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ABSTRACT
We report computations for the quantum dynamics and spectra of the iodine atom in the ground
state (2P◦

3/2) subjected to a strong laser field at wavenumbers in the range of CO2 laser emission. The
computations include the hyperfine structure of the magnetic dipole transitions between the fine
structure levels (2P1/2 and 2P3/2) of the iodine atom near 7 603 cm−1 important for the iodine atom
laser and for the kinetic spectroscopy of iodine atoms generated in infrared multiphoton excitation
and dissociation of organic iodides, where simultaneous high time and frequency resolution includ-
ing hyperfine structure can be achieved, that is only limited by the Heisenberg uncertainty principle.
Accurate numerical results from calculations with the URIMIR package are compared with estimates
from perturbation theory and they agree well. Possibilities for experimental tests of the theoreti-
cal predictions are outlined and the URIMIR package is included in an appendix of supplementary
material.
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1. Introduction

The interaction of matter and radiation leads to the
‘classical’, textbook like approach towards the control of
atomic and molecular quantum motion [1–5]. In this
context, notably Tim Softley and his group have con-
tributed important work over several decades to the
excitation and control of electronic motion in atoms,
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sometimes combined also with the control of transla-
tional motion of the atoms [6–12]. Another very active
area over the last few decades concerns the control of
vibrational motion of polyatomic molecules by coher-
ent infrared multiphoton excitation with the discovery
of numerous important phenomena such as laser iso-
tope separation but also considerations of mode selective
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chemistry and the observation of vibrational preionisa-
tion of C60 after vibrational infrared multiphoton excita-
tion with up to 500 photons, to provide just a small and
non-exhaustive list of examples and selected reviews of
the phenomena [13–26]. The theory of these processes
has been well developed in parallel, as a theory of the
interaction of intense coherent radiation with quantum
mechanical multilevel systems, including up to very large
numbers of levels, indeed, requiring quantum statisti-
cal as well as detailed quantum dynamical treatments
[27–32] and early on program packages for the numer-
ical treatment of these processes were developed, such
as the URIMIR package [33] (for Unimolecular Reac-
tions Induced by Monochromatic Infrared Radiation).
Computations using these approaches concerned most
importantly vibrational motion, frequently in reduced
dimensional subspaces [34–38], but we canmention here
also the recent implementation of the theory of coherent
multiphoton excitation within the GENIUSH package
enabling full-dimensional rotation-vibration-tunnelling
calculations for examples such as ammonia isotopomers
[39].

The present work has as focus the coherent radia-
tive electronic excitation in the iodine atom treated as
a multilevel system using the current extensions of the
URIMIR package (see the Appendix). The work is moti-
vated by considering properties of the 2P◦

3/2 ↔ 2P◦
1/2

magnetic dipole transition in the ground configuration,
which is among other things also the basis for the iodine
atom laser [40]. This transition has been the subject of
accurate measurements of the hyperfine structure and
rather late also accurate determination of its absolute
transition strength [41,42]. It has been used for excep-
tional kinetic measurements combining rates with the
observation of product translational energy distribu-
tions after infrared multiphoton dissociation of organic
iodides and including at the same time observation of
the hyperfine distribution in the iodine atom product at
what can be called ‘uncertainty limited’ kinetic measure-
ments at highest time and energy resolution, only limited
by the Heisenberg uncertainty principle [43,44]. This can
be considered in some sense to be the ultimate limit of
‘kinetic spectroscopy’ as a method of time resolved spec-
troscopic measurement of reactants or products in reac-
tion kinetics [45]. In these experiments involving at the
same time intense CO2 laser excitation (in the wavenum-
ber range 900–1100 cm−1 and with intensities in the
100 MWcm−2 range) and diode laser probing at 7600
cm−1 with low intensity, the question of the effect of the
simultaneous laser irradiations arose, in particular as far
as shifts and splittings in the hyperfine spectra are con-
cerned. These can be estimated by perturbation theory
[46], but because of the usual uncontrolled uncertainties

in perturbation theory results a more fundamental the-
oretical test appeared to be important. We thus report
here extensive numerical calculations using the extended
URIMIR package, which we publish as supplementary
material as well. It turns out that the perturbation the-
ory is rather well confirmed, anticipating some of our
results. We might mention here also lower resolution
measurements of iodine atoms produced by photolysis of
organic iodides in solid parahydrogen [47] using this fine
structure transition with only partly resolved hyperfine
structure.

In Section 2 of our paper, we present a brief sum-
mary of the theory of coherent excitation, in Section 3
we describe the basic features of iodine atoms in a
strong laser field. Section 4 presents the computational
results, complemented by summarising the conclusions
in Section 5.

2. Theory

In this section, we review the theory of light-matter
interaction and its implementation in the context of the
URIMIR package [28,29]. We consider the interaction of
an atomic or molecular multilevel system with a strong
external electromagnetic field, e.g. a laser pulse. We treat
the systemwithin the laws of quantummechanics and the
field classically, which is a good approximation for typical
conditions of intense coherent laser radiation.

2.1. Time evolution of a quantummechanical state

The time evolution of a quantummechanical state |ψ(t)〉
is given by the evolution operator, i.e. given an initial state
|ψ(t0)〉, any state |ψ(t)〉 at any time t, is given by

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 ; (1)

Equation (1) introduces the time evolution operator
Û(t, t0). Since |ψ(t)〉 obeys the Schrödinger equation,
(i = √−1)

i
h
2π

d|ψ(t)〉
dt

= Ĥ(t)|ψ(t)〉 , (2)

with Ĥ(t) denoting the, in general, time-dependent
Hamiltonian of the system, it follows that the operator
Û(t, t0) obeys the following differential equation [48]

i
h
2π

d
dt
Û(t, t0) = Ĥ(t) Û(t, t0) , (3)

with the initial condition Û(t0, t0) = 1̂. In Equations (2)
and (3), h is the Planck constant.

In general, there is no simple solution of Equation (3)
[48] (see, however, refs. [5,27,34,49]); under the con-
dition of a time-independent Hamiltonian, the formal



MOLECULAR PHYSICS 3

solution of Equation (3) reads

Û(t, t0) = exp(−2π i Ĥ(t − t0)/h) . (4)

In addition, in case of a time-independent Hamiltonian it
is often advantageous to use the eigenstates of Ĥ as a basis
for the representation of the state |ψ(t)〉. In this represen-
tation, the matrix elements Ukl(t − t0) corresponding to
the operator Û(t, t0) read

Ukl(t, t0) = δkl exp (−2π iEk(t − t0)/h) , (5)

with Ek = Hkk being the diagonal matrix element of the
time-independent Hamiltonian in the same representa-
tion and δkl denoting the Kronecker delta. Ek is the k-th
eigenvalue of the matrixH representing the Hamitonian.

2.2. Semi-classical description of the light-matter
interaction

The classical treatment of the field is justified since we
study field intensities in the MWcm−2 to GWcm−2

or TWcm−2 region. Such intensities imply a very high
number of photons per mode which is the condition for
the classical treatment [50]. Furthermore, we are mainly
interested in electromagnetic fields in the infrared fre-
quency range and the dipole approximation given by the
condition x � λ is used, where x is the extension of the
system, and λ is the wavelength of the irradiation. In the
infrared region, λ is typically larger than the extension
of the atomic or molecular system by a factor of 103,
which justifies the use of the dipole approximation. Fur-
thermore, under the intensity and frequency conditions
considered here, ionisation can be neglected.

We assume now that the eigenvalues and eigenstates
of the isolated multilevel system are known, i.e. the cor-
responding time-independent problem is already solved.
We further assume a discrete energy spectrum and
choose K of the eigenfunctions {χj(q), j = 1 . . .K} (q
stands for the complete set of generalised coordinates
including all relevant degrees of freedom) for the matrix
representation of the Hamilton operator of the system in
interaction with a coherent monochromatic field. Keep-
ing only the electric or magnetic dipole term in the mul-
tipole expansion of the field, the matrix elements Hkl are
given by

Hkl = δklωk + f (t)Ṽ(i)kl cos(ωLt + η)

≡ H0
kl + Vkl(t) i = e,m (6)

with

Ṽ(e)kl ≡ −2π〈χk| 	μe · 	E0|χl〉
h

or

Ṽ(m)kl ≡ −2π〈χk| 	μm · 	B0|χl〉
h

(7)

where 	μi , (i = e,m) is the electric or magnetic dipole
operator of the multilevel system depending on what
might dominate the interaction,ωk = 2πEk/h is the k-th
eigenvalue of the time-independent Hamiltonian H0 (in
units of angular frequency), f (t) is the pulse shape func-
tion of the irradiation, ωL is the angular frequency of the
laser field, η is a time independent phase factor and 	E0 is
the vector valued amplitude of the electric field and 	B0 is
the vector valued amplitude of the magnetic induction.
The dipole approximation allows us to consider 	E0 or 	B0
to be constant over the spatial dimensions of the system.
Decay phenomena can be further taken into account in a
phenomenological way by introducing complex eigenfre-
quencies [48,49], ω′

k = ωk − iγk/2, where γk equals the
inverse of the lifetime of the unstable k-th state (in units
of angular frequency) [28,51]. When the electric dipole
matrix elements Ṽe

kl vanish due to symmetry reasons,
magnetic dipole matrix elements or matrix elements due
to higher terms in themultipole expansion of the electro-
magnetic field should be considered, as it is the case for
the iodine atom discussed below. According to the parity
selection rule the electric dipole coupling connects only
states of different parity, whereas the magnetic dipole
coupling connects only states of the same parity when
considering only the parity conserving electromagnetic
interactions [52].

By using Ĥ0χm = ωmχm, the wave function ψ(t) of
the system can be written

ψ(t) =
K∑

k=1

bk(t)χk (8)

In this particular representation, Equation (1) takes the
form (with the time evolution matrix U in the same
representation)

b(t) = U(t, t0)b(t0) (9)

while the Schrödinger equation reads

iḃ(t) = H b(t) (10)

with b(t) = (b1(t), b2(t), . . . , bL(t))T (T for transpose)
andH defined by Equation (6).

The Hamiltonian given by Equation (6) depends
explicitly on time. Thus, it is not possible to use the
formal solution of Equation (4) for calculating the
evolution operator. Since only very few solutions of
Equation (3) with the Hamiltonian of Equation (6) are
known at present, several approximations have been
introduced in order to compute U(t, t0) numerically. We
refer to [1–5,27–29] for different approaches on deal-
ing with the interaction between a multilevel system and
a strong electromagnetic field. In our investigations, we
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concentrate on two particular approximations, the Flo-
quet approximation and the weak-field quasi-resonant
approximation (QRA), which we present in detail now.

2.3. The Floquet approximation (FA)

Taking advantage of the periodicity in the Hamilto-
nian given by Equation (6), one can numerically inte-
grate Equation (3) for one period τ = 2π/ωL and obtain
Û(τ + t0, t0). At any subsequent time t = m · τ , which is
an integer multiple of τ , |ψ(t)〉 can be calculated by

|ψ(t)〉 =
[
Û(τ + t0, t0)

]m |ψ(t0)〉 (11)

This approach is also applicable for t = m · τ +�t, with
τ > �t > 0. In this case, Û(�t + t0, t0) is additionally
needed so that

|ψ(t)〉 = Û(�t + t0, t0)
[
Û(τ + t0, t0)

]m |ψ(t0)〉 (12)

The theoretical foundation of this approach is the clas-
sical theorem by Floquet [53,54], which when applied
to our case [27–29] states that for a Hamiltonian with
period τ

Ĥ(t) = Ĥ(t + τ), ∀ t (13)

F̂(t, t0) and Â(t) exist so that the evolution operator Û
satisfies the following equations

Û(t, t0) = F̂(t, t0) exp
(
Â(t − t0)

)
(14)

F̂(t0, t0) = 1̂ (15)

F̂(t + nτ , t0) = F̂(t, t0) (16)

Â(t′) = Â(t′′), ∀ t′, t′′ (17)

Within the Floquet approximation (sometimes also
called Floquet-Liapunoff-approximation), matrix repre-
sentations F(t0 + τ , t0) and A(t) are obtained by numer-
ical integration over τ . However, two practical aspects
define the limitations of this approximative method.
First, a system of coupled complex differential equa-
tions can hardly be solved completely for very large sys-
tems, i.e. systems of the order of millions of states, or
even larger. Secondly, the diagonalisation of the com-
plex evolution matrix in such cases for further use in
Equations (11)–(12) can introduce significant numerical
errors.

2.4. Theweak-field Quasi-Resonant Approximation
(QRA)

As mentioned above, the explicit time dependence
in Equation (6) prohibits the direct application of

Equation (4). In order to overcome this difficulty, the
quasi-resonant approximation which is a generalisation
of the rotating-wave approximation (RWA) for a two level
system tomultilevel systems has been introduced [27,28].
The main idea is to transform the Hamiltonian given
by Equation (6) into such a form that within a reason-
able approximation the explicit time dependence can be
removed. The following steps summarise the procedure
and we refer to ref. [29] for further discussion:

(1) Since only one electromagnetic field is considered
here, we can choose η = 0 without any loss of gen-
erality and write

cos(ωLt) = 1
2

[
exp (i(ωLt))+ exp (−i(ωLt))

]
(18)

(2) We introduce an integer level quantum number nk
for each energy level by writing

ωk = nk · ωL + Xk · ωL (19)

with Xk ∈ (− 1
2 ,

1
2 ). We now transform from the

‘spectroscopic basis’, i.e. the state vector b for-
mulated in the basis of eigenstates, as given in
Equation (10), into a state vector a, formulated in the
‘quasiresonant basis’ and defined by

a ≡ S b , (20)

where S is a diagonal matrix given by

Skk ≡ exp(inkωLt) . (21)

(3) We consider the case where the two following con-
ditions are fulfilled for any two arbitrary states n and
m

|Ṽnm| � ωL ‘weak field’ (22)

|Dnm| ≡ |ωn − ωm − ωL · sgn(ωn − ωm)| � ωL

‘quasi-resonant’ (23)

While the first condition can always be satisfied, e.g.
by decreasing the intensity of the electromagnetic
field, the second condition is system dependent.

(4) We drop the high frequency part of the Hamilto-
nian which is proportional to exp(−i(ωLt)) with a
similar reasoning as for the RWA of the two-level
problem [27,50]. For an index pair jk, with j< k, it
then follows

Hjk ∼ exp
(
i(−Xj · ωL + ωj + ωL − ωk + Xk · ωL)

)
(24)

(5) If

|nj − nk| = 1 (25)
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is valid, all terms of the Hamiltonian including such
combinations of indices are time independent. We
thus neglect all terms that include combinations of
indices with

|nj − nk| �= 1 (26)

because for such far off-resonant levels the sum of
many fast oscillating interaction terms nearly can-
cels out and the effective interaction becomes small
compared to the interaction between resonant levels.

(6) We end up with a time independent effective Hamil-
tonian within the QRA, in the matrix representation
HQRA given by

HQRA
jk = δjk · Xk · ωL + 1

2
Ṽjk (27)

After diagonalising HQRA the evolution of the system
is calculated according to Equatons (5) and (9). The jus-
tification of the above approximations in the domain of
infrared laser chemistry has been the subject of many
studies (see [23] and references therein). It is found
to be valid to good approximation, often well beyond
the conditions specified by Equations (22) and (23)
[32,34,36].

2.5. Physical quantities of interest

Below we present some physical quantities of interest
within theURIMIRpackage, but firstlywe give twouseful
equations for calculating the electric andmagnetic dipole
coupling matrix elements under linearly polarised laser
fields according to Equation (7)

Ṽ(e)kl
2πc

∼= −4.609 277 · 10−4 M(e)
kl
D

√
I

Wcm−2 cm−1

(28)
and

Ṽ(m)kl
2πc

∼= −4.274 648 · 10−6 M(m)
kl
μb

√
I

Wcm−2 cm−1

(29)
where M(i)

kl stands for the electric (i = e) or magnetic
(i = m) transition dipole moment between the k-th and
l-th eigenstates. We note that 1D ≈ 0.393 43 e a0 and
1 μb/c0 = α a0/2, with μb being the Bohr magneton
and α being the fine structure constant [55]. We note
that in the actual program used for the calculations of
the data presented in the results section, the numer-
ical value presented in Equation (28) was defined as
4.609 273 676 10−4, which was derived from an older
definition of the Planck constant. If the numerical value
from Equation (28) is used, some numerical values pre-
sented in the results section might change in the 6th
decimal place.

An operator which we often consider in our studies is
the density operator ρ̂ of the system given by a matrix
representation

P(c)jk (t) = cj(t)c∗k(t) , (30)

where c is the state vector representation in an arbi-
trary basis. We often use the quasiresonant basis, i.e.
P(a)jk (t) = aj(t)a∗

k(t), in our computations, while the den-

sitymatrix in the spectroscopic basis is given byP(b)jk (t) =
bj(t)b∗

k(t). The transformation of P between these two
basis representations reads

P(b) = S† P(a) S (31)

with S defined byEquation (21). If the initial value ρ̂(t0)
is known, then ρ̂(t) can be calculated in the Schrödinger
picture by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0) ; (32)

Equation (32) is known as the Liouville-von Neumann
equation [56] in its integrated form, and similar equa-
tions are valid for any of its matrix representations.

Further physical quantities of importance in quantum
dynamical investigations are the expectation value of the
absorbed energy of the systemEabs(t) and its time average
〈Eabs〉T given by

Eabs(t) =
∑
i
(Pi(t)− Pi(t0))Ei (33)

〈Eabs〉T ≡ lim
T→∞

1
T

∫ T

t0
Eabs(t) dt , (34)

where the summation i runs over all energy levels Ei
of the system considered. Pi(t) = P(b)ii (t) = bi(t) b∗

i (t)
stands for the total population of level i of the isolated
Hamiltonian.More physical quantities of specific interest
to the investigations on the iodine atom presented here
will be introduced below.

3. The iodine atom in a strong laser field

In this section, we study the influence exerted by a strong
off-resonant laser field on the position of the 2P◦

3/2(F =
4) → 2P◦

1/2(F = 3) magnetic dipole induced hyperfine
transition at 7603.138 cm−1 in the ground term of atomic
iodine. In order to study the interaction between the
strong laser field and the iodine atom, we calculate the
position of the 2P◦

3/2(F = 4) → 2P◦
1/2(F = 3) transition

when the strong electromagnetic field couples to the
atomic energy levels of iodine due to magnetic and elec-
tric dipole interactions. The ground electronic term 2P
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has odd (negative) parity, which is also the total parity of
the atom, as the iodine nucleus 127I has even (positive)
parity.

3.1. Spectroscopic data of the physical problem

We consider an iodine atom interacting with two lin-
early polarised CW laser fields. One laser off-resonant
at 1086 cm−1 with 750MWcm−2 intensity and a second
weak near-resonant laser, which probes the 2P◦

3/2(F =
4) → 2P◦

1/2(F = 3) transition. We study the cases when
the probe field is 104 and 107 times weaker than the
off-resonant field.

The following assumptions considering the interac-
tion of the iodine atom with each irradiation field are
further made in our model: (a) the hyperfine levels of
the odd parity ground term couple to each other in the
presence of a laser field mainly due to magnetic dipole
interaction, since the parity selection rule forbids electric
dipole coupling in the ground term. All higher multipole
interactions are significantly weaker and are neglected
in our considerations. Indeed, the electric quadrupole
contribution has been estimated to be only 0.7% of the
magnetic dipole contribution [42]. (b) Iodine electroni-
cally excited states beyond the ground state are consid-
ered; they couple directly to the ground 2P◦

3/2 and
2P◦

1/2
terms. The leading interaction in such cases is of electric
dipole type, which implies that only excited states with
even parity are considered. Although all excited states of
the same parity couple to each other due to magnetic and
higher multipole interactions, we neglect these couplings

since such interactions are much weaker than those of
electric dipole type with the ground term states. Thus,
in short, in our model only magnetic dipole coupling
between the hyperfine levels of the ground terms and
electric dipole coupling between the hyperfine levels of
even parity excited states and the hyperfine levels of the
odd parity ground terms are considered.

The coupling matrix elements between the excited
states and the ground level can be derived, when the Ein-
stein coefficient and the wavenumber for the correspond-
ing transition are known. We use experimentally known
spectroscopic data. In our study, we include excited states
of even parity from the literature, for which the Ein-
stein coefficient for transitions to the ground term is
known. Since we are interested in the shift of a transi-
tion between the hyperfine levels of the ground term, it is
desirable to have experimental information of the hyper-
fine structure of all excited states considered. Unfortu-
nately, experimental data on the hyperfine structure are
available only for some of these excited states. Table 1
below shows all atomic states considered, as well as their
hyperfine structure as far as known. We note the two dif-
ferent notations used for classifying the excited states.
The last four configurations in Table 1 are given in the
[J]� coupling scheme classification of Minnhagen [57],
while all others are given in a LS coupling scheme classi-
fication. The [J]� coupling scheme is appropriate, when
electronic configurations containing one strongly excited
electron are considered, while it is assumed that its orbital
angular momentum � is conserved (‘good quantum
number’), as well as the total angular momentum J of the
atomic core.

Table 1. Electronic states of atomic iodine included in our calculations, their excitation energy with
respect to the ground level and the energy difference between two successive hyperfine levels of a
given term. The terms 1–10 are given in the LS coupling scheme. The terms 11–14 are given in the
[J]� coupling scheme according to ref. [57]. The notation is explained in the text.

Hyperfine splitting / 10−3 cm−1

N0 Term Parity Energy / (hc cm−1) (5,4) (4,3) (3,2) (2,1) (1,0) Ref.

1 5p(5) 2P◦
3/2 odd 0.0 141 66 24 [42]

2 5p(5) 2P◦
1/2 odd 7 603.15a 659 [42]

3 5p(4)(3P)6s 2P3/2 even 56 092.88a 100 65 39 [58]
4 5p(4)(3P)6s 2P1/2 even 63 186.76a 159 [59]
5 5p(4)(3P)6s 4P5/2 even 54 633.46a 215 191 155 109 56 [58]
6 5p(4)(3P)6s 4P1/2 even 60 896.27a 216 [58]
7 5p(4)(3P)6s 4P3/2 even 61 819.81a 61 61 49 [58]
8 5p(4)(1D)6s 2D5/2 even 66 020.24c

9 5p(4)(1D)6s 2D3/2 even 66 355.21c

10 5p(4)(1S)6s 2S1/2 even 70 354.93c

11 5p(4)(3P2)5d [2]5/2 even 70 150.82b

12 5p(4)(3P2)5d [2]3/2 even 70 353.17b

13 5p(4)(3P2)5d [0]1/2 even 68 956.52b

14 5p(4)(3P2)6d [1]3/2 even 76 138.50b

a Energy of the term of the electronic configuration according to [60]. Since the hyperfine structure for a given term is
neglected, it is reasonable to assume that the energy refers to the weighted mean of the energies of the hyperfine
levels of the term, which is called the centre of gravity of the term in analogy to the case of fine structure [61].

b according to [62]. No hyperfine structure experimentally known.
casa . No hyperfine structure experimentally known.
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The energy of each hyperfine level in the 2P◦ ground
term (levels 1 and 2 in Table 1) is calculated with help of
Table 2 of ref. [42], in which the experimental transition
wavenumbers between the hyperfine levels are given, and
the level structure of atomic iodine as shown in Figure 1;
the 2P◦

3/2(F = 1) level has zero energy by definition. For
each further term, for which the hyperfine structure is
known, the energy of each hyperfine level can be calcu-
lated easily with help of Table 1; we outline the method
on the example of the seventh term of Table 1 : Assum-
ing that x is the energy difference expressed in terms of
the wavenumber in cm−1 between the lowest hyperfine
level F=1 and the centre of gravity of the term, which is
the weighted mean of the energies of the hyperfine lev-
els of the term, then the energy difference between the
levelF=2 and the centre of gravity equals x−49, forF=3
it equals x−49−61 and for F=4 it equals x−171. By
definition of the centre of gravity, the following equality
is valid: 3 ∗ x + 5 ∗ (x − 49)+ 7 ∗ (x − 110)+ 9 ∗ (x −
171) = 0, where 3,5,7,9 denote the number of energeti-
cally degenerate states in levels with F=1, F=2, F=3
and F=4, respectively. By solving for x, the energy of
the lowest hyperfine level can be obtained and conse-
quently the energy for all hyperfine levels of the term. For
all terms, for which no hyperfine structure is known, we
assume that the corresponding hyperfine levels are ener-
getically degenerate. The influence of this approxima-
tion on the results is insignificant, since test calculations,
where random hyperfine splittings of the same order of

Figure 1. The fine and hyperfine structure in the 2P term of
the 5p(5) ground configuration of atomic iodine [41]. Solid
lines denote themagnetic dipole allowed�F = 0,±1 transitions
between the hyperfine levels [41–44]. The�E gives the values for
the energy differences between the adjacent levels as indicated.

magnitude as experimental splittings of terms have been
introduced, for which the hyperfine structure is known,
give similar results to the results assuming that the hyper-
fine levels are energetically degenerate. In Table 2, the
Einstein coefficients A and the corresponding transition
wavenumbers ν̃ between the atomic terms considered are
given.

In order to calculate the coupling matrix elements
for the transitions considered, we use the information
obtained from experimental values of the corresponding
Einstein coefficients. For consistency values for both type
of transitions are taken from the same reference. The fol-
lowing useful identity from ref. [46] is used in order to
calculate reduced matrix elements:∑

FF′

∑
mm′

|〈�JFm|Ôk|�′J′F′m′〉|2

= 1
3
(2I + 1)|〈�J||Ô||�′J′〉|2 (35)

where Ô is either the electric or themagnetic dipole oper-
ator, Ôk stands for its k-th cartesian component and I is
the nuclear spin of atomic iodine.

The reduced matrix elements M(m) for magnetic and
M(m) for electric dipole induced transitions are then
given by the following equations, in which the Gaus-
sian system of electromagnetism is adopted (see ref. [64]
for conversion to the SI system of units). For the mag-
netic dipole interaction in the 2P◦ ground term, we
use

|M(m)|2(2P◦
3/2,

2 P◦
1/2) ≡ |〈2P◦

3/2||m̂1||2P◦
1/2〉|2

= 2
3h

64π4
1
ν̃3

A (36)

where ν̃ stands for the transition wavenumber, m̂1 is
the magnetic dipole operator and A is the correspond-
ing Einstein coefficient. For the electric dipole interaction
between the electronic configurations�i and�j we use

|M(e)|2(�i,�j) ≡ |〈�i||ê1||�j〉|2 = gj
3h

64π4
1
ν̃3

A (37)

where gj stands for the degeneracy of the upper level j,
ê1 is the electric dipole operator, A is the correspond-
ing Einstein coefficient and ν̃ stands for the transition
wavenumber.

Consider a magnetic dipole moment of 1μb. In the
Gaussian system of units, the magnetic dipole moment
becomes 1μb/c0 = 1 (α/2) ea0. In the Gaussian system
of units a magnetic dipole transition induced by a mag-
netic dipole moment of 1μb can thus be considered
as an electric dipole transition induced by an electric
dipole moment of 1 ea0, just weakened by the numeri-
cal factor α/2. Because in the Gaussian system of units
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Table 2. Experimentally known Einstein coefficients A and the corresponding wavenumbers ν̃ for transitions in
atomic iodine, as well as the type of the dominant electromagnetic multipole interaction, which induces the
transition.

type of inter. transition A / s−1 ν̃a / cm−1 Ref.

1 magnetic dipole 5p(5) 2P◦
1/2 − 5p(5) 2P◦

3/2 6.95 · 100 7 603.15 [42]
2 electric dipole 5p(4)(3P)6s 4P1/2 − 5p(5) 2P◦

1/2 287 · 104 53 304.90 [63]
3 electric dipole 5p(4)(3P)6s 4P1/2 − 5p(5) 2P◦

3/2 370 · 105 60 901.34 [63]
4 electric dipole 5p(4)(3P)6s 4P5/2 − 5p(5) 2P◦

3/2 160 · 105 54 644.81 [63]
5 electric dipole 5p(4)(3P)6s 4P3/2 − 5p(5) 2P◦

3/2 271 · 106 56 085.25 [63]
6 electric dipole 5p(4)(3P)6s 4P3/2 − 5p(5) 2P◦

1/2 296 · 104 48 496.60 [63]
7 electric dipole 5p(4)(3P)6s 2P1/2 − 5p(5) 2P◦

1/2 211 · 106 55 586.44 [63]
8 electric dipole 5p(4)(3P)6s 2P1/2 − 5p(5) 2P◦

3/2 207 · 106 63 171.19 [63]
9 electric dipole 5p(4)(3P)6s 2P3/2 − 5p(5) 2P◦

3/2 134 · 106 61 804.68 [63]
10 electric dipole 5p(4)(3P)6s 2P3/2 − 5p(5) 2P◦

1/2 692 · 104 54 200.54 [63]
11 electric dipole 5p(4)(1D)6s 2D5/2 − 5p(5) 2P◦

3/2 205 · 106 66 006.60 [63]
12 electric dipole 5p(4)(1D)6s 2D3/2 − 5p(5) 2P◦

3/2 175 · 105 66 357.00 [63]
13 electric dipole 5p(4)(1D)6s 2D3/2 − 5p(5) 2P◦

1/2 205 · 106 58 754.41 [63]
14 electric dipole 5p(4)(1S)6s 2S1/2 − 5p(5) 2P◦

3/2 138 · 104 70 372.98 [63]
15 electric dipole 5p(4)(1S)6s 2S1/2 − 5p(5) 2P◦

1/2 114 · 106 62 735.26 [63]
16 electric dipole 5p(4)(3P2)5d[0]1/2 − 5p(5) 2P◦

3/2 55 · 106 68 965.52 [62]
17 electric dipole 5p(4)(3P2)6d[1]3/2 − 5p(5) 2P◦

1/2 74 · 106 68 535.40 [62]
18 electric dipole 5p(4)(3P2)5d[2]5/2 − 5p(5) 2P◦

3/2 120 · 106 70 150.82 [62]
19 electric dipole 5p(4)(3P2)5d[2]3/2 − 5p(5) 2P◦

3/2 97 · 106 70 353.17 [62]

a ν̃ of the transition as given in the corresponding reference.

the electric field and the magnetic induction field have
the same units, one can thus numerically treat mag-
netic dipole transitions as electric dipole transitions by
including the α/2 numerical factor in the value of the
magnetic dipole matrix element. In such a case, and for
a given laser intensity, the value of the 	E field instead
of the value of the 	B field is used in the numerical
treatment; we however stress that the symmetry rules
related to magnetic dipole transitions must be taken into
account explicitly in the definition of the couplingmatrix
elements between the levels included in the numerical
simulation.

The states included in our calculations are denoted by
|�iJiFimFi〉, where �i stands for the i-th electronic con-
figuration considered, Ji is the total electronic angular
momentum, Fi ≡ Ji + I is the total angular momentum
resulting by coupling the electronic angular momentum
Ji to the nuclear spin of iodine 127I = 5/2 and mFi is
the magnetic quantum number. The matrix elements for
magnetic dipole transitions are given by

〈2P◦ 3
2
FmF|m̂1

z |2P◦ 1
2
F′mF′ 〉 = (−1)F−mF

(
F 1 F′

−mF 0 mF′

)

× (−1)F
′+4√2F + 1

× √
2F′ + 1

{ 3
2 F 5

2
F′ 1

2 1

}

× M(m) (2P◦
3/2,

2 P◦
1/2)

(38)

The matrix elements for electric dipole transitions are
given by

〈�iJiFimFi |ê1z |�jJjFjmFj〉 = (−1)Fi−mFi

(
Fi 1 Fj

−mFi 0 mFj

)

× (−1)Fj+Jj+ 7
2
√
2Fi + 1

× √
2Fj + 1

{
Ji Fj 5

2
Fi Jj 1

}

× M(e) (�i,�j) (39)

The symbols in parentheses and curly brackets are the
Wigner 3j and 6j−symbols, respectively. They are dis-
cussed in refs. [65,66]). Since a static external magnetic
field removes the degeneracy of states with respect to the
magnetic quantum number mF (Zeeman effect) due to
non vanishing diagonal matrix elements for themagnetic
dipole operator, such matrix elements for the 2P◦ ground
term within LS coupling are given by

〈2P◦JFmF|m̂1
z |2P◦JFmF〉

=
(
1 + J(J + 1)− L(L + 1)+ S(S + 1)

2J(J + 1)

)

× F(F + 1)+ J(J + 1)− I(I + 1)
2F(F + 1)

mF
μb

c0
(40)

in the Gaussian system of units. Although only periodic
time-dependent electromagnetic fields are considered in
our study, for which no Zeeman effect is expected, we
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include such diagonal matrix elements in order to be
complete in our treatment. Indeed, no Zeeman effect for
the states of the ground term has been observed in the
numerical calculationswith periodic fields, while test cal-
culations with static fields showed the expected Zeeman
splitting. In order to compute all matrix elements neces-
sary in our calculations, all 3j and 6j symbols have been
calculated with the computer codes given in [65].

Decay phenomena of the excited states due to spon-
taneous emission can be taken in account in a phe-
nomenological way by introducing complex energy
eigenvalues. Since in our approach units of angular fre-
quency are used, such complex terms are denoted by
ω′
l ≡ ωl − iγl/2, where ωl is the angular frequency cor-

responding to the real energy eigenvalue of the state l and
γl is the total Einstein coefficient of the transition from l
to all lower terms, also in units of angular frequency [51].

3.2. Treatment within perturbation theory

Only the strong off-resonant laser field is considered and
according to second order perturbation theory [46] the
mean energy shift �Ēk of the eigenvalue Ek of the k-th
state is given by

�Ēk = 2π
h

∑
l �=k

ωklṼ2
kl

ω2
kl − ω2

s
(Ezs )

2 (41)

where the summation is over all states included except
state k. Ṽkl is the coupling matrix element between state
k and l, Ezs is the electric field strength amplitude of
the strong electromagnetic field (it is assumed that it is
z -polarised), ωs is the angular frequency of the field,
and ωkl ≡ 2π(Ek − El)/h is the angular frequency of the
transition between states k and l. The transition angular
frequency between states k and l under the influence of
the field ωfield

kl can thus be calculated by

ωfield
kl ≡ ωkl + 2π(�Ēk −�Ēl)

h
(42)

.

3.3. Numerical integration of the time-dependent
Schrödinger equation

As mentioned above, we include the α/2 factor in the
numerical value of all magnetic dipole matrix elements
and treat them as of electric dipole type in the numeri-
cal simulation. Therefore, there is formally no 	B field in
the Hamilton operator used; its matrix representation is
given by

Hkl = h
2π
δklωkl − Ṽstrong

kl cos(ωs · t)

− Ṽweak
kl cos(ωw · t + η) (43)

where ωkl was defined in relation with Equation (42) and
can be a complex number, if decay phenomena are phe-
nomenologically included, ωs is the angular frequency of
the strong field, ωw is the angular frequency of the weak
probe field, η is the phase factor between the two fields
and Ṽstrong/weak

kl is the coupling matrix element between
states k and l for the strong and weak fields, respectively,
in units of angular frequency. In general, η = 0 is used,
since comparisonwith the results of test calculations with
η �= 0 has shown that the results do not depend on the
choice of η.

We use the Floquet approximation in order to numeri-
cally integrate the time-dependent Schrödinger equation.
The Floquet approximation is applicable only on peri-
odic Hamilton operators. In order to enforce periodicity
in Equation (43), we demand ωs = ωw/7, which implies
that a strong field at 1 086.162 cm−1 is considered, since
the transition under study occurs at 7 603.138 cm−1. This
choice gives a wavenumber for the strong field, which is
the closest to the experimental conditions. The necessary
periodicity of the Hamiltonian implies that in order to
calculate the time averaged absorbed energy of the sys-
tem as a function of the angular frequency of the resonant
field ωw (or correspondingly ν̃w), the angular frequency
of the off-resonant field ωs (or correspondingly ν̃s) must
also vary. In our calculations ν̃w varies over the range of
7 603.14 ± 0.02 cm−1; consequently ν̃s takes values over
the range of 1 086.162 ± 0.003 cm−1. This is close to the
two CO2 laser lines near 1086 cm−1. By demandingωs =
ωw/7, the Hamiltonian in Equation (43) is periodic with
period τ = 2π/ωs, which is about 30 fs.

The position and line shape of the transition under
study are calculated by computing the time averaged
absorbed energy spectrum, according to Equation (34),
for the Hamilton operator defined by Equation (43)
within the Floquet approximation. The initial condition
is always chosen such that only the states of the hyperfine
structure of the 2P◦

3/2 configuration are populated cor-
responding to their statistical weights. In Equation (34)
T goes to infinity, which is impossible in all practical
situations. In our calculations T is chosen so long that
the stationary value of 〈Eabs〉 is practically achieved. This
value is in practice determined by the intensity of the res-
onant probe field. For probe field intensity of 75 kWcm−2

(i.e. 104 times weaker than the strong field) the station-
ary value of 〈Eabs〉 is achieved after T=300 ns and for 75
Wcm−2 (i.e. 107 times weaker than the strong field) after
T=10 μs.

It is inherent to the Floquet approximation that the
calculation of 〈Eabs〉 is performed by matrix-vector mul-
tiplications up to times T in steps of one period τ of
the Hamiltonian. In our case, τ is approximately 30 fs
and T is chosen either 300 ns or 10 μs, which implies
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107 or 3 · 108 matrix-vector multiplications, respectively.
Although high accuracy is almost always achieved for
the numerical integration, after the diagonalisation of the
complex evolutionmatrixU , severe numerical errors can
be introduced in the subsequent time propagation of the
initial state; in particular, in our case here, where the
diagonalised matrix is used for 107 or 3 · 108 sequential
matrix-vector operations. For the numerical integration
part of the computation, we used the Adams method for
the solution of the numerical initial value problem [67]
and EISPACK routines [68] for the matrix operations.

In our study, calculations including decay phenom-
ena give the same results as without including any decay.
This fact is due to two conditions: Firstly, the states of
the ground 2P◦ term, between which population trans-
fer occurs due to the resonant probe field, have life-times
of the order of ms (see Table 1 in ref. [42]). Such life-
times are much longer than the typical time scales con-
sidered here. Secondly, the states of the electronically
excited configurations, which have life-times of the order
of ns according to the Einstein coefficients of Table 2
and thus are within the time scales considered, remain
always unpopulated because they are far off-resonant.
In Section 4, we present the results from calculations
without any decay phenomena included.

4. Computational results on the iodine atom in
strong laser fields

4.1. Survey of themodels

Our study is organised in five groups of calculations, as
given in Table 3 below. The partitioning in several groups
enables us to consider terms coupled by magnetic dipole
interaction only, in order to study the influence of the
strong field only due to this type of interaction, and we
gradually include also electric dipole interactions with
other excited states. In addition, partitioning in several
groups allows us to check the convergence of our results
with respect to the number of states considered. All tran-
sition moments used in our calculations are given in the
Supplementary material of this paper.

In Table 4 the wavenumbers ωfield
kl /2πc0 for transi-

tions |2P◦
3/2(F= 4)mF〉 → |2P◦

1/2(F
′ = 3)mF′ 〉 calculated

Table 3. Partitionsof the terms included inour calculations, num-
ber of states and type of dipole interaction(s) between the terms
in each partition.

Terms included Num. of states Dipole interaction(s)

Group A 1–2 36 Magnetic
Group B 1–4 72 Magnetic and electric
Group C 1–10 144 Magnetic and electric
Group D 1–10,16–19 240 Magnetic and electric
Group E 1–19 312 Magnetic and electric

within perturbation theory according to Equation (42)
are summarised. Sincewe consider electromagnetic fields
polarised along the z-axis, only �mFF′ = 0 transitions
are allowed. In the same table, the average shift of
the wavenumber for the 2P3/2(F = 4) → 2P1/2(F = 3)
transition is given, which may be of interest for compari-
son with the calculated position of the absorption profile
of the transition for the case that the individual�m = 0
transitions remain unresolved.

We now focus on some computational details of the
numerical simulations with two laser fields. As men-
tioned above, the numerical integration inherent to the
Floquet approximation in order to compute the evolu-
tion operator Û of the system under consideration is
time consuming, since it scales non-linearly with both
the number of states included and the required numeri-
cal accuracy but this does not cause any serious problems.
High numerical accuracy is required in order to obtain
a high quality diagonalisation of the complex matrix U
for further use in the computation of the time evolu-
tion of the system. In order to quantify the quality of
the diagonalisation of the complex matrix U , the matrix
(Z · D · ZT − U) is calculated, where D stands for the
diagonal matrix, the diagonal elements of which are the
eigenvalues of U , Z is the matrix whose columns are the
eigenvectors of U and ZT is its transpose. The largest
matrix element of (Z · D · ZT − U), definedhere in terms
of its absolute value asmaxij{[Z · D · ZT − U]ij}, is found
and used as a measure for the deviation from an exact
diagonalisation, for which it should be zero. Also, the
orthogonality of the eigenvectors can be checked by find-
ing the largest matrix element of the (Z · ZT − 1)matrix,
maxij{[Z · ZT − 1]ij}, where for an exact diagonalisa-
tion it equals zero, too. Finally, since for the computa-
tion of the absorbed energy spectra within the Floquet
approximation the necessary quantity is the time aver-
aged absorbed energy 〈Eabs〉 as given byEquation (34), we
also check the time averaged total population

∑n
i=1〈Pi〉,

where n stands for the number of states included and
〈Pi〉 is the time averaged population of state i; this quan-
tity within an accurate computation should always be
equal to one. We check the above quantities in order to
have a measure for the numerical inaccuracies within
the calculation of the system evolution, in addition to
the criteria for the numerical integration and complex
diagonalisation discussed above.

In Tables 5 and 6, typical values are presented for the
quantities introduced above in order to quantify the qual-
ity of the numerical treatment for all groups of states
for which calculations within the Floquet approximation
with two laser fields have been possible. For groups D
and E, no such calculations have been performed, since
test calculations showed that the numerical inaccuracies
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Table 4. Wavenumbers for transitions |2P◦
3/2(F = 4)mF〉 → |2P◦

1/2(F
′ = 3)mF′ 〉 calculated within perturba-

tion theory for groups of states A, B, C, D and E.

|2P◦
3/2(F = 4) mF〉 → |2P◦

1/2(F
′ = 3) mF′ 〉 transition wavenumber in cm−1

mF − mF′ Group A Group B Group C Group D Group E

(−3)− (−3) 7 603.138 00 7 603.136 13 7 603.138 85 7 603.139 36 7 603.137 20
(−2)− (−2) 7 603.138 00 7 603.136 13 7 603.138 03 7 603.138 52 7 603.136 48
(−1)− (−1) 7 603.138 00 7 603.136 13 7 603.137 54 7 603.138 02 7 603.136 05
0−0 7 603.138 00 7 603.136 13 7 603.137 38 7 603.137 50 7 603.135 90
1−1 7 603.138 00 7 603.136 13 7 603.137 54 7 603.138 02 7 603.136 05
2−2 7 603.138 00 7 603.136 13 7 603.138 03 7 603.138 52 7 603.136 48
3−3 7 603.138 00 7 603.136 13 7 603.138 85 7 603.139 36 7 603.137 20

|2P◦
3/2F = 4〉 → |2P◦

1/2F
′ = 3〉 average transition wavenumber in cm−1

7 603.138 00 7 603.136 13 7 603.138 03 7 603.138 47 7 603.136 48
average shift of the transition wavenumber in cm−1

0.0 −0.001 87 0.000 03 0.000 47 −0.001 52

Table 5. Characteristic quantities of the calculations with two
laser fields within the Floquet approximation for the case where
the probe laser is 104 times weaker than the strong field.

n accuracya
maxij

{[Z · D · ZT − U]}
maxij

{[Z · ZT − 1]} ∑n
i=1〈Pi〉

Group A 36 10−14 < 10−4 < 10−6 1.0000
Group B 72 10−13 < 10−3 < 10−6 1.0002
Group C 144 10−11 < 10−2 < 10−4 1.0000
a Accuracy required for the numerical integration.

Table 6. Characteristic quantities of the calculations with two
laser fields within the Floquet approximation for the case where
the probe laser is 107 times weaker than the strong field.

n accuracya
maxij

{[Z · D · ZT − U]}
maxij

{[Z · ZT − 1]} ∑n
i=1〈Pi〉

Group A 36 10−13 < 10−5 < 10−4 1.0014
Group B 72 10−13 < 10−2 < 10−4 1.0058
Group C 144 10−9 < 10−2 < 10−4 1.0001
a Accuracy required for the numerical integration.

introduced by the diagonalisation of the complex evolu-
tionmatrix have been too largemaking any further result
unreliable. The numerical integration is the dominant

time consuming part of a calculation within the Floquet
approximation.

4.2. Results on absorption line shifts and splittings
in strong fields

Figure 2 shows the absorption spectrum of the
|2P◦

3/2(F = 4)〉 → |2P◦
1/2(F

′ = 3)〉 transition with two
laser fields, as well as with the probe laser only, for the
group of states A. The strongly off-resonant field has an
intensity of 750MWcm−2 and the probe field is 104 times
weaker (left panel). The absorption profiles in the case
of two laser fields coincide on this scale with the pro-
file, when only the probe laser is considered. In the case
of two fields, the absorption profile has a Lorentzian
line shape centred at 7 603.138 0008(26) cm−1 and a full
width at half maximum (FWHM) �̃FWHM = 0.867(5) ·
10−3 cm−1 (here, the standard deviation for the fitted
values to a Lorentzian absorption profile is always given
in parenthesis in units of the last significant digit). The
maximum value of the time averaged absorbed energy

Figure 2. The time averaged absorbed energy spectrum of the |2P◦
3/2(F = 4)〉 → |2P◦

1/2(F
′ = 3)〉 transition with two laser fields

(dashed line), as well as with the probe laser only (solid line), for the group A of states (see Table 3) are presented. The absorption profile
in case of two fields coincides on this scale with the absorption profile, when only the probe laser is considered. The strongly off-resonant
field has an intensity of 750 MWcm−2 and the probe laser is 104 (left panel) or 107 (right panel) times weaker. Along the abscissa, only
the decimal part of each value is shown, while the integer part is always 7 603 cm−1, i.e. ν̃real = ν̃ + 7 603 cm−1. For discussion see text.
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〈Eabs〉 corresponds to 1 104.78(412) cm−1. The calcu-
lated time averaged absorbed energy is consistent with
the expected value according to the initial population
of the states corresponding to their statistical weights,
i.e. each state of the 2P3/2(F = 4) hyperfine level has
initial population equal to 0.041 63. The time averaged
absorbed energy due to the seven �m = 0 transitions
between the 2P3/2(F = 4) and the 2P1/2(F′ = 3) hyper-
fine levels is thus expected to be equal to 1 107.815 cm−1

at 7 603.138 cm−1, as irradiation wavenumber. In the
case, when only the probe laser is considered, the absorp-
tion profile is again a Lorentzian line shape centred
at 7 603.138 0004(9) cm−1, with �̃FWHM = 0.873(2) ·
10−3 cm−1 and a maximum value of 〈Eabs〉 correspond-
ing to 1 103.86(204) cm−1.

In the right panel of Figure 2, the calculated absorption
profile is shown in the case of excitation with two lasers,
as well as with the probe field only, for the same group
of states A, but now the probe laser is 107 times weaker
than the strong field. As in the left panel of this figure,
the two absorption line shapes are practically indis-
tinguishable on this scale: The Lorentzian line shape
with both lasers is centred at 7 603.138 000 28(3) cm−1,
with �̃FWHM = 0.277(1) · 10−4 cm−1 and the maximum
of 〈Eabs〉 corresponds to 1 093.85(238) cm−1 and the
absorption profile for only the probe laser is centred
at 7 603.138 000 00(3) cm−1, with �̃FWHM = 0.277(1) ·
10−4 cm−1 and the maximum value of 〈Eabs〉 cor-
responds to 1 095.38(253) cm−1. From the results of
Figure 2 it is clear that, for the group of states A where
onlymagnetic dipole interactions in the ground term 2P◦
of atomic iodine are considered, the off-resonant field has
no important influence on the position of the |2P◦

3/2(F =
4)〉 → |2P◦

1/2(F
′ = 3)〉 transition, independent on the

relative intensity to the probe field. This result obtained
by calculating the absorption profiles within the Flo-
quet approximation is in agreement with the result by
first order perturbation theory (see Table 4) according
to which no shift of the position of the transition under
study is expected, when a strongly off-resonant periodic
electromagnetic field is present.

The calculated absorption spectra within the group
of states B are presented in Figures 3 and 4. Here,
in addition to the magnetic dipole interactions in the
ground term, the electric dipole interactions of this
term with electronically excited states are included. In
Figure 3, the absorption spectrum is shown, in the
case where the probe field is 104 times weaker than
the strong laser. The Lorentzian line shape for the case
when two fields are considered (dashed line) is centred
at 7 603.136 1291(8) cm−1, with �̃FWHM = 0.883(2) ·
10−3 cm−1 and the maximum value of < Eabs > cor-
responds to 1 089.74(212) cm−1. The Lorentzian line

Figure 3. The time averaged absorbed energy spectrum of the
|2P◦

3/2(F = 4)〉 → |2P◦
1/2(F

′ = 3)〉 transitionwith two laser fields
(dashed line) and with only the probe laser considered (solid line)
for the group B of states (see Table 3) are presented. The strongly
off-resonant field has an intensity of 750 MWcm−2 and the probe
laser is 104 times weaker. Along the abscissa only the decimal
part of each value is shown, while the integer part is always
7 603 cm−1, i.e. ν̃real = ν̃ + 7 603 cm−1. For discussion see text.

shape, when only the probe laser is active (solid line) is
symmetricwith respect to 7 603.138 0002(17) cm−1, with
�̃FWHM = 0.868(4) · 10−3 cm−1 and maximum value
equal to 1102.05(374) cm−1. Comparison of the two
spectra shows a shift of −0.001 8711(25) cm−1 when the
strong laser is present.

Within the group B, the absorption spectrum for the
two lasers, when the probe field is 107 times weaker than
the off-resonant field, is shown in Figure 4. It is centred
at 7603.13612891(3) cm−1, with �̃FWHM = 0.2780(8) ·
10−4 cm−1 and amaximumvalue of 1 096.30(178) cm−1.
In the case in which only the probe laser is considered,
the centre wavenumber is equal to 7 603.138 000 00(11)
cm−1, the maximum value of 〈Eabs〉 is 1 102.52(769)
cm−1 and �̃FWHM equals to 0.2792(34) · 10−4 cm−1. The
shift obtained by comparison of the results in Figure 4
is −0.001 872 09(14) cm−1. The above results show that
the shift is essentially independent on the relative inten-
sity of the two lasers within the range shown and there
is in excellent agreement with the shift calculated with
perturbation theory (see Table 4).

The results for group C are shown in Figure 5, where
the off-resonant laser is 104 times stronger than the
probe field; the absorption spectrum with both lasers
active is shown in this figure. The absorption line is
now a superposition of two Lorentzian line shapes.
The first peak is centred at 7 603.137 71(2) cm−1 with
a �̃FWHM = 0.001 28(5) cm−1 and a maximum value of
〈Eabs〉/(hc) equal to 650.72 cm−1 and the second peak
is symmetric with respect to 7 603.138 83(2) cm−1, with
a maximum average absorbed energy corresponding to
278.31 cm−1 and �̃FWHM = 0.000 635(1) cm−1. In the
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Figure 4. Left panel: the time averaged absorbed energy spectrum of the |2P◦
3/2(F = 4)〉 → |2P◦

1/2(F
′ = 3)〉 transition with two laser

fields for the group B of states (see Table 3) is presented. The strongly off-resonant field has an intensity of 750 MWcm−2 and the probe
laser is 107 times weaker. Along the abscissa only the decimal part of each value is shown, while the integer part is always 7 603 cm−1.
Right panel: the time averaged absorbed energy spectrum of the |2P◦

3/2(F = 4)〉 → |2P◦
1/2(F

′ = 3)〉 transition with only the probe laser
for the group B of states (see Table 3) is presented. Irradiation intensity as in the left panel. Along the abscissa only the decimal part of
each value is shown, while the integer part is always 7 603 cm−1, i.e. ν̃real = ν̃ + 7 603 cm−1. For discussion see text.

Figure 5. Left panel; the time averaged absorbed energy spectrum of the |2P◦
3/2(F = 4)〉 → |2P◦

1/2(F
′ = 3)〉 transition with two laser

fields for the group C of states (see Table 3) is presented. The strongly off-resonant field has an intensity of 750 MWcm−2 and the probe
laser is 104 times weaker. Along the abscissa only the decimal part of each value is shown, while the integer part is always 7603 cm−1.
Right panel: The time averaged absorbed energy spectrum of the |2P◦

3/2(F = 4)〉 → |2P◦
1/2(F

′ = 3)〉 transitionwith only the probe laser
for the group C of states (see Table 3) is presented. Irradiation conditions as in the left panel. Along the abscissa only the decimal part of
each value is shown, while the integer part is always 7 603 cm−1, i.e. ν̃real = ν̃ + 7 603 cm−1. For discussion see text.

experiment mentioned in the introduction, in which the
hyperfine structure of the iodine atom was accurately
measured [43,44], the two peaks would be hidden under
the Doppler broadening, which is on the order of 0.01
cm−1 above room temperature as relevant for the kinetic
experiments [41–44]; therefore, it is meaningful to calcu-
late an averaged centre of the absorption line by weight-
ing the two centres according to their height. The aver-
aged centre is positioned at 7 603.138 05(4) cm−1, which
implies a shift of 0.000 05(4) cm−1 for the position of the
transition under study. This value is in excellent agree-
ment with the result by perturbation theory given in
Table 4. If only the probe laser is considered the cen-
tre wavenumber is 7 603.138 0005(5) cm−1, the �̃FWHM
equals to 0.000 878(1) cm−1 and the maximum value of
〈Eabs〉/(hc) is 1 105.60(112) cm−1.

In Figure 6, where we show results for group C,
the probe laser is 107 times weaker than the strongly
off-resonant field and the substructure hidden previ-
ously is now revealed. There are four isolated peaks
shown in the main part; three of them are equally high,
centred at 7 603.137 530 00(4), 7 603.138 010 00(3) and
7 603.138 830 00(5) cm−1, with �̃FWHM = 0.000 030 77
(5) cm−1, �̃FWHM = 0.000 028 06(13) cm−1 and �̃FWHM
= 0.000021 72(13) cm−1 respectively. The maximum
values of 〈Eabs〉 are almost the same, corresponding
to 324.16 cm−1, 319.42 cm−1 and 316.39 cm−1. The
smallest peak is centred at 7 603.137 370 00(4) cm−1,
with �̃FWHM = 0.000 031 67(10) cm−1 and a maximum
value 〈Eabs〉 corresponding to 161.04 cm−1. Comparison
with the corresponding results of perturbation theory
(Table 4) shows excellent agreement with the calculated
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Figure 6. Left panel: the time averaged absorbed energy spectrum of the |2P◦
3/2(F = 4)〉 → |2P◦

1/2(F
′ = 3)〉 transition with two laser

fields for the group C of states (see Table 3) is presented. The strongly off-resonant field has an intensity of 750 MWcm−2 and the probe
laser is 107 times weaker. Along the abscissa only the decimal part of each value is shown, while the integer part is always 7 603 cm−1.
Right panel: The time averaged absorbed energy spectrum of the |2P◦

3/2(F = 4)〉 → |2P◦
1/2(F

′ = 3)〉 transitionwith only the probe laser
for the group C of states (see Table 3) is presented. There are no extra lines appearing (also not outside the range shown). Irradiation
conditions as in the left panel. Along theabscissaonly thedecimal part of eachvalue is shown,while the integerpart is always 7 603 cm−1,
i.e. ν̃real = ν̃ + 7 603 cm−1. For discussion see text.

spectra and also helps to identify the corresponding
|2P◦

3/2(F = 4)mF〉 → 2P◦
1/2(F

′ = 3)mF′ 〉 transitions. All
transitions with the same absolute value ofmF = mF′ are
equally shifted; since there are three pairs of mF = mF′
values, there are also three equally high peaks. ThemF =
mF′ = 0 transition has half the height of the other three.
The averaged position of the transition calculated within
the Floquet approximation is in agreement with the result
from the perturbation theory, since all partial results are
practically identical for both methods. In the right panel
of this figure, the spectrum using only the probe laser
is shown, which is centred at 7 603.138 000 00(2) cm−1,
with �̃FWHM = 0.000 027 99(3) cm−1 and a maximum
value of 〈Eabs〉 corresponding to 1 102.70(74) cm−1.

5. Discussion and conclusions

The effect of strong off-resonant laser fields on atomic
absorption lines probed byweak near-resonant fields is of
interest in a variety of experiments. It can play a role in the
operation of the iodine atom laser under certain condi-
tions and it is of particular importance for experiments in
laser chemical kinetics, where product yields and product
state distributions are measured with uncertainty lim-
ited simultaneous high time and frequency resolution
[41–44], including for instance hyperfine distributions
in the iodine atoms. The effects can be estimated easily
by perturbation theory [46], but the accuracy of these
estimates has to our knowledge not been tested by com-
parison with accurate numerical calculations. Such a test
was the principal goal of the present work.

In summary, the results of the calculations considering
two laser fields, one strong off resonant and one weaker

probe fieldwithin the Floquet approximation are in excel-
lent agreement with the results obtained with second
order perturbation theory for the position of the effec-
tive spectral lines of atomic iodine in the presence of a
strong off resonant periodic electromagnetic field. Since
the treatment within the Floquet approximation allows
for ‘multiphoton’ effects of all orders, while only quasi
one- and two-photon processes are included in the per-
turbative treatment, the excellent agreement of the two
methods indicates that higher order processes are of no
relevance for the observed shift of the transitions under
consideration. Moreover, if only the magnetic dipole
interactions within the ground term of atomic iodine are
considered, no shift of the position of the |2P◦

3/2(F =
4)〉 → |2P◦

1/2(F
′ = 3)〉 transition is obtained, indicating

that the experimentally obtained shift is due to the cou-
pling of the ground term to electronically excited states,
for which the electric dipole type interactions dominate.
Surprisingly, adequate spectroscopic information, such
as the Einstein coefficients and detailed knowledge of the
hyperfine structure for the electronically excited states
of atomic iodine, is rare and not well established. Due
to this lack of information, it has been practically very
difficult to consider a sufficient number of excited states
in order to obtain converged results with respect to the
number of states included. Therefore, a direct compari-
son between the theoretical results with the experimen-
tally observed shift is not yet possible. Nevertheless, our
results describe semi-quantitatively the observed shifts of
the iodine atom under irradiation by two laser fields in
agreementwith experience in experiments using simulta-
neous CO2 laser excitation, where, however, the Doppler
widths are substantially larger than the predicted shifts
due to the strong field [41–44]. These Doppler widths are
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about 0.008 cm−1 in experiments around room temper-
ature and larger for the more energetic iodine atoms after
infraredmultiphoton excitation and dissociation of poly-
atomic iodides [43], where only circumstantial evidence
can be seen for the small shifts and splittings with abso-
lute values of about 0.002 cm−1 predicted by the present
numerical calculation. These predictions could be tested
in high resolution spectroscopic experiments for iodine
atoms at low effective temperatures near and below 1K.
Such conditions can be achieved in the spectroscopy of
supersonic jet expansions [69,70], which would have to
be exposed to the fields from the two lasers as described
in the present theoretical work. Both the predicted shifts
and splittings would in principle be accessible to such
experiments. In the related case of the isoelectronic Xe+,
one could consider studying the hyperfine spectra of the
isotopes with nuclear spin, characterised already in [71],
for instance in experiments with ion traps.
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Appendix. Supplementary material

In the supplementary material available, we describe the com-
plete spectroscopic data set as used in the numerical calcu-
lations. We also include the FORTRAN code of the URIMIR
package, which contains for completeness also the initial parts
[33], as these are not any more easily accessible through the
QCPE service.

The URIMIR code has the general philosophy of an open
source code including as numerical routines also open source
programs from various sources as mentioned. It uses only stan-
dard FORTRAN language to be easily portable both over time
and to various available hardware as recently updated and
tested even for the oldest parts. The history of the code is briefly
as follows: The earliest programs were written in the context of
numerical calculations in refs. [27,28]. These programs were
completely rewritten in the context of refs. [30,32] and pub-
lished by QCPE [33]. The URIMIR package was used to illus-
trate various examples of multi-photon excitation [72]. Further
developments followed as described in refs. [34–38] and finally
also in ref. [73], which involved simulations including also the
parity violating electroweak interaction.
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