)J, S2 F($8)1"$4 
(123) (13) 

A1 
A2 
E 

1 1 A AI+F~ 
1 - 1  B A~+F1 

- 1 0 A + B  E+FI+F~ 

Jp2 ~ 22 1333 
.~ 46 5357 

-t- 

1 5 4- 
3 3 A2 
3 5 
3 7 I = 3 / 2  

I 5 
2 4  
2 6  
3 3  
3 5  
3 7  
0 5  
2 3  
2 5  
2 7  
1 4  
1 6  
3 2  
3 4  
3 6  
3 8  0 
0 5  
1 4  
1 6  
2 3  
2 5  
2 7  
3 2  
3 4  
3 6  
3 8  

S ( E , J = 5 )  
122333 0222  11"3333 0112223333  
5 4 6 3 5 7 .  5357 462468  5463572468 

I 
�9 I 

I 
I o 
I 

E + 

I = 1 / 2  

AT e 

A~ 

E -  

Figure 1. Decomposition of the S-matrix into block diagonal form for collisions of 
protons with H~ at E ~  0"07 eV. The rotational quantum number of H2 is j, and l 
is the orbital quantum number. The total motional angular momentum is J = 5 .  
The nuclear spin angular momentum I = {  occurs with motional species As and 
I = �89 with E. 

T h e  23 nuclear spin funct ions fo rm the basis for a reducible representat ion of S s 
of the s t ructure  (compare  table 1) : 

D R = 4A 1 + 2E. 

T h e  four  A 1 funct ions have 1 = 3 / 2  ( - 3 / 2  ~< M z ~< 3/2) and the E funct ions 
have I = 1 ( M / =  + �89 

T h e  motional  wave funct ion may be writ ten in the basis of the degenerate 
funct ions : 

[ 9b(1)) oc Ik(1))[a(23)) ,"  

14,(2)) oc Ik(2)) Ia(13)), (9) 

] 4~(3)) oc ] k ( 3 ) ) l a ( 1 2 ) ) .  
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Here the symbolic notation Ik(m)> la(no)> means that nuclei number n and o 
occupy the bound state in the diatomic molecule corresponding to the channel 
la> = l J, Mj,  v, j ,  l>, and nucleus m occupies the continuum state (wave number 
k). These functions generate a reducible representation of S 3 of the structure 

D R = A z + E  if j H 2 i s ~  

and 

D R = A  I + E  if Ja2 is even 

(see table 1, noting that the electronic state is totally symmetric). The total 
wave function for fermions must transform as A 2 in $3 (cf. equation (6)), i.e. 
the nuclear spin functions with I = 3 / 2  combine with A s motional states (and 
odd JrI2) to give Pauli-allowed wave functions, and each E-function with I =  �89 
combines with one motional E-state to give one allowed wave function of species 
A 2. The motional wave functions of species A1 do not occur for spin-�89 particles. 
This leads to the block diagonal form of the S-matrix in figure 1. In reality 
there is no block of species A t and there are four identical blocks of species A~ 
for the different values of - 3/2 ~< MI  ~< + 3/2, only one of which has been drawn. 
There are similarly two identical blocks of species E for I =  �89 and M I=  • �89 
This structure occurs similarly for positive and negative parity. To within our 
approximation of conservation of I and M t no transitions between the different 
blocks are possible. In this particular case this does not lead to any simple 
selection rules for the internal states of H~, since even and odd values of j are 
connected in the block of motional species E. In more complex situations, 
however, more interesting results are obtained. 

3. EXCHANGE DEGENERACY, INDUCED REPRESENTATIONS AND MOLECULAR SYMMETRY 

GROUPS 

The discussion of the elementary example H+/H2 in the previous section 
contains all of the basic physics (as did all of the detailed previous treatments of 
symmetry in triatomic systems, e.g., references [16, 17]). However, with more 
complex situations which are the subject of the present paper, it becomes im- 
practical to write down the scattering wavefunctions according to equation (9) 
and to symmetrize them properly. Our task in the present section is to provide 
a simple direct way to obtain the reducible representations of the groups Sn,,,~2... 
of equation (5) generated by the degenerate scattering wave functions of the 
generalized equation (9). For practical purposes it is also necessary to discuss 
the relationship to the seemingly unrelated point group classification of the 
fragment states which are two of the factors in the channel wave functions. 

We consider two collision partners containing k + m = n  identical particles 
of one kind (the extension to several kinds of particles is obvious). The channel 
wave functions may be written as a product (compare equation (9)) : 

[a) oc Ix(l, 2 . . .  k)>ly(k+ 1 , . . .  n)>[ Ymtt>, (10) 

where Ix> and tY> are classified according to the irreducible representations, 
l-' k, of S~ and F m of Sm and la> according to the direct product representations 
Fk, m of Sk. m-- S k |  ~. The exchange degeneracy [34] of the unsymmetrized 
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channel states is equal to the number of configurations which are only dis- 
tinguished by permutations of identical nuclei between the two collision partners : 

n! 
gP=k!ml" (11) 

The structure of the corresponding reducible representation of S n is given by 
the induced product representation [34, 35] : 

rk,. s  =-(rk| Z l(rk, rm, rn)r . (12) 
rn  

The frequency f(Fk, Fro, rn)  of r n is given by Frobenius' reciprocity theorem 
[36]; 

g 

Z l(r , rm, (13) 
k, m 

i.e. the frequency of P n in the induced representation rk, m~S n is the same as the 
frequency of rk, m in the subduced representation Fn~Sk, m. The latter is easily 
computed from the character tables of S n and Sk,m, e.g., using the standard 
formula [36] 

g 

fiDR=g -1 Z (xIr*)o(xiDR) �9 ( 1 4 )  
j=l 

(xjr0 * is the complex conjugate of the character of the irreducible representation 
F i ( = r k ,  m) and Xj DR is the character of the reducible representation D R 
(~Fn~Sk, m) obtained by restricting the irreducible representations of S,~ to 
the operations of the subgroup Sk, m. The order of the group is g. There are 
also more direct ways to obtain the f(Fk, Fro, Fn), e.g., using the Young tableaux 
as shown in Chapters 7-12 of reference [37] or by using theorem 20 of reference 
[35 a]. We also note that 

f(rk, ] 
or } (15) 

Equations (12)-(15) provide us with a simple way to obtain the transformation 
properties of the scattering wave functions in S~ if we know the transformation 
properties of the ro-vibronic wave functions of the separated collision partners 
under the operations of S k and Sin. For diatomic and other simple molecules 
one might obtain these by elementary considerations (see, e.g., Chapter 7 of 
reference [38]). 

In order to obtain a simpler general procedure for polyatomic molecules we 
use the relationship between the normal point group classification of molecular 
energy levels [3, 24], and a classification in a permutation-inversion group. 
This relationship has been pointed out by Hougen [25], Longuet-Higgins [26] 
and Watson [27]. We repeat here only briefly the general result and the reader 
is urged to consult the original papers for more details (see also references [39, 
4O]). 

Hougen has shown how the ro-vibronic levels of any rigid molecule may be 
classified according to the species of the [ull molecular point group [25] (i.e. 
not only the subgroup of rotations). We shall use this result below without 
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giving details here. He has also shown how a combination of point-group 
operations and operations on the rotational variables may be equivalent to some 
permutation, P, of the coordinates of identical nuclei and sometimes including 
an inversion E* of the laboratory-fixed coordinate system in the origin. Longuet- 
Higgins [26] generalized these results by pointing out that the ro-vibronic energy 
levels of any molecule, including non-rigid molecules (linear molecules have 
been dealt with separately) [41] may be classified according to the irreducible 
representations of a molecular symmetry group Msg of order g containing 
feasible permutations, P, of identical nuclei combined sometimes with an in- 
version E* (P*=_E*P=PE*). Ms~ is a subgroup of the direct product group 
S*nl,n2...--S*| . . .  (compare equation (5) and S*=--{E, E*}). Any 
pc.) of Ms~ for rigid molecules may be associated uniquely with a point-group 
operation which is a proper rotation for P and an improper rotation for P*. 
Hence Msg is isomorphous to the point group for rigid molecules, and we have 
the one-to-one mapping between the point-group species F f  and the molecular 
symmetry group species I" r : 

r:- .r/ .  (16) 

For example, the group given by Longuet-Higgins for the symmetric H3 + 
molecule is the one we have used for the scattering problem H+/H~ multiplied 
by S*-~{E, E*}, i.e. MSl~=S*| It is isomorphous to the point 
group D~h of H3 +, with (123) replaced by C~, (12) by C~, E* by ah, (123)* by 
S 3 and (12)* by a v. The reader may wish to verify that, indeed, the transforma- 
tion properties of the ro-vibronic wave functions of the symmetric top H3 + 
may be obtained either directly with respect to the operations of $3" or with 
the method of Hougen [25] in the point group Dzh, leading to equivalent results 

t as to F~ ~-~F~. 
The important point made by Longuet-Higgins is that in general only a 

subgroup of feasible operations of the full group S* is useful for classify- 
h i , n 2  �9 �9 �9 

ing molecular energy levels (and isomorphous to the point group for rigid 
molecules). If a spectroscopic state of a molecule transforms as F~ under the 
group of feasible P* and P, which is a subgroup of S* it actually corre- 

n l , n 2  �9 �9 " 

sponds to a set of degenerate states which transform as 

D, = F, T S * , , , , .  �9 (17) 

While equation (17) may be used to find (and define!) the subgroup of feasible P 
and P*, there are also usually simple physical arguments to do so. These 
arguments have been investigated in detail by Watson [27] who first gave equa- 
tion (17). 

We shall consider only a simple example, the rigid ozone molecule whose 
point group is C~v. The character table for C~v and the associated feasible P 
and P* are given in table 2. Each ro-vibronic level of ozone which is classified 
according to the non-degenerate species of C2v is in reality three fold degenerate 
due to the three different ' frameworks ' with nucleus 1, 2 or 3 in the middle, 
respectively (see figure 2). The interconversion between these three frameworks 
is physically prohibited by a very high energy barrier. Therefore, the cor- 
responding permutations are not feasible in the sense of Longuet-Higgins. 
The species of these degenerate levels, accbrding to equation (17), are given in 
the right-hand part of table 2. 
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Table 2. Character table for C2v and $2" with the induced representation F(S2*)~Sn*.  

~ Class C~v E C2 ovz oxz 

Species ~ S~* E (12) E* (12)* 
F($2")]'$3" 

C2v $2* 
A1 A + 1 1 1 1 Tz A1 + + E + 

A~ A -  1 1 - 1 - 1 Rz  (u, v, w) A1-  + E -  

B1 B -  1 - 1 - 1 1 Tx,  R v  A C  + E -  

B~ B + 1 - 1 1 - 1 Ty, R z  A2 + + E + 

x 

z 

Y 

Figure 2. The C2v structure of the ozone molecule (compare table 2). There are three 
equivalent frameworks with nucleus 1, 2 or 3 in the middle, respectively. 

It is obvious, by the way, that the mathematical problem leading to equation 
(17) is the same as the one leading to equation (12). The permutations of nuclei 
between separated collision partners may be considered to be n o t  [easible  in the 
sense of Longuet-Higgins which makes equations (12) and (17) equivalent. 
We shall take here the position that feasibility is defined by the induced repre- 
sentation, but we shall come back to this point in w 5. 

We stress by our notation the p a r i t y  of the species by the index + by defini- 
tion 

r (Sn)TS.* = + (18) 

Note that the subgroup Msg of feasible P and P *  does n o t  a l w a y s  c o n t a i n  E * ,  i.e. 
the feasible P do no t  always form a subgroup of S~,,n 2 . . . with species of well- 
defined parity. 

4. APPLICATIONS 

We may summarize the discussion of the previous sections in a simple 
procedure for obtaining detailed selection rules for the ro-vibronic states in 
reactive collisions : 

(i) Obtain a classification of ro-vibronic energy levels of reactants and 
products in the full point group, using standard techniques for rigid, 
non-linear molecules [3, 24, 25]. 

(ii) Obtain a classification in the molecular symmetry group Msg of Longuet- 
Higgins according to equation (16). 
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(iii) Obtain a classification of the degenerate sublevels according to 
Fr(M~g)TSk* for each collision partner. As discussed by Watson [27] 
this is easily done by ' reading the correlation table backwards ', i.e. by 
computing the subduced representations F(Sk*)~F(M~g ), and using 
Frobenius' reciprocity theorem [equation (13)]. In simple cases steps 
(i)-(iii) can be omitted, computing the transformation properties of 
reactant and product states under the operations of Sk, m* (etc.) directly. 

(iv) Use equations (12)-(15) to compute the symmetrized scattering states 
for every combination of energy levels of the reactant and product 
molecules. 

(v) Compute the species F g and the angular momentum quantum numbers 
I, M z for the nuclear spin states combining with the motional states of 
species Fm. This can be obtained from the character of the reducible 
representation generated by the basis of nuclear spin functions and using 
the Pauli principle, equation (6). 

The S-matrix is approximately diagonal in the labels Fm(• . . . ) .  
If some combination of internal states {a, b} of reactant and of product molecules 
{c, d} is not connected within any diagonal block, then the product states {c, d} 
cannot be reached from the reactant states {a, b}, even assuming very strong 
coupling of all but the nuclear spin degrees of freedom in the intermediate 
reaction complex. This is the simplest qualitative way of using the present 
symmetry rules. In the case of H+/H2 scattering there were no such complete 
exclusions. Let us consider now a few examples where such restrictions d o  
occur. This will also demonstrate the ease of application of the present method. 

4.1. Three identical nuclei 
The reaction 

H2+ HeH+~Ha  + + He (19) 

has been observed experimentally [11, 42] and studied in an ab initio (SCF-CI)  
calculation [43]. A similar reaction occurs with KrH + [44]. As far as the 
protons are concerned, the reaction is similar to H+/H2, but here we have the 
possibility of Ha+-formation. Let us ask which ro-vibronic states of H~ and 
H3 + do not couple (if any). According to our rules (i)-(v), the reaction may be 
discussed with tables 1 and 2. The classification of H3 + ro-vibronic levels is 
easily obtained [3], and the results are summarized in table 3. From para H 2 
(even j )  there will be no production of Ha + in rotational states with the sym- 
metric top quantum number K =  3n and in a totally symmetric vibronic state 
(the motional species i 1 does not occur with any nuclear spin function). Table 
3 can, of course, also be used for the reaction HeD ++ D~, if one changes the 
column for the nuclear spin functions as follows : f /1  combines with 1= 3 and 
I = 1  (gK= 10), A s with I = 0  (gK= 1) and Ewi th  I = 1  and 2 (gg=8) .  

The two channels in the reaction (20) 

> Ha + + D (20 a) 
HD + + H ~  

~ H2D + + H (20 b) 

basically obey the selection rules for reaction 19 ( -+20 a) and for H+/H~ ( -->20 b). 
Obviously, there are always many similar reactions following the same selection 
rules. 



Table 3. 

Symmetry selection rules for reactive collisions 487 

The selection rules for the reaction Hz + HeH+~,~-Ha + + He and similar reactions, 
assuming a totally symmetric vibronic state of Ha +. n = 1, 2, 3, . . . 

j r  L F(S2) F(S~)TS3 I(gK) Ha + 

Even (g) A A1 - (0) K =  0, J =  even 
"\ K =  3n, any J 

\ \ ~  + 

E 1/2(2) K = 3 n -  1 and 
/~ 3 n - 2  

/ /  + 
/ 

Odd (u) B As 3/2(4) K = 0 ,  J = odd 
K =  3n, any J 

In  a reaction like (21), one the other hand : 

H e l l  + + D 2 ~ H D a +  + He (21) 

T h e  D 2 group remains essentially unaffected. There fore  the even j of D 2 
couple only with A 1 and A a states of HD2 + (in Ca~,) and the odd j of D 2 only 
with B 1 and B~ levels. For such simple systems these results can be obtained 
in an e lementary  manner .  

T h e  reaction 
F +  C H a I  -~CH3 + I F  (22) 

has recently been studied in molecular  beam experiments ,  a l though with in- 
sufficient resolution to obtain any selection rules [35]. Th i s  reaction should 
be discussed with Sa*, since the levels of I C H  3 do not have a well-defined parity.  
F rom table 4 we obtain the selection rules in equat ion (23) : 

A 1 or A2(Cav),~,E+-(Sa *) 
(23) 

E(Cav)~-~.(A1 +) or A2+(83"). 

Pari ty is not conserved for the C H  a group individually and the species i l  • in 
Sa* have zero proton spin statistical weight, as indicated by the parenthesis.  

T h e  selection rules for collisions of deuter ium atoms with methyl  radicals 
may be obtained for the reactive channel with the aid of tables 1 and 2 : 

D + CH3(A 2' or As" in D 3 h ) ~ C H 2 D ( A  1 or A2 in C~. )+  H. (24) 

Table 4. Character table for Car and the isomorphous group Ms6 with the induced 
representation F( Ms6 ) ~ S3*. 

Car E 2C3 3or 
Ms8 E 2(123) 3(12)* Fm~S~* 

A1 1 1 I A1 + + A 2 -  

Au 1 1 - 1 A2 + + Al-  
E 2 - 1  0 E++E - 
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There are no further restrictions. On the other hand, one has ' n o  inter- 
conversion of nuclear spin isomers ', as is well known for the purely inelastic 
channel [3] : 

A t t A r '  I 

A ~ A ~ ,  ~ (25) 
/ 

E~-~E. J 

The species designations are for CH 3 in D3h both with ' and " 

4.2. Four identical nuclei 
The reaction (26) 

H 2 + + H 2 - ~ H s + + H  AHo~ ~ - 170 kJ mo1-1 (26) 

in the electronic ground state may  be representative for the simplest reactions 
involving four identical nuclei [46]. Since all states of the reactant and product  
molecules have a well-defined parity, we may use $2, $3 and S 4 for obtaining 
selection rules. Table 5 shows the character table of 84. On the r ight-hand 
side of table 5 we give some subduced representations (compare tables 1 and 2). 
The appropriate induced representations for reaction (26) are summarized in 
table 6. For H 2 and H2 + the species in S 2 is A(B) if j is even (odd). Note 
that (A | 174  as is given by equation (15). From table 6 we 
see, for instance, that there will be no production of Hs + in an A 2 level (A s' 
and As" in Dan) if j and j '  for H 2 and H2 + are both even. If both rotational 
quantum numbers are odd there will be no H3 + in A t states (A t' and At" ). 
The  latter are Pauli-disallowed anyway for spin -1 particles, but not for deuterons, 
for example. The  24 nuclear spin functions (34 for deuterons) combine with the 
motional functions as indicated by table 7, to give allowed overall wave-functions. 
As usual, we have put  the disallowed wavefunctions (for protons) in parenthesis 
in Table 6. 

Table 6 and Table 7 apply to the chemical activation in reaction (27) as well, 

CH2(IA1) d- H 2 -+(CH4) -->CH3 + H. (27) 

This  insertion reaction has recently been the subject of ab initio studies [47]. 
The  A t and A s levels (in C2v ) of CH e correspond to the totally symmetric 

Table 5. Character table for the isomorphous groups $4, Td, and MS~4, with the induced 
representation F(Ms24)TS4* and the subduced representation F(S4)~Ss. P(S4) 
is the partition for $4. 

P(S4) 

Ta E 8C3 3C2 6S4 6aa 
Ms24 E 8(123)  3(12)(34) 6(1234)* 6(12)* 
S4 g 8(123)  3(12)(34) 6(1234) 6(12) 

r(s~)$s~ r(Ms~,)Ts,* 

[4] At 1 1 1 1 1 
[14]  A 2  1 1 1 - 1 - 1 

[2 z] E 2 - 1 2 0 0 
[2,1 ~] F1 3 0 -1  1 -1  
[3, 1] F~ 3 0 -1  -1  1 

At AI++Az - 
A2 A~+ + A1 - 
E E++E - 

E+A~ FI++F~ - 
E+A1 F2++F1 - 
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Table 6. The induced representations {F(Ssa,2)| 4 and F(S3)TS4 which give 
the selection rules for reactions like 

H2{F(S2I, s) } + H2+{F(Ssa,4)}~-"-Ha+{F(S3)} + H. 
(Motional species with zero proton spin statistical weight in parentheses.) 

r(ssl, s) r(s?,,) r(s~,~) r(ss,~)TS, r(s~) r(s~)Ts4 

A A AI (A1)+E+(F2) ( A 1 )  (AI+FS) 
A 13 As FI + (F~) As As + F~ 
B A B 1 F1 .~- (F2) g J~ Jg l~l -{- (Fo) 

B B Bs As+E+F1 

Table 7. Pauli-allowed combinations of motional species Urn with the 2 4 spin functions 
of four protons and the 3 4 spin functions of four deuterons. 

(~/+I)F x 
Fm 

Protons Deuterons 

A1 - -  'A1 + 5A1 + lAx 
A2 SA1 - -  
E XE SE + XE 
F1 3F~ 3F1 
F~ - -  7F2 + SF~ + aF2 

representat ion A in $2, and B 1 and B 2 (in C2~ ) correspond to B in S 2 (see table 2, 
we do not discuss in this paper the point-group classifications for the ro-vibronic 
levels, which are treated in standard references, e.g. [3, 24, 25]). There fore  
with even j of H z and CH 2 ro-vibronic levels of A 1 and A s species, one does not 
produce any levels of the A 2 ro-vibronic species of CH 8 (A s' and As" in Dzh. 
Note that the electronic ground state is 2A2" for CH  z [3]). 

The  inelastic scattering (including exchange) in reaction (28) can be in- 
vestigated by comput ing Fm(S3)TS a : 

H + Hz+ -->Ha + + H. (28) 

This  is easily obtained f rom Um(S4)J, Sz which is given in table 5. One then 
finds the selection rules for the internal states of H3 + in S 3 (or Dzh ) : 

A1 (' or " ) ~ A 2  (' or "). (29) 

This  is a trivial restriction for the proton case since the Ai-levels do not occur 
in Dab (or $3). However,  for the deuteron case the selection rule is meaningful 
since all species do occur with some spin function. T h e  charge exchange 
reaction (30 a) follows the same selection rules 

> CH3 + + H AHo ~ = - 370 kJ mo1-1 (30 a) 
H + + C H 3 ~  

> CHz + + H z AH0 ~ = - 280 kJ mo1-1 (30 b) 

T h e  selection rules for (30 b) are the same as those for reaction (26). Whereas 
(30 b) probably proceeds via the bound intermediate CH4 + (if at all), (30 a) may 
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proceed in a direct way by simple charge exchange. Under these conditions 
there are more restrictive selection rules, as discussed in detail in w 5. 

The reaction (31) occurring in the electronic ground state has been in the 
centre of some experimental work [48] : 

Ar+(2P3/2) + CH4(1A1)-+ArH+(1Z+) + CH3(~A~ ") AH0 ~ = - 160 kJ mo1-1 (31) 

(electronic point-group species in parentheses). Detailed selection rules are 
obtained from considering $4" for this reaction. This group and the permuta- 
tion inversion group Ms~ a for methane (isomorphous to T a and $4) have already 
been discussed by Hougen [49] in relation to the spectroscopy of the hypo- 
thetically inverting CH 4 molecule. The character tables of the three iso- 
morphous groups of order 24 are contained in table 5. 

The species designations in $4" are the same as in S 4 with a positive or 
negative sign depending on whether the parity is positive or negative, as always 
in our notation. This is somewhat different from Hougen's notation [49] but 
saves us from giving the whole character table of $4". In the right-hand side 
of table 5 we have given F,,(Ms24)'PS4*. This gives the species of the inversion 
doublets of methane. With Fm(S3)TS 4 from table 1 we obtain the selection 
rules for reaction (31) : 

A 1 or A 2 (for CH4, Ta)~E'E~A10ror E"As(for CH3, D3h)} (32) 

the species of the ro-vibronic levels of CH a in T d have been discussed by Hougen 
[49] and those for CH z (in Dab ) have been given in reference [3]. 

4.3. Five identical nuclei 

We have already mentioned reaction (33) in the Introduction : 

H+ + CHa ~ C H a  + + Hz AH0 ~ = - 375 kJ mo1-1. (33) 

Although this reaction may proceed through a bound intermediate CHs+ with 
complete scrambling of the protons, there still remain some selection rules. 
In table 8 we give the part of the character table for the group $5" which is 
sufficient for the present purpose and several useful reductions to subgroups. 
From this one easily obtains the induced representations shown in table 9. 
For convenience we have left out the parity designations, although Ms24 is not a 
subgroup of S 5. Motional species which are Pauli disallowed for spin-�89 
particles have been put in parenthesis (I',,~=A 2 occurs with 6A 1 proton spin 
functions, I'm= G 2 with 4Ga, and l ' , ,=  H 2 with 2H 1. The others are missing). 
We find the general selection rule for nuclei of any spin (in related reactions, 
say with D = 2H, etc.) to be 

E(CH4 ; T a ) ~ A  z or B 1 (H2+CHa + ; S~,3) (34) 

and the additional selection rule appropriate for spin-�89 particles, taking only 
really occurring motional species into account, to be 

A 1 or A 2 (CH4 ; Ta)~EI  (H~+CH3+ ; 88,3) (35) 

there will, for example, be no creation of para-H 2 with CHa + in a degenerate 
state if CH 4 were initially in a totally symmetric state (and so forth). 
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Table 9. The induced representations F(Msa4)TSs * and F(Se,~*)~Ss*, omitting the parity 
designations. From this one obtains selection rules for reactions similar to (33), 
(motional species with zero statistical weight for si3in-�89 particles are put in paren- 
theses). 

r(Ms,,) r(Ms~,)T&* r(&)@ r ( s~) -  r(s,.~) r(s,.*)~s~* 

A1 ~ A|  (AI+Gt+HO 
As ) (AI + G1) + As + G2 A |  ~ As G~ + (I) 

E (2Hx)+2H, A|  =~E, (GI+H,+ I)+H2 
Ft ~ (GI+Ht)+G2+ B| (GI+I) 
F~ ~ H~ + (2I) B| -~ B~ As + G2 + H~ 

B|  =-E2 G~ + H~ +(HI + I) 

Let us consider as a second example involving five identical nuclei, the 
inelastic (and exchange) scattering 

H3 + + H~.~H2 + Ha +. (36) 

The selection rules are to be obtained from the induced representations in the 
right-hand part of table 9, namely in general (F(S2,~)) : 

AlO-~Ag or Bz, ~ (37) 
BI~,B~, ) 

and in addition for protons : 

A2.~E 1. (38) 

Isotopic variants of reaction (36) have been studied in much detail by molecular 
beam techniques [11, 50] (so far at moderate COM translational energy resolu- 
tion insufficient to detect selected ro-vibronic states). This leads us to an 
example containing two sets of identical nuclei : 

D3 + + H 2 -+DH~ + + Da (39 a) 

-+D2H + + HD. (39 b) 

The appropriate group is now S~,z (parity may be dealt with separately), and 
the subgroups for (39 a) and (39 b) are Sz.z and S~. The corresponding in- 
duced representations are given in table 10 (they can be obtained by combining 
tables 1 and 2 appropriately). The definitions for F(S2,z) in terms of F(S2)| 
F(Sz) are as shown in table 9. Thus we obtain rather restrictive selection rules 
for reaction (39 a). For example, para hydrogen colliding with Dz + molecules 
in a totally symmetric ro-vibronic state will give only even rotational states of 
D 2 with A 1 or A 2 states (in C2~ ) for DH2 + (and so on). Similarly, in reaction 
(39 b) an A 1 (' or " in D31~) level of D3 + will give only d I or A 2 levels of D2H + 
(in C~) colliding with either ortho or para-hydrogen. 

Enough examples have been considered to show the ease of application and 
the many possible predictions of the present method. So far, we have assumed 
that the rearrangements during the collision are sufficiently profound that all 
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identical nuclei may eventually be ' exchanged '. For the examples treated this 
assumption appears to be realistic. Some additional selection rules arise if this 
is not the case. 

Table  10. T h e  induced representations I~(S2,2(z,2)(4,5))TS2,8(4,5)(x'",3) and 
F($21,2) T32,3(4,5) (1,2,3). 

1, 2, and 3 refer to deuterons and 4 and 5 refer to protons in reaction (39). 

(a) r(s,l,  ~ ) r(s~4, 5 ) r(s,,,o,,).,5)) r(s,,..) ls,.~.,~)o,,,~) 

A A At At+E1 
A B A~ BI+E~ 
B A B1 .4a+El 
B B B~ Bg. + E2 

(b) r(s21, 2) r(82)$$2.3(4,5)(1,2, 3) 

A At+BI+EI+E2 
B A~+B~.+Et+E2 

5. ADDITIONAL COLLISION CONSTANTS DUE TO INCOMPLETE EXCHANGE 

We reconsider the collision of two molecules containing n = k + m nuclei of 
one kind. The levels of the separated collision particles are now supposed to 
be classified according to the species of the molecular symmetry groups of 
feasible permutation-inversion elements in the sense of Longuet-Higgins, M~a 
and Msb. For the total system we use the direct product group Ms(a.b) (a �9 b <. 
4k!m!). The scattering states occur in sets with a degeneracy v=4n! / (a ,  b). 
The collision dynamics may be such that transitions occur only between certain 
v/w-fold degenerate subsets which can be classified according to a group Msv 
of order p = w �9 a �9 b. The irreducible representations of Msp are then (approxi- 
mate) collision constants, noting of course that only overall parity is conserved. 
We may consider the elements of Msp to be feasible in the sense of Longuet- 
Higgins, extending the concept to the supermolecule in a collision. The validity 
of the approximate selection rules thus derived depends upon the validity of the 
dynamical assumptions made. This provides a means for obtaining information 
about the detailed reaction mechanisms just by looking at the product internal 
state distributions as a function of the initial state and without introducing 
perturbations by isotopic substitution. We shall illustrate this rather abstract 
concept with some examples. 

The collisions of protons with H~ discussed in w 2 again provide a particu- 
larly simple example. Indeed, from experiments with p - H  2 at a collision 
energy of 3.7 eV in the centre-of-mass system, it appears that transitions with odd 
Aj are negligible as compared to the very strong transitions with even Aj 
(up to A j = 2 0 )  [10]. This would indicate that ' exchange' between the inci- 
dent proton and the protons of the hydrogen molecule is not feasible. The 
collision dynamics can be characterized by the species A and B of $2 (or $2" ). 
This is shown in figure 3, where we have repeated only the block of positive 

M.P. 2 K 
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parity of figure 1. The important point is that the more rigorous decomposition 
into blocks labelled by the species of S 3 is still valid. But now we have a 
further decomposition of the block for the doubly degenerate species E into 
two blocks of species E A and Ez~ depending on whether E has been induced 
in S 3 by a representation A or B in S~. For practical purposes it would be 
sufficient to obtain just the decomposition according to the species A and B 
in S 2. However, in reality, the apparent lowering of the symmetry (from Sz 
to Sz) introduces additional collision constants without removing the previous 
ones. These additional collision constants stem from dynamical constraints 
in addition to nuclear spin symmetry conservation. In the case of the H+/Hz - 
scattering, the experimental result would not necessarily have been expected 
because the strongly attractive potential favours exchange. The (rather 
obvious) interpretation of the experimental result is that the cross section for 
rotational excitation at 3.7 eV is not due to a compound mechanism. 

j 22  
~, 4 6  

A+__. 

1 5 
3 3 
3 5  
5 7 

S(E,J=5) 
1 333 I 22 [ 1333  
5 3 5 7  4.6 5 3 5 7  

2 4 + 
2 6 EA 

1 5 
5 3 + 
3 5 EB 
3 7 

. ~  

Figure 3. Block diagonal form for the positive parity channels in H+/H~ scattering, 
assuming no possibility of exchange between the incident proton and the protons 
of the hydrogen molecule (compare figure 1 and text). 

In many situations we know in advance from physical arguments which 
nuclei may be ' exchanged ' in a collision and therefore we know Map and the 
appropriate collision constants. For example, in a low energy collision of 
H20 and H2S the protons will not be exchanged between the two molecules 
(we might treat them as distinguishable, due to their attachment or S or O, 
respectively). Therefore the species of the group S~,~ are collision constants 
(A 1, A 2, Bx, B2, compare table 10). This corresponds to the very well-known 
fact that the interconversion between ortho and para isomers, say in collisions 
of H20 and H~S, is a rare event. The more rigorous selection rules from S 4 
(including all possibilities of exchange) which can be derived as shown in w 4 
would then be much less restrictive. 
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Another example in which it is not obvious a priori whether the species of 
$2, ~ are collision constants is provided by reaction (40) : 

CH,  + H2D+ --+CH2D + H 2. (40) 

If the experimental selection rules corresponded to $2,8, then we might assume 
a direct deuteron transfer. It is more probable, however, that only the weaker 
selection rules from S 4 apply, corresponding to a compound mechanism with 
the bound intermediate CH4D+. 

Similarly, the selection rules for the reaction (30 a) already discussed in w 4 
would  be much more restrictive if the mechanism was that of a simple charge 
exchange. Then the only allowed transitions between species of S 3 (or of D~h 
with superscripts ' and ") are 

.41~'--~.41, 
A2~A2, 

E ~ E .  
(41) 

For the simple examples given, the conclusions about internal state selection 
rules arising from incomplete exchange are intuitively obvious in any case. 
This is no longer true in more complex situations in which the group theoretical 
method is still straightforward. We conclude this section with one such example 
which has already been the subject of a molecular beam study [51] : 

F + CH 3 - Call5 -~CsH6F + CH3. (42) 

Assuming only nuclear spin symmetry conservation we would have to use the 
procedure of w 4 with a group ST, s* , of order 2 �9 7! �9 8!. However, the energies 
in the reaction intermediate (CH3C6HsF)* are probably too low to allow for 
any scrambling between ring protons (carbons) and substituent protons (carbon). 
We may then use a much smaller group, Ms~4' , of order 24 (isomorphous to 
S2,a ~ to obtain approximate selection rules for reaction (42). The molecular 
symmetry group of the reactant toluene is of order 12, as discussed by Longuet- 
Higgins for the similar case of CH3BF 2 [26]. For convenience, we give its 
character table in table 11. We write (ab) for the simultaneous permutation of 
the appropriate nuclei ' f ac ing '  each other in the benzene ring (taking the 
C-CHa axis as the axis of the mirror perpendicular to the ring plane). Longuet- 
Higgins has discussed how the ro-vibronic levels of molecules like toluene may 
be classified according to the species of this group. Note that the levels do not 
possess a well-defined parity (we use ' and " instead of + in the species designa- 
tion). 

The induced representations, r(Ms12)TMs~' , in the right-hand part of 
table 1 contain the selection rules for reaction (42) if we omit the parity designa- 
tions. The species designations in Msu'  (isomorphous to $2,3" ) are useful for 
the C 6 H s F + C H  3 product states. We may carry over the definitions for 
F($2,2) in table 9 if we replace S 2 by the group {E, (ab)} for fluorobenzene 
(compare also table 2), and use S a for CH 3. Overall parity determines the _+ 
sign in the Ms24' species. We have then, for example, that an `41" or As" level 
of toluene will not couple with either the .41 and the .43 levels of C6HsF (in C~v ) 
or with the E' or E" levels of CH a (in Dab ). 

2K2 
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We shall give no more examples, since the evaluation of approximate selec- 
tion rules is straightforward in most cases. The concept of these additional 
collision constants may be based upon the concept of the constants of motion 
of an approximate Hamiltonian (in the sense of equation (4)), valid to within 
reasonable accuracy under certain conditions for the collision problem. A 
change in the conditions may change the selection rules. The very low energy 
scattering of protons off hydrogen molecules may follow quite different selection 
rules than those valid at 3.7 eV. Furthermore, the same collision constants are 
valid (to within a given approximation) for a reaction and its reverse. This 
imposes restrictions upon the groups of feasible permutations, Msp, which one 
might introduce by some physical argument. Even in cases in which intuitively 
one might have suspected restrictions due to ' incomplete exchange ', a group 
Msp smaller than the complete permutation group cannot always be found. 

6. SYMMETRY CORRECTIONS IN STATISTICAL THEORIES OF SCATTERING 

The selection rules derived so far simply tell us whether or not some transi- 
tions may occur. As a second simple application we shall discuss here the 
symmetry corrections for cross sections obtained from statistical theories of 
scattering such as phase space theory [21], the RRKM-models [22], and the 
statistical adiabatic channel model [23] (for a review see reference [12]). 

Statistical theories in general are equivalent to parametrizing the IS/i] 2- 
matrix such that all elements outside the diagonal are either zero or equal to 
some constant, usually, W -1, the inverse of the number of dynamically accessible 
channels at energy E. For realistic statistical theories W is smaller than the 
number of asymptotically open channels, N, but for one of the possible statistical 
reference distributions in the information theoretic approach it is equal to N 
[28]. Obviously, one should apply such a parametrization to each diagonal 
block of the ]S/it~-matrix separately since it does not make sense to statistically 
allow transitions which are quite strongly forbidden by some selection rule. 
W (or N) should, therefore, be computed for each set of good quantum numbers 
{E, J, M, H, F1, F 2 . . .}, where the F i are the motional species in some permuta- 
tion group as discussed above. The cross sections must be obtained by correctly 
summing with the proper weight over all diagonal blocks. 

In general we have no experimental control of the nuclear spin state I, M/. 
Thus, we may compute the cross section averaged over all nuclear spin functions 
consistent with the initial internal state combination, a, and summed over the 
nuclear spin functions consistent with the final state, b : 

a(b <-a) = m (43) 
E to(rm)g (rm) 

m 

We imply that the probability for a transition between states of different nuclear 
spin species (and therefore motional species Fro) is zero. The frequencies of 
the motional species F m in the initial state, a, and final state, b, are fa(Fm) and 
f~(Fm) respectively, and gg(F.,) is the nuclear spin statistical weight for the 
motional species F m (in the appropriate permutation group). 

As an example we may write out the inelastic cross section a(F., Iv', j '  ~-v, j), 
for collisions of an atom or ion with a diatomic molecule, summed and averaged 
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over magnetic quantum numbers : 
o~ J +j J +j" 

' J" +-v, ~" E ( 2 J +  1) Y~ Y. Y, (7(i'm[V, J)=2j+l)kvj 2 J=0 n=_+l t=lJ-/I r=lJ-J'u 

]S,,,j,t','.r,r(E, J, II, Fm)l 2. (44) 

We assume that (v, j )#(v ' ,  j ') and that the values of l and l' must satisfy the 
requirement for positive or negative overall parity, H, respectively. In the 
case of collisions of protons with H 2 we have fa(i'm)=fb(i'm)=l#O only for 
F m= E if we require j to be even and j '  to be odd (compare figure 1). For j 
and j '  both being odd the species A 2 and E are possible (and so on). Formula 
(44) is easily extended to collisions of two polyatomic species. In statistical 
theories one would quite generally assume 

ISt,(e, I, rI, rm)12= w ( e ,  J, l-I, I'm) -1 (45) 

for the statistical range of the S-matrix and [Slil 2= 81i otherwise. Since W is 
usually a large number, it would be quite cumbersome indeed to evaluate 
exactly all the dynamically accessible channels for all the possible combinations 
of the good quantum numbers, J, II, I' m. The usual procedure is to neglect all 
symmetries but total angular momentum and to use, instead of equations (43)- 
(45), the simpler equation (46). For our example : 

, . ,  ~r , ~ (2J+ 1) Wt(E' J' v, j)Wt(E, J, v', j ') 
err(v, j +-v, j ) =  (2j-~l)kvj 2 J=0 Wt(E, J) (46) 

Here Wt(E, J, v, j) replaces the sum over l. This sum is restricted by the same 
dynamical criterion as the one for Wt(E, J) (depending on the particular model) 
[12]. In the adiabatic channel model we have, for example : 

J + j  

W,(E, J)= Z Wt(E, J, v, j )= Z • h(E-  Va,,itm.~). (47) 
v , j  v , j  1= ]J-j]  

Here we have the unit step function h(x) = 0(1) for x<  0 ( > 0) and the maximum 
of the adiabatic channel potential equal to VJvit,,a. 

It would be desirable to obtain a formula as simple as equation (46) but 
with some correction factors for symmetry and nuclear spin statistics in collisions 
of molecules with several identical nuclei. Parity is conveniently dealt with 
first. Equation (46) is then to be replaced by equation (47) (compare equation 
(44)): 

cr(v', j <-v' J)=(Zj +-l)k~j2 J=~0 (2J+ 1) -~ W+(E' J' % J)W+(E' J' v" ' j) 

W-(E, J, v, j)W-(E, J, v', j ' ) }  (48) 
+ w - ( E ,  J)  " 

The superscripts + or - indicate channels of positive or negative parity. In 
molecular collisions at moderate energies large values of J (and l) make dominant 
contributions. For large j >> 0 we usually have then 

W+(E, J, v, j)~_ W-(E, J, v, j) (49) 

and we certainly have W+(E, J) ~- W-(E, J) ,~ Wt(E, J)/2. Equation (46) is then 
a good approximation to equation (48) unless j or j '  are close to zero or unless 
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Wt(E, J) is small. We shall consider hereafter that corrections due to parity 
conservation have been dealt with or may be neglected in this sense. 

In order to deal with permutation symmetry, we assume that the channel 
numbers Wtr(E, J) for the particular rearrangement channel r have been classi- 
fied in some direct product group of the molecular symmetry groups of the two 
fragments for the arrangement r. We have to account for the degeneracy, gv~, 
of the scattering channels thus evaluated. If we have only degeneracy for ex- 
change between the two fragments, then : 

ni! (50) 
gPr= n kir!mlr!' 

where the product is over all species i of nuclei (compare equation (11)). In 
the more general case, including inversion degeneracies, with groups Msa for 
fragment a, M,b for fragment b and only one kind of nuclei, we have i: 

4n! 
gv,=--~. (51) 

The total number of open channels summed over all rearrangement channels r 
is then W(E, J)= y. gprW,,(E, J). (52) 

r 

The number of channels for one particular species, F m (of dimension [Fro] ), 
of the full permutation group of order g (=  n! for one kind of particles) is given 

by equation (53): W(E, J, Fro)= [Fm]W(E , J)/g. (53) 

Note that each channel of species F,, is [Fm]-fold degenerate. Equation (53) 
states that the scattering channels (total number W(E, J)) may be reduced to 
give a multiple of the regular representation, R, of the full permutation group G 
of order g. In order to show under which conditions this is approximately 
true, we use the following lemmata : 

R(G)J,H= g R(H), (54) 

R(H)TG=R(G), (55) 

R • F~ = [Fm]R. (56) 

Equations (54)-(56) follow directly from the properties of the regular repre- 
sentation (whose character is zero under all but the identity element, for which it 
is equal to the order of the group [36]). H is a subgroup of G, or order h. 
Equations (54)-(56) imply that equation (53) is true if the total number of states 
of the individual fragment molecules below the energy E (WI(E), W~(E) . . . )  
form a basis for the multiple of the regular representation of the molecules 1, 2 . . . .  
in their molecular symmetry groups or in their point groups. For E-+oo this 
is a general property of the decomposition of the Hilbert space [33], whereas for 
E-+0 it is certainly untrue. How well equation (53) is fulfilled at some finite 
energy can only be shown by explicit computation for each particular system. 
We have found that even for quite symmetrical systems equation (53) is reason- 
ably valid as long as the necessary condition W(E, J) >> g is adequately fulfilled. 
Hereafter, we shall assume the validity of equation (53). 
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We are now in a position to give the symmetrized statistical ISle-matrix in 
equation (45) in terms of unsymmetrized (trivially counted) channel numbers W t : 

ISli( E, J, Fm)lZ= g[rm]-l[  E g~,Wt~(E' j ) ] - l .  (57) 
r 

Suppose that the initial internal state combination, a, in a collision is classified 
according to the F a of the subgroup H a of permutations excluding permutations 
between the collision partners. Similarly the final state b may be classified 
according to the F 0 of the subgroup H• which may differ from Ho`. Then we 
define the frequencies fa(Fm) by equation (58) ; 

ro`iG= ]~ to`(rm)rm(c) (58) 
m 

and similarly for [b(rm). If we have classified a and b according to the species 
of some product of point groups or molecular symmetry groups, we may define 
the frequencies [a in a similar way, as shown in w 3. With equations (43), (44), 
and (57) we obtain then the general statistical cross section averaged and summed 
over magnetic quantum numbers and nuclear spin states : 

rrg { ~ (2J+l) lYft(E'  J' a)lrVt(E'J'b)} 
cr(b <---a) = g-'~a2 J=o X gprWtr( E, J) 

r 

• ( ]~ g~(rm)to`(rm)fb(rm)/[r.]}. 
m 

The total degeneracy of the initial state, a, is given by 

(59) 

go, = gKa(2jo`t + 1 )(2jo`2 + 1 ) 

m 

where Jal and Ja2 are the rotational quantum numbers of collision partners 1 
and 2 in the overall reactant state a (whose nuclear spin statistical weight is 
just gKo`). The order of the full permutation group is g (n! for one kind of 
particles) and the g~,, are the various degeneracies of the scattering channels as 
discussed. The evaluation of the trivially counted l~ t and W~ must be con- 
sistent with the choice of subgroups and the gp~. We indicate by the bar over 
IFe't(E , J, a) that channels with an intrinsic degeneracy [Pa(Ha)] > 1 are counted 
only once (compare equation (44)). Note that gv~ does not appear in connection 
with the numbers of channels leading to states a (IYVt(E, J, a)) and b. 

The statistical cross section in equation (59) implies the selection rules 
discussed in w 4 through the second bracket. If a transition between states a 
and b is forbidden by symmetry, this bracket has the value zero. 

If all the g~,, are equal to one gp, which is always true for purely inelastic 
processes (including exchange), we can simplify equation (59) : 

cr(b +a) = (rt(b <--a)F(b, a), (59 a) 

77" Oo 

(rt(b<--a)=(2jo`x+ 1)(2ja~+ 1)[ro`]ka 2 J=o • (2J+ 1) Wt(E' J'Wt(E,a)Wt(E'J) J' b), (60) 

F(b, a ) =  g ~ gK(rm)fa(r,n)fb(rm)/[Fm]. (61) gp[rb]gKo` 
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The statistical cross section al(b~a ) is the one which one would normally 
compute, disregarding all symmetry and nuclear spin statistics effects (note that 
Wt(E, J, a)=[['a(Ha)]~Zt(E, J, a)]). F(b, a) is then an appropriate correction 
factor depending on the initial and final state species in H a (=  Hb). It is only 
in this particular case with all the gpr = gp, however, that one can apply such a 
correction to at(b.<-a). For instance, literature data which were obtained without 
symmetry considerations cannot always be simply corrected afterwards without 
having all the Wtr (which are, of course, 
equations (59)-(61) it follows also that 

= E " ( b + a ) =  E 
b b 

never given). From the validity of 

If we average the correction factor F(b, a) over a regular representation of final 
states b in the permutation group Hb, we obtain 

B 

<F(b, a)) = g(Hb) -1 E [Fb]~F( b, a) = 1. (62) 

B is the number of species in H b. If we have a situation with many final states 
b in a small energy range, forming a multiple of the regular representation of H0, 
and all at(b<--a) being about equal, then equation (62) states that 

(at(b <--a))b = (a(b <--a))b. (63) 

The average is over the final states b. This means that for the computation of 
product translational energy distributions in molecular beam experiments at 
low resolution the calculation of at(b <-a) would be sufficient. Note, however, 
that we have required that all gvr =gv and that at(b ~ a ) #  f(b) for the considered 
range. 

It has been shown [28] that the assumption ]Sti(E , J)I~=N(E, j ) - i  leads 
to one possible reference distribution in the information-theoretic approach, 
namely, disregarding permutation symmetry : 

Po(b) oc g(b), (64) 

where g(b) is the statistical weight of b. The more common reference distribu- 
tion is the microcanonical equilibrium distribution [29, 30] with an extra factor 
v/[Et(b)]. If all the gpr are equal to one gm we can obtain with equation (61) 
a distribution including nuclear spin symmetry conservation : 

Po(b, a)cc.g(b)F(b, a). (65) 

Equation (65) is a distribution with ' memory ' [28], i.e. the final state distribu- 
tions depend on the initial state because of the selection rules implied in the 
factor F(b, a). 

We conclude this chapter with a few examples for F(b, a) in some typical 
reactions. For proton-H~ scattering (allowing for exchange by compound 
transitions, say, at low energies) we have : 

F(g+-g)= 1 (14/9), / 
F(u -g) = 1 (4/9), 

[ 
F(uX  u) = 5/3 (10/9).J 

(66) 
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The values in parentheses are for D+/D2 scattering. 
Collisions of oxygen atoms with oxygen molecules in the electronic ground 

state may proceed statistically due to intermediate 03 formation. We give the 
statistical symmetry corrections for 170 ( I =  5/2) and 160 ( I =  0, in parentheses), 
noting that the ground state of 02 (3Eg-) is antisymmetric with respect to an 
exchange of the two nuclei : 

F(g<--g)= 13/9 ( - ) , ]  

F(u<--g)=5/9 ( - ) , [  (67) 
F(g +-u) = 7/9 ( - ), [ 
F(u~u) = 11/9 (2). J 

In equations (66) and (67) we have indicated by g and u whether the rotational 
quantum number of the diatomic molecule is even or odd. Detailed statistical 
model calculations including symmetry corrections for collisions of O with 02 
have been given previously [23]. 

A more complex example is provided by reaction (36) in w 4.3 (and similarly 
by inelastic collisions of H2 with CH3+). The corresponding matrix F(I'o, Fa) 
is given in table 12, which is easily obtained with the aid of tables 8 and 9. In 
table 9 we have also included the definitions of I" a and Yb (in H = $2,3) in terms 
of r ( & )  | r(s~). 

Table 12. The matrix F(Fb, F~) for the reaction Hz+CHz + (or Hn+). 

~ F a  A, A~ E, B1 B2 E~ 
rb ",~ 

A1 0 0 0 0 0 0 
A2 0 3 0 0 1 2 

E~ 0 0 6/5 0 1/5 2/5 
B1 0 0 0 0 0 0 
B~ 0 3 12/5 0 37/5 14/5 
E, 0 3/2 6/5 0 7/10 7/5 

7. CONCLUSION 

The symmetry considerations of the present paper lead to a number of 
selection rules for the internal ro-vibronic states of reactant and product molecules 
connected in a collision. These selection rules are probably quite strong, even 
for truly polyatomic systems with strong coupling of all but the nuclear spin 
degrees of freedom. Any deviations from the predicted behaviour could be 
due to the coupling of the ro-vibronic and nuclear spin degrees o[ [reedom, which 
might occur particularly in systems with an overall electronic angular momentum. 
However, the strength of the electronic spin-orbit coupling is unimportant for the 
present considerations, and so is the validity of the Born-Oppenheimer ap- 
proximation. 

Although so far few experiments are available with sufficient detail to show 
these selection rules (the scattering of protons off hydrogen molecules is a case 
[10], but a rather trivial one as far as the selection rules are concerned) present 
day experimental techniques, in principle, are able to provide such data [7-13]. 
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As in molecular spectroscopy, the selection rules for reactive scattering could 
then be used, for example, to infer the symmetry of electronic and vibronic 
states of unstable radical products in chemical reactions. From the more 
approximate selection rules of w 5 one can obtain conclusions about the detailed 
collision mechanisms without introducing perturbations by isotopic substitution. 

Furthermore, we have shown that even in rather crude theoretical approaches, 
such as in statistical theories of scattering [12, 21-23], there are sizable, non- 
trivial symmetry corrections which may be easily computed with the present 
method. Detailed discussions of symmetry corrections in reactive collisions 
have previously been given only in connection with the quantum theory and 
semiclassical calculations for systems involving just three identical atoms [16-19]. 

We have not discussed, in the present communication, an application of 
some (potentially) practical importance which concerns differences in the 
selection rules for molecules differing only by isotopic substitution. The cor- 
responding isotope effect does not depend on mass differences or ratios of the 
isotopes and would occur also for heavy atoms and nuclear isomers with negli- 
gible mass difference. Our treatment can also be used to discuss symmetry 
effects in angular distributions and in unimolecular reactions. These will be 
dealt with in detail separately. 
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