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Abstract 

We provide a survey of fundamental aspects of rotation–vibration spectra. A basic 
understanding of the concepts is obtained from a detailed discussion of rotation–vibration 
spectra of diatomic molecules with only one vibrational degree of freedom. This includes 
approximate and exact separation of rotation and vibration, effective spectroscopic constants, 
the effects of nuclear spin and statistics, and transition probabilities derived from the form of 
the electric dipole moment function. The underlying assumptions and accuracy of the 
determination of molecular structure from spectra are discussed. Polyatomic molecules show 
many interacting vibrational degrees of freedom. Energy levels and spectra are discussed on 
the basis of normal coordinates and effective Hamiltonians of interacting levels in Fermi 
resonance, and in more complex resonance polyads arising from anharmonic potential 
functions. The resulting time-dependent dynamics of intramolecular energy flow is introduced 
as well. Effective Hamiltonians for interacting rotation–vibration levels are derived and 
applied to the practical treatment of complex spectra. Currently available computer programs 
aiding assignment and analysis are outlined. 

Keywords: vibration-rotation spectra; intramolecular vibrational energy flow; fermi 
resonance; time-dependent vibrational dynamics; effective Hamiltonians; diatomic molecules; 
nuclear spin and statistics; electric dipole moment function; line intensities; band strengths 
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1 INTRODUCTION

High-resolution infrared (IR) spectroscopy is the key to
the quantum-state-resolved analysis of molecular rota-
tion–vibration spectra and the consequent understanding
of the quantum dynamics of molecules. Such quantum state
resolution has been common in pure rotational spectra from
the very beginning of this field after about 1945, on the
basis of microwave (MW) technology (see Bauder 2011:
Fundamentals of Rotational Spectroscopy, this hand-
book). In the IR range of the spectrum, however, which is
important for the study of combined rotational–vibrational
excitation, experimental resolution was sufficient in the past
only for the simpler diatomic and polyatomic molecules,
largely limited by the technology of grating or more
generally dispersive spectrometers (Herzberg 1945, 1950,
Nielsen 1962, Stoicheff 1962). There has been substan-
tial development of IR and Raman spectroscopy at much
higher resolution in recent decades, based on laser tech-
nology, on one hand, and interferometric Fourier trans-
form infrared (FTIR) spectroscopy, on the other hand.
This has made the rotation–vibration spectra of much
more complex molecules accessible to the full analysis
of the rotational–vibrational fine structure and the fron-
tier in this area of research is moving toward even larger
polyatomic molecules. Several articles in this handbook dis-
cuss these experimental developments (see, for instance,
Albert et al. 2011: High-resolution Fourier Transform
Infrared Spectroscopy, Snels et al. 2011: High-resolution
FTIR and Diode Laser Spectroscopy of Supersonic

Handbook of High-resolution Spectroscopy. Edited by Martin Quack
and Frédéric Merkt.  2011 John Wiley & Sons, Ltd.
ISBN: 978-0-470-74959-3.

Jets, Sigrist 2011: High-resolution Infrared Laser Spec-
troscopy and Gas Sensing Applications, Weber 2011:
High-resolution Raman Spectroscopy of Gases, Havenith
and Birer 2011: High-resolution IR-laser Jet Spec-
troscopy of Formic Acid Dimer, Hippler et al. 2011: Mass
and Isotope-selective Infrared Spectroscopy, Amano
2011: High-resolution Microwave and Infrared Spec-
troscopy of Molecular Cations, Frey et al. 2011: High-
resolution Rotational Raman Coherence Spectroscopy
with Femtosecond Pulses, Demtröder 2011: Doppler-free
Laser Spectroscopy, Stanca-Kaposta and Simons 2011:
High-resolution Infrared–Ultraviolet (IR–UV) Double-
resonance Spectroscopy of Biological Molecules, Flaud
and Orphal 2011: Spectroscopy of the Earth’s Atmo-
sphere and Herman 2011: High-resolution Infrared Spec-
troscopy of Acetylene: Theoretical Background and
Research Trends, among others, in this handbook).

In parallel to the experimental developments, there
has been great progress in the theoretical understanding
of the quantum mechanics of molecules on the basis of
quantum chemical ab initio theory as well as quantum
dynamics in general (see Yamaguchi and Schaefer 2011:
Analytic Derivative Methods in Molecular Electronic
Structure Theory: A New Dimension to Quantum
Chemistry and its Applications to Spectroscopy, Tew
et al. 2011: Ab Initio Theory for Accurate Spectroscopic
Constants and Molecular Properties, Breidung and Thiel
2011: Prediction of Vibrational Spectra from Ab Initio
Theory, Mastalerz and Reiher 2011: Relativistic Elec-
tronic Structure Theory for Molecular Spectroscopy,
Marquardt and Quack 2011: Global Analytical Poten-
tial Energy Surfaces for High-resolution Molecular
Spectroscopy and Reaction Dynamics, Watson 2011:
Indeterminacies of Fitting Parameters in Molecular
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Spectroscopy, Carrington 2011: Using Iterative Methods
to Compute Vibrational Spectra, Tennyson 2011: High
Accuracy Rotation–Vibration Calculations on Small
Molecules, Boudon et al. 2011: Spherical Top Theory
and Molecular Spectra, Köppel et al. 2011: Theory of
the Jahn–Teller Effect and Field et al. 2011: Effective
Hamiltonians for Electronic Fine Structure and Poly-
atomic Vibrations, this handbook). Thus, many aspects of
rotation–vibration spectroscopy are covered in great detail
in the individual articles of this handbook.

The goal of this article is to provide a brief, largely
didactic discussion of some of the basic concepts, where
one considers vibrational motion in addition to the rota-
tional motion treated in the preceding article by Bauder
2011: Fundamentals of Rotational Spectroscopy, this
handbook. This also helps in defining some of the basic
concepts in this field (see also Stohner and Quack 2011:
Conventions, Symbols, Quantities, Units and Constants
for High-resolution Molecular Spectroscopy, this hand-
book). Further basic concepts related to the present arti-
cle can be found in Merkt and Quack 2011: Molecular
Quantum Mechanics and Molecular Spectra, Molecular
Symmetry, and Interaction of Matter with Radiation,
this handbook. We also discuss some aspects arising in the
practical analysis of complex rotation–vibration spectra of
polyatomic molecules, because this topic is not well cov-
ered in the traditional textbooks and has developed in more
recent years through the development of new experimental
possibilities. The structure arising from electronic excita-
tion is covered in Wörner and Merkt 2011: Fundamentals
of Electronic Spectroscopy, this handbook.

This article is organized as follows. We start with a
detailed discussion of diatomic molecules in Section 2.
Section 3 extends the treatment to polyatomic molecules
with several interacting vibrations including anharmonic
resonance. The time-dependent picture of intramolecuar
motion and energy flow is presented in Section 4. Section
5 discusses the analysis of interaction of rotation and
vibration, and Section 6 deals with pattern recognition and
assignment aids for complex molecular spectra.

2 ENERGY LEVELS AND IR SPECTRA
OF DIATOMIC MOLECULES:
INTERACTION OF ROTATION AND
VIBRATION AND EFFECTS OF
NUCLEAR SPIN

This section considers some basic concepts of spectra
of vibrating and rotating molecules, using diatomic
molecules for illustration. These concepts also find their
correspondence in polyatomic molecules, where, however,

the situation is much more complex. We start from the
Born–Oppenheimer approximation (see Bauder 2011: Fun-
damentals of Rotational Spectroscopy, Wörner and Merkt
2011: Fundamentals of Electronic Spectroscopy and
Marquardt and Quack 2011: Global Analytical Potential
Energy Surfaces for High-resolution Molecular Spec-
troscopy and Reaction Dynamics, this handbook), where
the atoms or nuclei move in an effective potential V (R)
defined by the solution of the electronic Schrödinger
equation. R is the distance between the nuclei. We con-
sider molecules in their electronic ground state (see Wörner
and Merkt 2011: Fundamentals of Electronic Spec-
troscopy, this handbook, for a discussion pertaining to
molecules in excited electronic states). Indeed, one can
consider “best” effective potentials V (R) going beyond
the Born–Oppenheimer approximation, still retaining the
concept that the explicit motion of the electrons can be
neglected and, thus, one has to consider only the dynamics
of nuclear motion in this effective potential (Section 2.1).
Because this effective potential, in general, has no simple
form, there are consequently no simple analytical expres-
sions available for the energy levels or rovibrational term
values except for model potentials. Thus, in practical spec-
troscopy, one uses approximations leading to simple formu-
lae for the term values, which can be expressed by tables of
constants summarizing these term value expressions (Huber
and Herzberg 1979). The approaches, starting either from
“exact” solutions of the Schrödinger equation for nuclear
motion in an effective potential or using simple term formu-
lae for energy levels, are conceptually different, and similar
conceptual differences also exist in the case of polyatomic
molecules. Symmetry and nuclear spin introduce further
effects in homonuclear diatomic molecules (Section 2.3).
To describe spectroscopic transitions between energy lev-
els, one has to furthermore consider the radiative transition
probabilities, for example, in the electric dipole approx-
imation for absorption spectra or related approximations
for Raman spectra (Section 2.4). We also discuss concepts
related to the determination of molecular structure from
high-resolution IR spectra.

2.1 Quasi-exact Treatment of
Rotation–Vibration States of Diatomic
Molecules in the Framework of the
Born–Oppenheimer Approximation or More
General Effective Potentials

Figure 1 schematically shows a diatomic molecule with
variable bond length R. For example, the reader may con-
sider 12C16O (with no nuclear spin) or 1,2H19F (neglect-
ing nuclear spin effects for now), both in their 1Σ

closed shell, nondegenerate electronic ground state in the
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Figure 1 Diatomic molecule scheme. The origin of the
molecule-fixed coordinate system is located at the center of mass
(S) of the molecule.

Born–Oppenheimer approximation (see Bauder 2011: Fun-
damentals of Rotational Spectroscopy and Wörner and
Merkt 2011: Fundamentals of Electronic Spectroscopy,
this handbook). Restricting the motion to one dimension
(along the z axis), one has a pure vibrational and trans-
lational problem; separating the center of mass (S) trans-
lational motion in a standard way (Cohen-Tannoudji et al.
1977, Demtröder 2003) and using momentum conservation
for the molecule as a whole, one obtains the Hamiltonian
operator for the internal (vibrational) motion:

Ĥv = T̂v + V̂v = p̂2

2µ
+ V (R) (1)

with the momentum operator p̂ and the reduced mass µ,

µ = m1m2

m1 + m2
(2)

where m1 and m2 are the masses of the two nuclei (or
atoms, see below).

Figure 2 shows two typical model potentials, as an
illustration, for which the time-independent vibrational
Schrödinger equation

ĤvΨ v(R) = EvΨ v(R) (3)

has simple solutions. With the harmonic potential Vh(R),

Vh(R) = 1

2
f (R − Re)

2 (4)

one has

Ev = hν

(
v + 1

2

)
, v = 0, 1, 2 . . . (5)

or equivalently with vibrational wavenumbers ωe

Ev

hc
= ωe

(
v + 1

2

)
(6)

Ψ v(Q) = NvHv(Q)exp(−Q2/2) (7)

Harmonic

D0
0

De
(E)

De
(E)

Morse

0 Re R

V(R)

E0

Figure 2 Morse potential V (R), full line, and harmonic poten-
tial, dotted line. The relevant parameters are the zero-point energy
E0, the electronic dissociation energy D

(E)
e , and the thermo-

dynamic bond dissociation energy at 0 K D0
0 = ∆dissH

0
0 /NA =

D
(E)
e − E0.

with the reduced coordinate

Q = (R − Re)
√

f/hν (8)

Because of close analogies with the classical mechanics of
oscillation, one uses the concept of the force constant

f =
(

∂2V (R)

∂R2

)
R=Re

(9)

and the classical oscillation frequency ν = cωe

ν = 1

2π

√
f

µ
(10)

The normalization factors Nv in equation (7) are obtained
from ∫ +∞

−∞
Ψ ∗

v (Q)Ψ v(Q) dQ = 1 (11)

Nv = {√
πv!2v}−1/2

(12)

and the Hermite polynomials Hv (Q)

Hv(Q) = (−1)vexp(Q2)
dv

dQv
exp(−Q2) (13)

Similarly, with the “anharmonic” Morse potential

VM(R) = D(E)
e {1 − exp[−a(R − Re)]}2 (14)

one obtains

Ev

hc
= ωe

(
v + 1

2

)
− ωexe

(
v + 1

2

)2

(15)
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with the usual spectroscopic constants ωe and ωexe in units
of wavenumbers (m−1 or cm−1, see Stohner and Quack
2011: Conventions, Symbols, Quantities, Units and Con-
stants for High-resolution Molecular Spectroscopy, this
handbook)

ωexe = ω2
e

4DeM
(16)

DeM = D
(E)
e

hc
(17)

Equation (15) is valid for discrete energies Ev≤vmax, where
vmax is given by the highest bound level with Evmax < D

(E)
e .

Figure 3 shows in an exemplary manner the lowest six
energy levels, wavefunctions Ψ v, and probability densities
|Ψ v|2 for the harmonic oscillator and the anharmonic Morse
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Figure 3 Eigenfunctions (full line) and probability densities
(dotted line) of the harmonic oscillator (left) and the anharmonic
Morse oscillator (right).

oscillator. The conventional spectroscopic constants of the
anharmonic Morse oscillator are related to the properties of
the potential

ωe = 1

2πc

√
f

µ
= a

[
DeMh

2π2cµ

]1/2

(18)

with the force constant f being defined by equation (9).
One can also write

ωexe = ha2

8π2cµ
(19)

a = ωe

√
2π2cµ/(DeMh) (20)

a � 1.2177 × 107ωe

√
µ/Da

DeM/cm−1
(21)

where the last approximate equation is useful for practical
calculations with constants given in spectroscopic units.

Rewriting the energy levels as a difference measured
from the zero point level, one finds

(Ev − E0)

hc
= (ωe − ωexe)v − ωexev2 (22)

(Ev − E0)

hc
= ω0v − ω0x0v2 (23)

with the new constants ω0 = ωe − ωexe and ω0x0 = ωexe

for the Morse oscillator.
The energy difference of adjacent energy levels is a linear

function of v:

∆E(v)

hc
= (Ev+1 − Ev)

hc
= (ω0 − ω0x0) − 2ω0x0v (24)

This relation can be used for practical determination of the
spectroscopic constants from a linear graph (Figure 4). One
readily also sees that there is a finite number of discrete
levels with

vmax � 2DeM

ωe
(25)

Thus one has about twice as many levels as the number
of harmonic levels up to dissociation. The first interval
∆E(0)/hc = ν̃fM is also called the anharmonic funda-
mental wavenumber of the Morse oscillator (y-intercept,
Figure 4).

The one-dimensional motion can be extended to three
dimensions by using angular momentum conservation in
isotropic space (Cohen-Tannoudji et al. 1977, Zare 1988,
Demtröder 2003). This allows for an exact separation of
the wavefunction in polar coordinates (R, ϑ, ϕ) according
to equation (26):

Ψ (R, ϑ, ϕ) = Φv,J (R)YJ,MJ
(ϑ, ϕ) (26)
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w0−w0x0 intercept

−2w0x0 slope

∆E
hc

2DeM
we

−1
v0

Figure 4 Term values as differences f (v) = ∆E(v)/(hc); see
equation (24).

YJ,MJ
(ϑ, ϕ) are the spherical harmonics; here we use the

conventional symbols for the angular momentum quantum
number J and the quantum number MJ for the z component
of the angular momentum. The angular dependence of the
“rotational” wavefunctions is, thus, the same as for the
hydrogen atom, with the conventional notation Yl,ml

(ϑ, ϕ).
The “vibrational” wavefunctions Φv,J (R) depend upon
the double index v, J because they are solutions of a
one-dimensional Schrödinger equation with an effective
J -dependent potential

Veff(R, J ) = V (R) + h2

8π2µR2
J (J + 1) (27)

Veff(R, J ) = V (R) + Vcent(J ) (28)

where Vcent(J ) is interpreted as a centrifugal potential.
The effectively one-dimensional differential equation to be
solved is thus

ĤΦv,J (R) = Ev,JΦv,J (R) (29)

with

Ĥ = − h2

8π2µR2

[
∂

∂R
R2 ∂

∂R

]
+ Veff(R, J ) (30)

or rewriting the differential equation in the practical form
(Demtröder 2003)

1

R2

d

dR

(
R2 dΦv,J (R)

dR

)

+ 8π2µ

h2

[
Ev,J − Veff(R, J )

]
Φv,J (R) = 0 (31)

The one-dimensional differential equation is readily solved
by numerical methods, for instance, using the Numerov–
Cooley algorithm, and programs are available that are

specifically designed for diatomic molecule problems
(Le Roy 2007). In general, there are no simple energy level
formulae available. However, we mention the close analogy
to the hydrogen atom, where V (R) is the Coulomb poten-
tial (V (R) ∝ −e2/R). Indeed, the problem at hand is the
general problem of two point masses separated by R and
moving in free space under the influence of an interaction
potential V (R).

Figure 5 shows the lowest “rotation–vibration energies”
for the Coulomb potential in the corresponding effective
potentials Veff(R, l), where the “rotational” quantum num-
ber is labeled “l” by convention for the orbital angular
momentum. Because of the special nature of the Coulomb
potential, the “vibrational ground state” for each effective
potential Veff(R, l) is degenerate with excited states aris-
ing from lower values of l (l − 1, l − 2, . . . 0), leading
to the well-known “Coulomb degeneracy” (slightly lifted
in reality). For diatomic molecules, no such degeneracy
arises because V (R) is qualitatively very different from the
Coulomb potential. Indeed, in general, no simple exact term
formulae arise.

In this respect an exception results for the Morse
potential. As shown by Pekeris (1934), and Nielsen (1951,
1959), one finds

Ev,J

hc
= ωe

(
v + 1

2

)
− ωexe

(
v + 1

2

)2

+ BvJ (J + 1) − DvJ
2(J + 1)2 (32)
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Figure 5 Potential functions with vibrational eigenvalues for the
hydrogen atom (for l = 0, 1, 2).
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Figure 6 Morse potential Ṽeff(R) of the HF molecule from the
SO-3 potential (Klopper et al. 1998) and effective potential for
various values of J .

Bv = Be − αe

(
v + 1

2

)
(33)

Be = h

8π2cµR2
e

(34)

αe = 3h2ωe

16π2µR2
e De

(
1

aRe
− 1

a2R2
e

)
(35)

Dv = De + βe

(
v + 1

2

)
(36)

βe = De

(
8ωexe

ωe
− 5αe

ωe
− α2

eωe

24B3
e

)
(37)

De = 4B3
e

ω2
e

(38)

The comparatively simple formula (equation (32)) for
the rotation–vibration energy levels of a Morse oscillator
suggests a generalization in terms of simple power series
expansions as a function of v and J . Before addressing such
equations, we show the effect of the centrifugal potential
for a typical example (Figure 6). For low J , there is little
change in the effective potential, very different from the
hydrogen atom. For J = 1 and 2, the effects would not be
visible in the figure. Large effects arise only for J > 100,
which is a further reason to look for another simple treat-
ment of the rotation–vibration problem.

Here, it is necessary to make a remark on the calcula-
tion of the effective reduced masses µ in these equations.
In the practical analysis of spectra, the most commonly
used assumption is to introduce the atomic masses mi in
equation (2), i.e., including the masses of the electrons
in the atoms with the masses mi . It is, however, by no

means obvious that this is the best choice. In calculating
effective rotational energies following equation (27), one
would assume that the moment of inertia indeed includes
the masses of the electrons which are, however, not incor-
porated at the position of the two nuclei separated by R.

A better assumption would be to compute the moments
of inertia by means of the actual probability distributions
of the electrons arising from the ground-state electronic
wavefunction. Nevertheless, in the first approximation, the
use of atomic masses might be plausible for the calculation
of the effective rotational reduced mass µr to be used in
equation (27). On the other hand, for the purely vibrational
problem, the most logical interpretation in the framework
of the straight Born–Oppenheimer (BO) approximation
would be a motion of the bare nuclei in the effective
potential field generated by the electronic motion (see
Bauder 2011: Fundamentals of Rotational Spectroscopy,
this handbook). In principle, for very simple molecules
such as H2

+ or H2 one could treat the quantum mechanical
problem directly as a three or four particle system, without
need for the BO approximation.

However, particularly for the heavier atoms, it seems
physically obvious that the inner shell electrons are so
tightly bound to the nuclei that they effectively move with
the nuclei and thus contribute to the effective vibrational
reduced masses µv. One might, thus, include some useful
fraction of the total number of electrons of the “atoms”
with masses “mi” in the calculation of the reduced masses
µv in equation (2). The situation is by no means trivial and
is related to replacing the true many-body Hamiltonian by
an effective few-body Hamiltonian (two-body Hamiltonian
for diatomic molecules). The uncertainties in these masses
are thus directly linked to the Born-Oppenheimer or other
related effective Hamiltonian approximations. There has
been some debate on which is the “best” choice for effective
reduced masses µv and µr; for further discussion, we
refer to the review by Tennyson 2011: High Accuracy
Rotation–Vibration Calculations on Small Molecules,
this handbook and the papers by Kutzelnigg (2007), Bunker
and Moss (1977), Schwartz and Leroy (1987) and Coxon
and Hajigeorgiou (1999). At ultrahigh precision, the mass
distribution within the extended nuclei must also be taken
into account.

2.2 Effective Treatment in Terms of
Spectroscopic Constants

Equation (32) for the Morse oscillator lends itself to
a simple interpretation. The purely v-dependent terms
are the results of the anharmonic vibrational motion
alone. Neglecting the small centrifugal distortion term
DvJ

2(J + 1)2, the rotational term BvJ (J + 1) corresponds
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to the rigid rotor energy levels, with an effective rotational
constant Bv.

Separating the fast vibrational motion from the rotational
motion in a Born–Oppenheimer-like adiabatic manner, Bv

is interpreted as the expectation value of the rotational
constant over the vibrational wavefunction:

Bv �
〈
Ψ v

∣∣∣∣ h

8π2cµR2

∣∣∣∣Ψ v

〉
(39)

It is furthermore common to allow for a representation
of energy levels by simply extending the power series of
equation (32) to higher powers by adding further empir-
ically adjustable constants (Huber and Herzberg 1979).
Thus, one can write the vibrational term values as

Ev

hc
= G(v) = ωe

(
v + 1

2

)
− ωexe

(
v + 1

2

)2

+ ωeye

(
v + 1

2

)3

+ ωeze

(
v + 1

2

)4

+ · · · (40)

and add to this the rotational term values defined by

EJ(v)

hc
= Fv(J ) = BvJ (J + 1) − DvJ

2(J + 1)2

+ HvJ
3(J + 1)3 + · · · (41)

to give the total rotational–vibrational energy

Ev,J

hc
= G(v) + Fv(J ) (42)

Furthermore, one uses the expansions

Bv = Be − αe

(
v + 1

2

)
+ γ e

(
v + 1

2

)2

+ · · · (43)

Dv = De + βe

(
v + 1

2

)
+ δe

(
v + 1

2

)2

+ · · · (44)

One notes the slight inconsistencies in the sign conven-
tion: to have commonly positive ωexe, αe, and De, the
corresponding terms in the power series are defined with
a negative sign, whereas all further terms have a positive
sign.

These equations are used in the least squares adjustment
of the corresponding “effective spectroscopic constants”
(ωe, ωexe, Be, αe, De, βe, etc.) to the measured transition
frequencies (Albritton et al. 1976). One should not over-
interpret the physical significance of such parameters, but
they can be considered as resulting from the diagonaliza-
tion of an effective Hamiltonian matrix to appropriate order
to obtain its diagonal (eigenvalue) form.

A slightly different development was proposed by
Dunham (1932):

Ev,J

hc
=
∑

j

∑
k

yjk

(
v + 1

2

)j

[J (J + 1)]k (45)

One can use the following relations (Herzberg 1950,
Demtröder 2003)

y10 � ωe (46)

y20 � −ωexe (47)

y30 � ωeye (48)

y01 � Be (49)

y02 � −De (50)

y11 � −αe (51)

y12 � −βe (52)

y21 � γ e (53)

y00 � Be − ωexe

4
+ αeωe

12Be
+ α2

eω
2
e

144B2
e

(54)

For the Morse potential, only y10, y20, y01, y02, y11,
and y12 are different from zero and one can establish
exact relationships to the more conventional spectroscopic
parameters. However, in general, equations (46)–(54) are
approximate.

Also, in a real molecule, one might absorb some effects
from higher terms in the lower terms by setting all terms
after some point in the expansion to zero. These facts
have to be observed when comparing results arising from
different fits to experimental data in the literature.

2.3 Symmetry, Nuclear Spin, and Statistics in
Homonuclear Diatomic Molecules

Other important effects in the energy level structures
arise for homonuclear diatomic molecules from symmetry,
nuclear spin, and statistics. The generalized Pauli principle
is one of the fundamental laws of atomic and molecular sci-
ence, going beyond the mere laws of quantum mechanics
(see Quack 2011: Fundamental Symmetries and Sym-
metry Violations from High-resolution Spectroscopy,
this handbook). The consequences of the Pauli principle
on the electronic structure due to the indistinguishability
of electrons are discussed in an article by Wörner and
Merkt 2011: Fundamentals of Electronic Spectroscopy,
this handbook. There are, however, further important con-
sequences on rotation–vibration spectra arising from the
identity of nuclei. Indeed, we know that the solution of the
Schrödinger equation in the Born–Oppenheimer approxi-
mation may generally be written as
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Ψ tot(re, Rn . . .) = Ψ e(re, Rn . . .)Ψ (e)
v (Rn)

· Ψ (ev)
r (ϑ, ϕ, χ)Ψ (evr)

ns (σ ) (55)

Etot = Ee + E(e)
v + E(ev)

r + E(evr)
ns (56)

Here, the upper indices indicate the implicit dependence
upon electronic (e), vibrational (v), and rotational (r) states
by computing the appropriate expectation values in the
given state. For the diatomic molecule, we obviously have
Rn = R.

The wavefunction of equation (55) is a solution of the
Schrödinger equation within appropriate approximations,
but it is still incomplete because it does not satisfy
the symmetry requirements imposed by the generalized
Pauli principle. A proper Ψ tot must be antisymmetric with
respect to the permutation of two fermions (particles with
half odd integer spin) and symmetric with respect to the
permutation of two bosons (particles with integer spin).
We shall assume that electrons have been dealt with by an
appropriate electronic structure treatment for the electronic
ground state (see Wörner and Merkt 2011: Fundamentals
of Electronic Spectroscopy, this handbook), resulting in
allowed electronic ground-state terms. We now consider
the effect on rotational–vibrational structure arising from
identical nuclei.

We start with the simple and historically important case
of H2 (see also Quack 2011: Fundamental Symmetries
and Symmetry Violations from High-resolution Spec-
troscopy, this handbook). The ground-state electronic term
is 1Σ+

g , the electronic wavefunction, thereby satisfying the
Pauli principle for electrons. This totally symmetric term in
the point group D∞h is also symmetrical upon the permuta-
tion of the two protons in H2. The vibrational wavefunction
Ψ (e)

v (R) or Φv,J (R) depends on the magnitude of separa-
tion R of the two nuclei and, thus, is also symmetric with
respect to a permutation of the coordinates of the two pro-
tons. For a diatomic molecule, the rotational wavefunction
Ψ (ev)

r (ϑ, ϕ, χ) reduces to the spherical harmonics YJ,MJ

(equation (26)). These are symmetric under permutation of
the coordinates of the two nuclei for even J and antisym-
metric for odd J as can be seen by the inspection of the
spherical harmonics. We discuss next the symmetry of the
nuclear spin functions Ψ (evr)

ns (σ ). Each proton may exist
in two spin states, depending on the magnetic quantum
number mp for the projection of the proton spin on the
z-axis, which we define as

ψ spin, p1,2
(mp = +1/2) ≡ α(j = 1, 2) (57)

ψ spin, p1,2
(mp = −1/2) ≡ β(j = 1, 2) (58)

Depending on whether we consider the first or the second
proton (j = 1, 2), we write α(1), α(2), or β(1), β(2). The

total spin wavefunction can be written as a product of the
individual wavefunctions, at least as far as its symmetry
properties are concerned, which results in a total of four
possibilities with appropriate symmetry with respect to
permutation of the indices 1 and 2 and satisfying the triangle
condition for the total nuclear spin I

|I1 − I2| ≤ I ≤ I1 + I2 (59)

1. The three normalized symmetrical functions have total
nuclear spin I = 1:

ϕs1
= 1√

2
[α(1)β(2) + α(2)β(1)] with MI = 0

(60)

ϕs2
= α(1)α(2) with MI = 1 (61)

ϕs3
= β(1)β(2) with MI = −1 (62)

2. The one antisymmetrical wavefunction has I = 0 (and
MI = 0):

ϕa = 1√
2

[α(1)β(2) − α(2)β(1)] (63)

Because of the generalized Pauli principle, the total wave-
function Ψ tot must be antisymmetric with respect to the
permutation (12) of the indices of the two protons; thus,

(12)Ψ tot = −Ψ tot (64)

Considering the properties of the product wavefunction
(equation (55)), one can thus either combine symmetric
rotational functions with even J with the antisymmetric
nuclear spin function (equation (63)) or else combine the
antisymmetric rotational wavefunctions with odd J with
the three symmetric nuclear spin functions with an extra
degeneracy due to MI = 0, ±1, giving an extra nuclear
spin statistical weight 3 for all odd J (in addition to the
(2J + 1) degeneracy resulting from MJ ). These two sets of
states of hydrogen do not interconvert easily because of the
dynamical principle of approximate nuclear spin symmetry
conservation (see Quack 2011: Fundamental Symmetries
and Symmetry Violations from High-resolution Spec-
troscopy, this handbook). They behave like different iso-
mers of hydrogen H2 (called nuclear spin isomers), which
can be separated and can be stable for months at room
temperature in the absence of catalysts for interconversion.

The more abundant nuclear spin isomer with the higher
nuclear spin statistical weight 3 (and odd J for H2) is called
ortho-hydrogen, while the less abundant nuclear spin iso-
mer with nuclear spin statistical weight 1 (and even J for
H2) is called para-hydrogen. In ordinary hydrogen gas, the
two forms coexist as a mixture. Because of the extra nuclear
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spin statistical weights (3 and 1), in samples at thermal
equilibrium with many J populated, there will be an inten-
sity alternation (3 : 1) in spectral lines associated with odd
or even J in the ground state of the relevant transition
(for instance, in the rotation–vibration Raman spectrum
of H2; see Weber 2011: High-resolution Raman Spec-
troscopy of Gases, this handbook). Similar effects arise
for all homonuclear diatomic molecules with nuclei of spin
1/2 (for instance, 15N2). For nuclear spins Ii > 1/2, one can
readily show, by inspection of the functions generated fol-
lowing the triangle condition (equation (59)), that the total
number of symmetrical nuclear spin functions is

Ns = (2Ii + 1)2 + 2Ii + 1

2
(65)

and the total number of antisymmetrical functions is

Na = (2Ii + 1)2 − 2Ii − 1

2
(66)

Obviously, with Ii > 1/2, one has more than two possible
values of I in equation (59). The deuterium nucleus, for
instance, has ID = 1 and thus I = 0, 1, 2 with Ns = 6 and
Na = 3, in the case of D2.

Because the deuteron is a boson, the total wavefunction
Ψ tot must be symmetrical; thus, even J (for the electronic
ground state 1Σ+

g ) combine with the six symmetrical
nuclear spin wavefunctions and are called ortho-deuterium
(because of the higher abundance, see above) and odd
J combine with the three antisymmetrical wavefunctions
(para-deuterium).

Several further considerations are now in order. Equation
(55) is an approximation, and, in particular, nuclear
spin–rotation interactions can couple states of different
nuclear spin as non-Born–Oppenheimer interactions can
couple different electronic states. Nevertheless, it is possible
to obtain the proper symmetry relations from the approx-
imation (equation (55)), as can be seen from the exact
wavefunction, which in general will be a sum of infinitely
many terms of the form of equation (55):

Ψ tot,exact =
∑

j

cjΨ
j
tot(re, Rn, . . .) (67)

Our discussion following equation (55) concerned only the
dominant leading term with the largest

∣∣cj

∣∣ in equation (67).

However, all further terms Ψ
j
tot must satisfy the generalized

Pauli principle in the same way as the leading term, even
though they may mix individual terms in the products
(vibronic mixing, nuclear spin rotation mixing, etc.). It is
thus sufficient to consider only the leading term, if one is
only interested in the symmetry properties. Mixing may,
however, decrease degeneracies (nuclear spin degeneracy

will be lifted slightly for instance) and more generally
lead to further deviations from the expression for Etot in
equation (56).

A second consideration concerns the symmetry properties
of electronic terms under permutation of identical nuclei.
We illustrate this with the example of the O2(

3Σ−
g ) ground

state, which has led to some confusion not only in the
textbook literature (for instance, Demtröder 2003, but also
in a number of other cases). This is because of the
understanding of the symmetry property of the electronic
term 3Σ−

g (in D∞h) as related to the symmetry under the
permutation (12) of the two nuclei. It is, thus, necessary to
consider the permutation of the two nuclei arising from a
sequence of point group operations as follows:

1. Rotate the molecule by 180◦.
2. Invert the electrons back through the center of symme-

try.
3. Reflect the electrons at the plane containing the molec-

ular symmetry axis 1–2 perpendicular to the axis of
rotation involved in operation 1.

Operation 1 changes the sign of the rotational wave-
function for odd rotational angular momentum quantum
numbers J as discussed above, or N , in conventional nota-
tion, if J contains an electronic spin contribution (as in the
triplet ground state of O2(

3Σ−
g ), |N − S| ≤ J ≤ N + S

with total electronic spin S = 1 for a triplet). Operation 2
changes the sign of the electronic wavefunction for unger-
ade terms (Σu, Πu, ∆u, . . .). For gerade terms such as Σg,
the sign remains unchanged. Operation 3 changes the sign
of the electronic wavefunction for X− terms (here Σ−).

For degenerate electronic terms Π, ∆, . . . the twofold
degeneracy with Λ = ± |Λ| is slightly lifted by molecular
rotation (Λ-doubling, see below and see also Wörner and
Merkt 2011: Fundamentals of Electronic Spectroscopy,
this handbook) containing a symmetric and an antisymmet-
ric function under this reflection. The total wavefunction
must, thus, be symmetric including the sequence of the
three operations above for bosons, and antisymmetric for
fermions.

Applying this to 16O2(
3Σ−

g ), one thus finds that the elec-
tronic term is antisymmetric with respect to the permutation
of the nuclei. The total wavefunction must be symmetric,
because the 16O nucleus with nuclear spin I = 0 is a boson.
Thus, only odd rotational angular momenta N = 1, 3, 5
result in allowed states for O2(

3Σ−
g ) (with nuclear spin sta-

tistical weight 1). The same is true for 18O2 with the boson
18O having I = 0. Thus, these molecules have a “zero point
rotation”, which affects the dissociation energy ∆dissH

0
0 of

16O2 and 18O2, but not of 16O18O, which has all rotational
angular momenta allowed (N = 0, 1, 2, . . .), because there
are no symmetry restrictions.
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For 17O, one has I = 5/2 and thus this nucleus is
a fermion. The total wavefunction Ψ tot must be anti-
symmetric. Therefore, the antisymmetric 3Σ−

g electronic
ground state can combine with antisymmetric (odd N )
rotational wavefunctions and antisymmetric nuclear spin
wavefunctions (Na = 15 from equation (66), para-17O2)
or with symmetric (even N ) rotational wavefunctions and
symmetric nuclear spin wavefunctions (Ns = 21 accord-
ing to equation (65), ortho-17O2). Figure 19 in the arti-
cle by Wörner and Merkt 2011: Fundamentals of Elec-
tronic Spectroscopy, this handbook, gives a summary of
the symmetry properties of a number of electronic terms
of diatomic molecules. We have introduced these basis
concepts of symmetry, nuclear spin, and statistics for the
simplest case of diatomic molecules. The general concept
is of relevance for more complex symmetric molecules
with identical nuclei, in which the use of group theory
becomes necessary (see Oka 2011: Orders of Magnitude
and Symmetry in Molecular Spectroscopy and Quack
2011: Fundamental Symmetries and Symmetry Viola-
tions from High-resolution Spectroscopy, this handbook).
The intensity alternations resulting from nuclear spin sta-
tistical weights in spectral line patterns are among the
more powerful “practical” instruments in the symmetry
assignment of molecular states. Good examples of diatomic
molecule spectra with intensity alternations are given in
Weber 2011: High-resolution Raman Spectroscopy of
Gases, this handbook. For spectra of polyatomic molecules,
see Albert et al. 2011: High-resolution Fourier Trans-
form Infrared Spectroscopy, this handbook.

Apart from the practical importance in the assignment
of high-resolution spectra, the role of nuclear spin, sym-
metry, and statistics has been of fundamental importance
for the understanding of nuclear structure in a historical
context. Before the discovery of the neutron, one hypoth-
esis of nuclear structure assumed that the heavier nuclei
contained electrons, bound to protons within the nucleus
by a special force, in order to neutralize part of the pro-
ton charges. In this case, the deuteron would consist of
two protons and an electron tightly bound together. Such
a “deuteron” would have half odd integer spin and be a
fermion, leading to a quite different nuclear spin statis-
tics than observed in reality. The historical example was
actually 14N2, where the real 14N nucleus is a boson of
spin 1 (similar to the deuteron), whereas the hypotheti-
cal “electron binding” 14

7N would consist of seven elec-
trons and 14 protons, resulting again in a “fermion 14N”
with half-odd integer spin. The intensity alternation actu-
ally observed in the Raman spectra of 14N2 demonstrated
the boson (spin 1) nature of 14N (resulting from seven
protons and seven neutrons), thus excluding the “elec-
tron binding” model of the nucleus. Early high-resolution
spectroscopy thus helped to shape nuclear theory and

anticipated the neutron as a component of the nucleus.
Intensity alternation in spectra was discovered by Mecke
(1925) and discussed by Hund (1927) (see also Rasetti
1930, Heitler and Herzberg 1929). Some of the interest-
ing history is covered by Herzberg (1939, 1950) (see also
Quack 2011: Fundamental Symmetries and Symmetry
Violations from High-resolution Spectroscopy, this hand-
book).

The fact that the neutron (free or bound in the nucleus)
cannot be an electron bound to a proton is also clear from
the spin and statistical properties: the neutron has spin 1/2
and is a fermion, whereas the electron binding proton would
be a boson with spin 0 or 1. Thus, the radioactive β− decay
also

n → p+ + e− (incomplete) (68)

cannot be complete, because of the statistics and spin, and
now we know that the symmetry properties are saved by
the electron antineutrino, a fermion of spin 1/2

n → p+ + e− + νe (correct) (69)

Thus, while the neutrino was postulated historically by
Pauli in order to preserve the symmetry law of energy
conservation in β-decay, a second route to this hypothesis
would be spin and statistics (see also Quack 2011: Fun-
damental Symmetries and Symmetry Violations from
High-resolution Spectroscopy, this handbook).

A note is also relevant concerning the nature of nuclear
“spin”: this property would better be called nuclear angu-
lar momentum, because in general it contains contributions
from orbital angular momentum in current nuclear mod-
els. This fact is actually also important for nuclear parity
and quadrupole moments. Table 1 lists a small selection
of properties of particularly important nuclei in molecu-
lar spectroscopy; a more detailed table is given by Hippler
et al. 2011: Mass and Isotope-selective Infrared Spec-
troscopy, this handbook and Cohen et al. (2007). This
table is instructive because it shows the apparent com-
plexity of the patterns of nuclear angular momenta and
parities given by IΠ as understood on the basis of the
relatively simple nuclear shell model of Goeppert–Mayer
and Jensen including orbital angular momenta. Some sim-
ple (and obvious) rules include the absence of nuclear
spin for gg nuclei (gerade–gerade for even numbers
of protons and even numbers of neutrons). Nuclei with
I ≥ 1 have quadrupole moments, leading, in general, to
more easily visible hyperfine structure in rotation–vibration
spectra. Magnetic moments mN are of obvious relevance
for magnetic resonance spectroscopy (Ernst et al. 1987).
We note that the masses m given in Table 1 are atomic
masses (including the electron masses). Table 2 gives
for further illustration some ground state properties of
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Table 1 Ground-state properties of some selected light nuclei: charge number Z, element symbol, mass number A, atomic mass m,
natural abundance as mole fraction x in terms of percent, nuclear “spin” I and parity Π , magnetic moment mN (in units of the Bohr
magneton µN), and quadrupole moment Q.

Z Symbol A m/Da 100x IΠ mN/µN Q/fm2

1 H 1 1.007825032 99.9885 (1/2)+ +2.7928473 0
D 2 2.014101777 0.0115 1+ +0.8574382 +0.286

5 B 10 10.012937 19.9 3+ +1.800644 +8.47
11 11.009305 80.1 (3/2)− +2.688648 +4.07

6 C 12 12.0 (defined) 98.93 0+ 0 0
13 13.003354837 1.07 (1/2)− +0.702411 0
14 14.003241989 − 0+ 0 0

7 N 14 14.003074004 99.636 1+ +0.403761 +2.001
15 15.000108898 0.364 (1/2)− −0.2831888 0

8 O 16 15.994914619 99.757 0+ 0 0
17 16.99913170 0.038 (5/2)+ −1.89379 −2.578
18 17.999161 0.205 0+ 0 0

9 F 19 18.9984032 100 (1/2)+ +2.628868 0

Table 2 Ground-state properties of some molecules: electronic
ground-state term symbol 2S+1Γ x , the ground-state N value,
angular momentum quantum number J , total nuclear spin I , and
total angular momentum F with total parity Π in the ground state.

Molecule 2S+1Γ x N J I FΠ

H2
1Σ+

g 0 0 0 0+
12C16O 1Σ+ 0 0 0 0+
13C16O 1Σ+ 0 0 1/2 (1/2)−
14C16O 1Σ+ 0 0 0 0+
12C17O 1Σ+ 0 0 5/2 (5/2)+
15N2

1Σ+
g 0 0 0 0+

14N15N 1Σ+ 0 0 1/2 (1/2)−
0 0 3/2 (3/2)−

16O2
3Σ−

g 1 0 0 0+

1 0 1+
2 0 2+

19F2
1Σ+

g 0 0 0 0+

molecules, the complete ground state having well defined
“particle properties” (including nuclear parity) and might
be considered similar to a fundamental particle of some
relevance for applications in fundamental physics (see
Quack 2011: Fundamental Symmetries and Symmetry
Violations from High-resolution Spectroscopy, this hand-
book).

The total angular momentum quantum number |I − J | ≤
F ≤ I + J arises from the combination of the J (= N if
S = 0) and nuclear spin (I ) angular momentum.

2.4 Radiative Transitions and Spectra of
Diatomic Molecules

The rotation–vibration spectra of heteronuclear diatomic
molecules are readily observed by IR absorption and

emission and the spectra of homonuclear diatomic mole-
cules are observable by Raman spectroscopy (see Merkt
and Quack 2011: Molecular Quantum Mechanics and
Molecular Spectra, Molecular Symmetry, and Interac-
tion of Matter with Radiation, this handbook). To discuss
the structure of actually observed line spectra, we have
to address the consequences of selection rules and rela-
tive and absolute intensities of the lines. For electric dipole
transitions, the integrated line strength Gfi (or integrated
absorption cross section) is proportional to the absolute
square of the matrix element of the electric dipole operator:

Gfi = 8π3

3hc0(4πε0)
|Mfi|2 (70)

with Gfi being given by the appropriate integration over the
molecular absorption cross section:

Gfi =
∫

line
σ fi(ν̃)ν̃−1dν̃ (71)

and

|Mfi|2 =
∑

ρ

∣∣〈f ∣∣µρ

∣∣ i
〉∣∣2 (72)

where the sum is extended over the space-fixed Cartesian
coordinates with the components µρ of the electric dipole
operator (ρ = x, y, z)

µ =
∑

ρ

µρeρ =
∑

i

r iqi (73)

qi are the charges of the quasi-point particles in the
molecule (electrons and nuclei), r i the corresponding posi-
tion vectors, and ex , ey , and ez the unit vectors. Analysis of
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the rotational wavefunctions (see Merkt and Quack 2011:
Molecular Quantum Mechanics and Molecular Spectra,
Molecular Symmetry, and Interaction of Matter with
Radiation, this handbook) results in the angular momentum
selection rule for an allowed rotational–vibrational transi-
tion in a diatomic molecule in a 1Σ state such as CO

∆J = ±1 (74)

The group of lines corresponding to ∆J = +1 is called the
R-branch with (initially) increasing wavenumber and the
group of lines with ∆J = −1 the P-branch, with (initially)
decreasing wavenumber. Figure 7 shows a CO spectrum
with assignment of the observed transitions given as P(J ′′)
and R(J ′′), where J ′′ is the angular momentum quantum
number of the lower level, as illustrated by the level scheme
of Figure 8.

The figures also clearly illustrate how energy inter-
vals in the vibrational ground state can be obtained by
“ground-state combination differences” (GSCDs), i.e., dif-
ferences of spectral line frequencies. For example, the
difference ν̃[R(0)] − ν̃[P(2)] corresponds to [E(J ′′ = 2) −
E(J ′′ = 0)]/(hc) in the vibrational ground state. Thus,
IR rotation–vibration spectroscopy at high resolution pro-
vides an alternative to pure rotational (MW of far IR)
spectroscopy for determining rotational energies in the
vibrational ground state. Similarly, excited state rotational
energies can be isolated by appropriate combination differ-
ences, for example, ν̃[R(1)] − ν̃[P(1)] in Figure 8.

To obtain exact absolute transition intensities for rota-
tion–vibration transitions, one has to evaluate the inte-
gral in equation (72) using the exact wavefunction from
equation (26), where Φv,J (R) is in general not simple.
However, because it depends upon R, we have to consider
the R-dependent dipole moment function µ(R). The qual-
itative behavior and even the semiquantitative behavior of
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Figure 7 CO spectrum measured at low temperature
(T ≈ 13 K) in a supersonic jet. [Reproduced with permission
from Amrein et al. (1988b).]
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Figure 9 Dipole moment µ(R) of a diatomic molecule as a
function of the distance between the nuclei R.

these electric dipole functions are often well described by a
function proposed by Mecke (1950) and shown graphically
in Figure 9:

µ(R) = bRnexp(−αR) (75)

where b, n, and α are adjustable parameters to describe
the behavior of µ(R). It is obvious that homonuclear
diatomic molecules do not show electric dipole pure rota-
tion–vibration spectra, because µ(R) vanishes for symme-
try reasons at all values of R.

To derive some further simple approximate rules, one
sometimes considers pure vibrational wavefunctions Ψ v ≡
Φv,J=0(R) as an approximation for the vibrational part of
the wavefunction, also for higher J , and one describes the
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dipole function with a Taylor series expansion:

µ(R) = µ(Re) +
(

∂µ

∂R

)
Re

(R − Re)

+ 1

2

(
∂2µ

∂R2

)
Re

(R − Re)
2 + · · · (76)

Thus, one can define a purely vibrational transition moment

Mvv′ = µ(Re)
〈
Ψ v|Ψ v′

〉 + (
∂µ

∂R

)
Re

〈Ψ v |(R − Re)|Ψ v′ 〉

+ 1

2

(
∂2µ

∂R2

)
Re

〈
Ψ v

∣∣(R − Re)
2
∣∣Ψ v′

〉 + · · · (77)

The first term in equation (77) vanishes for v �= v′, because
of the orthogonality of the vibrational eigenfunctions. For
v = v′, it results in the “permanent electric dipole moment”
of the molecule, leading to pure rotational transitions.

For harmonic oscillator functions, one has a selection
rule ∆v = ±1 for the second term and ∆v = 0, ±2 for the
third term. This nonlinear term thus provides intensity for
overtone transitions ∆v = 2 even in the harmonic oscillator
(one refers figuratively to “electrical anharmonicity” due to
this term). On the other hand, if one has anharmonic (Morse
oscillator-like) wavefunctions Ψ v, Ψ v′, then even the linear
term in the dipole moment (∂µ/∂R)Re(R − Re) leads to a
nonvanishing electric dipole matrix element for |∆v| > 0.
Thus, one refers to the intensity of the overtone transition
being due to “mechanical anharmonicity”. In general, both
effects are important and for diatomic molecules, it is in
fact not very difficult to carry out the integration exactly,
provided that µ(R) is known. For polyatomic molecules,
the situation is more complex and, therefore, many calcula-
tions of vibrational intensities are carried out for separable
normal vibrations in the so-called double harmonic approx-
imation, which assumes harmonic oscillator wavefunctions
and retains only the linear term in the Taylor series expan-
sion of the dipole moment function. Obviously, this can at
best give an approximation for “fundamental” vibrational
transitions (i.e., ∆v = 1 from v = 0) as overtone transitions
vanish in this approximation.

Figure 10 illustrates electric dipole functions for the
rather localized CH-stretching normal vibrations in CHF3

and CHCl3 (“quasi-diatomic vibration” but including
some motion of the heavy atoms). Although a linear
approximation might be acceptable for CHF3, the dipole
functions of CHCl3 show a maximum in µ(R) near
Re ≈ 1 Å; thus, (∂µ/∂R)Re is zero or very small, which
is reflected by the overtone intensity (∆v = 2) for CH-
stretching in CHCl3, which is larger than that for the fun-
damental transition (∆v = 1), because the contribution to
the transition intensity from the term with (∂2µ/∂R2)Re is
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Figure 10 (a) Overtone intensities for the CH chromophore
(quantum number N) 0 → N transition (after Lewerenz and
Quack 1986). Experimental and theoretical fit for CHF3
(Rm/Re = 6.0, i.e., � 1) and for CHCl3 (Rm/Re = 1.05). (b)
Empirical dipole functions, approximately valid around Re ± 0.3
Å and extrapolated with the Mecke function outside this range.
For CHF3 and CDF3 µ(Re) would be 1.01 and 1.3 D, for CHCl3
3.8 D, and for CDCl3 1.5 D, when adjusted to the fundamental
band strength with the Mecke function (note that permanent dipole
moments µ0 are for CHF3 1.6 ± 0.1 D and for CHCl3 1.4 ± 0.5 D
in qualitative agreement). See Lewerenz and Quack (1986) for
precise definitions and parameters and further discussion.

larger than the contribution from the term (∂µ/∂R)Re . Such
phenomena must be considered when using quantum chem-
ical program packages computing approximate (“double
harmonic”) vibrational band intensities, but they are obvi-
ously not of fundamental importance, because more accu-
rate calculations are possible. For intensities and selection
rules in Raman spectra, we refer the reader to Merkt
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and Quack 2011: Molecular Quantum Mechanics and
Molecular Spectra, Molecular Symmetry, and Interac-
tion of Matter with Radiation and Weber 2011: High-
resolution Raman Spectroscopy of Gases, this hand-
book.

2.5 Diatomic Radicals in Degenerate Electronic
Ground States

This topic is closely related to the electronic structure and
spectra discussed in detail by Wörner and Merkt 2011:
Fundamentals of Electronic Spectroscopy, this hand-
book. We give here just a short account of some of the
most important consequences in rotation–vibration spectra
observed in the IR and illustrate these with two promi-
nent examples. For degenerate electronic ground states of
diatomic radicals, one uses the following nomenclature
for the electronic angular momentum quantum number Λ,
which gives the absolute magnitude of the projection of
the electronic angular momentum on the molecular axis(∣∣J el

z

∣∣ = �Λ
)

Λ = 0, 1, 2, 3, . . . (78)

nomenclature Σ, Π, ∆,Φ

The analogy to the nomenclature S, P, D, and F for
atomic terms with L = 0, 1, 2, 3 is readily seen, although
the physical significances of L and Λ are quite different.
Similarly, the spin quantum number S for the electronic
term is given by the upper left exponent in the electronic
term symbol:

(2S+1)ΛΣ+Λ (79)

The quantum number Σ for the projection of the electron
spin onto the molecular axis can take 2S + 1 values:

Σ = −S, −S + 1,−S + 2, . . . , S − 1, S (80)

For instance, in the case of the doublet ground states of the
important NO and OH radicals, one has Λ = 1 and thus a
2Π term with the two possibilities

2Π1/2 and 2Π3/2 (81)

In addition to the rotational energy given by the term
formulae in Section 2.2, one has the extra “electronic” term
for the rotation vibration structure:

Te = T0 + AΛΣ (82)

The spin–orbit coupling constant A can be positive or neg-
ative. For the NO ground state, one has A = 123.1 cm−1;
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Figure 11 Level scheme for the lowest states of the OH radical.

thus, 2Π1/2 is lower than 2Π3/2 in energy, whereas for
the OH radical ground state, one has A = −139 cm−1, and
2Π3/2 is lower in energy than 2Π1/2. There is a contri-
bution to the rotational energy from the electronic angular
momentum with the quantum number Ω = |Σ + Λ|:

Trot(J, Ω) = Bv[J (J + 1) − Ω2] with J ≥ Ω (83)

The resulting term values are thus approximately

T = Te + Trot = T0 + AΛΣ + Bv[J (J + 1) − Ω2] (84)

Figure 11 shows the level scheme for OH relative to the
lowest level with J = 3/2.

The degeneracies in these levels are partly lifted by
Λ-doubling and hyperfine splittings. The two Λ compo-
nents correspond to eigenfunctions of slightly different
energy and angular dependence

ΨΛ± = 1√
2

[
exp(−iΛϕ) ± exp(iΛϕ)

]
(85)

with ϕ being the angle of rotation with respect to the
molecular axis. This “Λ-doubling” in OH is in the gigahertz
range. Finally, hyperfine coupling of the molecular angular
momentum J with nuclear spin I leads to levels with total
angular momentum quantum numbers:

|J − I | ≤ F ≤ J + I (86)

For the ground state of OH with J = 3/2 and I = 1/2 for
the proton, thus one has two possibilities with F = 1 or 2.
The corresponding level scheme is shown in Figure 12.

We have provided this discussion to give an idea of the
orders of magnitude expected for high-resolution spectra.
For much more detailed discussion of the corresponding
spectral structures, we refer the reader to Zare (1988),
Brown and Carrington (2003) and the article by Wörner and
Merkt 2011: Fundamentals of Electronic Spectroscopy,
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Figure 12 Level scheme for the OH radical including hyperfine
splittings (schematic, not to scale).

this handbook (see also Western 2011: Introduction to
Modeling High-resolution Spectra, this handbook).

In practice, one can use the following approximate term
formulae:

T (2Π3/2) = A

2
+ Beff+

[
(J + 1/2)2 − Λ2] (87)

T (2Π1/2) = −A

2
+ Beff−

[
(J + 1/2)2 − Λ2] (88)

A = A − 2B (89)

Beff± = B

[
1 ± B

AΛ

]
(90)

If one has Λ = 0, one uses the term formulae for the
sublevels of a 2Σ state:

T1(N) = BN(N + 1) + γN

2
for J = N + 1

2
(91)

T2(N) = BN(N + 1) − γ (N + 1)

2
for J = N − 1

2
(92)

The spectroscopic constant γ is frequently very small.
For 3Σ states, one has three sublevels for each rotational

quantum number N :

T1(N) = BN(N + 1) − λ + B(2N + 3)

− B
[
a2 − 2a + (2N + 3)2]1/2

+ γ (N + 1) + γ

2
for J = N + 1 (93)

T2(N) = BN(N + 1) for J = N (94)

T3(N) = BN(N + 1) − λ − B(2N − 1)

+B
[
a2 − 2a + (2N − 1)2]1/2

− γN − γ

2
for J = N − 1 (95)

with a = λ/B. The coupling constant λ is frequently on the
order of rotational constants.

If one has an electronic angular momentum Λ > 0, the
selection rules for IR rotation vibration transitions are

∆J = 0, ±1 (96)

where the ∆J = 0 transitions correspond to a Q-branch.
Figure 13 shows as an example the low-temperature vibra-
tional spectrum of NO with one Q-branch because at
the low temperature of about 17 K in a supersonic jet
expansion, only the 2Π1/2 ground state is populated. At
higher temperatures, one finds a second Q-branch arising
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Figure 13 Spectrum of NO at low temperature (17 K) in a supersonic jet. Here, the Napierian absorbance ln(I0/I) is shown, see also
Amrein et al. (1988b).
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Figure 14 High-resolution (0.004 cm−1 FWHM) FTIR spectra of neat nitric oxide. Only small regions of the spectra containing
spectral lines are displayed on an expanded scale (0.05 cm−1 per division). Top: spectrum recorded in a static cell at room temperature
(T = 300 K). Center: jet-FTIR spectrum. (Nozzle diameter 100 µm, distance from the nozzle z = 6 mm, backing pressure 650 kPa,
background pressure 0,6 Pa.) Note the absence of lines of the excited electronic state 2Π3/2. Bottom: computed spectrum for a rotational
temperature of 17 K. [Reproduced with permission from Amrein et al. (1988b).] The Napierian absorbance ln(I0/I) is shown.

Table 3 Summary of the conventions for the various angular
momentum quantum numbers.

Quantum number Description

Λ Projection of electronic angular
momentum

Σ Projection of electronic spin
Ω = |Λ + Σ | Projection as given by formula

(sometimes Ω
.= Λ + Σ)

N Angular momentum from
rotation excluding spins

S Electronic spin
|N − S| ≤ J ≤ N + S Angular momentum including

electronic spin
Ii Nuclear spin of nucleus i

I Total nuclear spin
|I − J | ≤ F ≤ I + J Total angular momentum

from 2Π3/2 and also the corresponding P- and R-branch
transitions; Figure 14 shows expanded sections of the spec-
trum, in which the effects of Λ-doubling are visible.

Table 3 provides a brief didactic summary of the conven-
tions for the various angular momentum quantum numbers
(see also Stohner and Quack 2011: Conventions, Symbols,
Quantities, Units and Constants for High-resolution
Molecular Spectroscopy and Wörner and Merkt 2011:

Fundamentals of Electronic Spectroscopy, this hand-
book).

2.6 The Determination of Molecular
Structures from Infrared and Raman
Rotation–Vibration Spectra

The article by Bauder 2011: Fundamentals of Rotational
Spectroscopy, this handbook, has already provided an
extensive discussion of the practice of determination of
structure from pure rotation (MW) spectra. We complement
this here with some additional aspects arising in the
analysis of rotation–vibration spectra in terms of molecular
structure. We use diatomic molecules for illustrating the
basic concepts because of their relative simplicity. Most of
the concepts can be readily transferred to the much more
complex situation of polyatomic molecules.

In Section 2.4, we have already discussed the deter-
mination of the vibrational ground-state rotational level
structures from GSCDs in rotation–vibration spectra. Thus,
with such data, essentially all the methods discussed in
Bauder 2011: Fundamentals of Rotational Spectroscopy,
this handbook, for the analysis of pure rotational MW spec-
tra can be applied to determine the molecular structure.
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Usually, the MW data are much more precise, whereas the
IR GSCDs frequently cover a much larger range of rota-
tional levels up to very high J for the heavier polyatomic
molecules. If both sets of data are available, a combined
analysis using a weighted least squares adjustment is fre-
quently in order.

The new aspect of rotation–vibration data consists in
obtaining results for excited vibrational states in terms
of Bv, Dv, etc. Adjustment of the appropriate constants
in equations (43) and (44) to the observed spectroscopic
data results, among other constants in values for the
“equilibrium rotational constant Be”, is frequently possible
with a precision of five to six significant digits. This
can be translated into an equilibrium bond length Re of
similar accuracy by means of equation (34) provided that
the uncertainty in the reduced masses µ is negligible or
disregarded and that the physical significance of Re as
the position of the minimum of the potential function can
be justified within the framework of an accurate effective
Hamiltonian model. Both these aspects leave room for
some doubt. We have already discussed uncertainties in
the definitions of reduced masses in Section 2.3. The first
uncertainty results from the point mass assumption for
nuclei, which have extensions in the femtometer range.
For typical bond lengths, in the 100 pm range (1 Å), the
relative uncertainty due to this approximation is about
10−5, similar to common experimental uncertainties. The
relative uncertainties related to the treatment of electronic
masses when calculating µ can be similarly estimated
to be about 10−5 to about 10−4 (given the electron:
proton mass ratio of 5 × 10−4). An even more serious
uncertainty might arise from the concept of an effective
potential. Using slightly different effective (“BO-like”)
Hamiltonians, different definitions of these potentials lead
to different minima. This effect is not easily estimated.
However, different Re obtained for different isotopomers
can give an indication of the actual uncertainties. For
example, for 1H19F, one finds RH

e = 91.6808 pm and for
D19F one has RD

e = 91.694 pm (Huber and Herzberg 1979).
The relative difference is on the order of 10−4 and can
be considered to arise from a combination of several of
the uncertainties discussed. Thus, while it is possible to
determine “apparent” Re in a self-consistent way from
spectroscopic data to within uncertainties of 10−5 or
10−6 (and even better), one should be cautious about
claiming relative uncertainties of less than about 10−4,
when the underlying physical assumptions and significance
are considered.

From another point of view, one could argue that the
actual uncertainty in molecular structures (here, the bond
lengths of diatomic molecules) is related to the root-
mean-square deviation of distances measured in actual
scattering experiments. This can be readily calculated from

the ground-state probability distributions derived from the
vibrational wavefunctions, and for a typical X–H bond
length, one obtains relative uncertainties in the range 5–8%,
for heavier molecules, thus, in the percent range. Moving
beyond this, one could argue that certain parameters of
these distributions can be derived more accurately (for
instance, the expectation value of the distribution, or
the maximum in the distribution). These will be isotope
dependent, but still would be empirically well defined. One
could argue that the physical sizes, say, of HF and DF
are actually different, for instance, when interacting with
other molecules. With very accurate data, one might expect
then to get again relative uncertainties in the 10−4 –10−5

range.
However, one probably must be extremely cautious when

interpreting structural data at a higher relative accuracy.
While the frequencies in spectra can, of course, be mea-
sured to much higher accuracy, their interpretation in terms
of structure should probably in general not claim accu-
racies corresponding to relative uncertainties better than
10−4 –10−5 at best, in terms of their real physical signifi-
cance, regardless of which concept or definition of structure
is used.

3 POLYATOMIC MOLECULES

3.1 General Aspects

The treatment of the rotation–vibration dynamics and spec-
tra of polyatomic molecules is conceptually similar but
more complex than that for diatomic molecules because
of the larger number of internal degrees of freedom.
Indeed, in the adiabatic or Born–Oppenheimer approxi-
mation and related approximations the potential function
V (R) in equation (1) now is to be replaced by a potential
energy hypersurface V (q1, q2, q3, . . . , q3N−6) depending
on 3N − 6 degrees of freedom, where N is the number
of atoms or nuclei in the molecule. At present we take
the qi to be some kind of generalized coordinate (see
below).

In principle, any consistent set of coordinates could
be chosen to formulate the Hamiltonian for the quantum
dynamics of the molecule given an appropriate effective
potential energy hypersurface. A conceptually and dynami-
cally simple choice consists of simply taking the Cartesian
coordinates of the atoms (or nuclei) x1, y1, z1, . . . , xi, yi ,
zi . . . , xN, yN, zN . In practice, it is, however, desirable to
reduce the number of degrees of freedom by appropri-
ate (exact) separation of the center of mass motion and
approximate separation of rotational motion. Often, there
are special physical aspects of the internal molecular motion
that suggest the use of other special sets of coordinates, for
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instance, for low-frequency internal degrees and other large
amplitude motions (see Bauder 2011: Fundamentals of
Rotational Spectroscopy, this handbook). There is, how-
ever, one set of coordinates that finds, by far, the widest
range of applications for ordinary rigid molecules: normal
coordinates make the vibrational problem separable in the
limit of the harmonic (multidimensional) potential function.
The vibrational Hamiltonian can be written as a sum of
Hamiltonians of harmonic oscillators. We introduce here
the basic concepts of the normal coordinate treatment, just
in order to define the main features, nomenclature, and con-
ventions. A fairly complete treatment from the point of view
of molecular spectroscopy can be found in Wilson et al.
(1955) and numerous other papers.

3.2 Normal Coordinates and Normal Vibrations

We start by writing the classical Hamiltonian for the
motion of N atoms in Cartesian coordinates x1, x2, . . . , xi,

. . . , x3N :

H =
3N∑
i=1

mi

2

(
dxi

dt

)2

+ V (x1, . . . , x3N) (97)

We consider the potential function with a well-defined min-
imum at the equilibrium geometry of the molecule defined
by xe

i . It is then convenient to introduce mass-weighted
displacement coordinates qi defined by

qi = √
mi∆xi = √

mi(xi − xe
i ) (98)

The kinetic energy remains exactly separable in these coor-
dinates. One uses a Taylor expansion for the potential
around the minimum (xi = xe

i ):

V =V0 +
3N∑
i=1

(
∂V

∂qi

)
0
qi + 1

2

3N∑
i=1

3N∑
j=1

(
∂2V

∂qi∂qj

)
0

qiqj + · · ·

(99)
where V0 is a constant, which can be set to zero. The first
derivatives are zero at the minimum of the potential. The
second derivatives are the force constants Fij . We now
neglect higher terms of the expansion. The classical Hamil-
tonian takes the following form:

H = T + 1

2

3N∑
i=1

3N∑
j=1

Fijqiqj (100)

with

T = 1

2

3N∑
i=1

(
dqi

dt

)2

(101)

With this simplified classical Hamiltonian, the dynamics
are separable. One can show that there is an orthogonal
transformation to the set of normal coordinates Qk (Wilson
et al. 1955):

Qk =
3N∑
i=1

Likqi (102)

After this orthogonal transformation with L−1 = LT, one
can write the kinetic energy T as

T = 1

2

3N∑
i=1

(
dQi

dt

)2

(103)

The potential energy V is given by

V = 1

2

3N∑
k=1

λkQ
2
k (104)

with λk being functions of the force constants Fij . This
allows us now to write the classical Hamiltonian for
every separate vibrational mode and the total vibrational
Hamiltonian as a sum over all the modes:

H =
3N∑
i=1

Hi

(
Qi,

dQi

dt

)
(105)

Translating this to quantum mechanics and solving the
appropriate Schrödinger equation (See Merkt and Quack
2011: Molecular Quantum Mechanics and Molecular
Spectra, Molecular Symmetry, and Interaction of Mat-
ter with Radiation, this handbook, Wilson et al. 1955)
one obtains energy levels Ev1,v2,v3. . . and wave functions
Ψ v1,v2,v3. . .:

Ev1,v2,v3. . . =
3N∑
i=1

Evi
(106)

Ψ v1,v2,v3. . .(Q1,Q2,Q3, . . .) =
3N∏
i=1

Ψ vi
(Qi) (107)

As in classical mechanics, one can describe the vibrational
molecular motion as a superposition of 3N harmonic vibra-
tions. For the quantum energy levels of the ith mode,
one has

Evi
=
(

vi + 1

2

)
hνi (108)

with

νi = 1

2π

√
λi = 1

2π

√
fi

µi

(109)
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Figure 15 Graphical representation of the classical harmonic vibrations of water.

n1 n2 n3

Figure 16 Graphical representation of the classical harmonic vibrations of SO2.

where fi are generalized force constants (depending on
the Fij and the masses) and µi are similarly generalized
reduced masses. For the discussion of the modes of zero
frequency (translation and rotation) as well as the mathe-
matical treatment in terms of F and G matrix formalism,
we refer to Wilson et al. (1955).

In general, the normal coordinates Qi involve an in-phase
motion of all the atoms in a molecule. This is usually
graphically represented by arrows indicating the relative
size of the displacement of the atoms in the classical
vibrational motion associated with each mode.

As an example, we show in Figure 15 the graphical
representation of the classical harmonic vibrations of the
water molecule with nine degrees of freedom and three
vibrational modes (six zero frequency modes correspond-
ing to three translational and three rotational degrees of
freedom). Because of the relatively light hydrogen atoms,
all three vibrational modes involve mostly a motion of the
two hydrogen atoms with the heavy oxygen atom moving
only slightly. In contrast, the more even mass distribution
in the SO2 molecule leads to a substantial displacement
of all three atoms in the three harmonic normal vibrations
(Figure 16).

Figure 17 shows the normal vibrations of CO2, and
the fundamental transition wavenumbers are given in
Table 4. This is an example of a linear molecule with
two degenerate bending vibrations, leading to a vibrational
angular momentum. We use here the notation ν2a and
ν2b for the two degenerate bending vibrations. Another
common notation uses the vibrational angular momen-
tum quantum number l (v1, v2

l , v3), see equation (112).
A spectrum of CO2 can be found in Albert et al.
2011: High-resolution Fourier Transform Infrared Spec-
troscopy, this handbook. Figure 18 shows the normal
vibrations of CHClF2, and the fundamental frequencies are

n2a

n1

n3

n2b

667 cm−1

1388 cm−1

2349 cm−1

Figure 17 Graphical representation of the classical harmonic
vibrations of CO2.

Table 4 Fundamental wavenumbers of CO2.

Mode ν̃/cm−1 Description

ν2a 667 Bending
ν2b 667 Bending
ν1 1388 Symmetric stretching
ν3 2349 Asymmetric stretching

summarized in Table 5. Finally, Figure 19 shows the nor-
mal modes of CHD2I, with three light and one very heavy
substituent at the C atom. Table 6 summarizes harmonic
normal vibrational frequencies as well as the fundamental
transition frequencies. We discuss some additional aspects
of the vibrational overtone spectra for these molecules
in the following subsection. Many other examples of
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Figure 18 Graphical representation of the classical harmonic vibrations of CHClF2.
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Figure 19 Graphical representation of the classical harmonic vibrations of CHD2I.

normal vibrations and spectra can be found in various
articles of this handbook (see Albert et al. 2011: High-
resolution Fourier Transform Infrared Spectroscopy,
Weber 2011: High-resolution Raman Spectroscopy of
Gases, Herman 2011: High-resolution Infrared Spec-
troscopy of Acetylene: Theoretical Background and
Research Trends and Hippler et al. 2011: Mass and
Isotope-selective Infrared Spectroscopy, this handbook).
Programs for normal-mode calculations are also readily

available, including didactic examples (see, for instance
McIntosh and Michaelian 1979a,b,c). In the separable
normal-mode picture of molecular vibrations, the molec-
ular vibrational motion is described by a collection of
independent harmonic oscillators, not too different from
the harmonic oscillator picture of a diatomic molecule.
Each normal vibration has its own vibrational spectrum.
It turns out, however, that anharmonicity is very important
in reality.



Fundamentals of Rotation–Vibration Spectra 137

Table 5 Fundamentals of CH35ClF2 (band centers in cm−1).

Mode Γ (a) ν̃i /cm−1 References Approximate
Description

ν1 A′ 3021 63351(4) (c)– (e) s-(CH)
ν2 A′ 1313 09551(2) (c),(f) b-(CH)
ν3 A′ 1108 72738(2) (g)– (i) s-(CF)

1108 72704(2) (j)

ν4 A′ 812 9300(45)(b) (k),(l) s-(CCl)
ν5 A′ 596 371399(5) (m),(n) b-(CF)
ν6 A′ 412 928543(5) (o)– (q) b-(CCl)
ν7 A′′ 1351 70198(2) (c),(f) b-(CH)
ν8 A′′ 1127 28175(2) (g)– (i) s-(CF)

1127 28149(2) (j)

ν9 A′′ 366 197216(5) (o)– (q) b-(CF)

In the given approximate assignments the following abbreviations are
used: s refers to a stretching and b to a bending mode (after Albert et al.
(2006)).
(a) Γ gives the vibrational symmetry species in the Cs point group.
(b)deperturbed value.
(c)Amrein et al. (1985).
(d)Amrein et al. (1988a).
(e)Fraser et al. (1992).
(f)Thompson et al. (2003).
(g)Albert et al. (2004b).
(h)Luckhaus and Quack (1989).
(i)Snels and D’Amico (2001).
(j)Thompson et al. (2004).
(k)Albert et al. (2006).
(l)Ross et al. (1989a).
(m)Klatt et al. (1996).
(n)Gambi et al. (1991).
(o)Kisiel et al. (1997).
(p)Kisiel et al. (1995).
(q)Merke et al. (1995).

Table 6 Harmonic ωi and experimental ν̃i band centers of the
nine fundamental vibrational modes of CHD2I. References of
high-resolution analyses are also indicated when available.

Mode Symmetry Description ωi /cm−1(a) ν̃i /cm−1

ν1 A′ CH stretching 3199.4 3029.6790(b)

ν2 A′ CD stretching 2280.1 2194(c)– (e),(a)

ν3 A′ CH bending 1216.8 1170(c)– (e),(a)

ν4 A′ CD bending 1047.7 1018(c)– (e),(a)

ν5 A′ CD-bending 780.0 754.4738(g)

ν6 A′ CI-stretching 543.9 508.7898(f)

ν7 A′′ CD-stretching 2401.7 2313(d)– (e),(a)

ν8 A′′ CH-bending 1332.3 1287(d)– (e),(a)

ν9 A′′ CI-bending 680.1 659.8692(g)

(a)Horká et al. (2008).
(b)Hodges and Butcher (1996).
(c)Riter and Eggers (1966).
(d)Duncan and Mallinson (1971).
(e)Santos and Orza (1986).
(f)Kyllönen et al. (2004).
(g)Kyllönen et al. (2006).

3.3 Anharmonic Resonances and Effective
Hamiltonians

3.3.1 General Aspects

As discussed in Quack 2011: Fundamental Symmetries
and Symmetry Violations from High-resolution Spec-
troscopy, this handbook, the normal mode approxima-
tion introduces a far too high symmetry and too many
constants of the motion into the vibrational dynamics of
polyatomic molecules. In reality, anharmonic terms in the
potential break this high symmetry, resulting in much
more complex spectra and dynamics. One can, in princi-
ple, retain a description in normal coordinates but intro-
duce anharmonic terms in the potential (cubic, quartic, etc.)
(Nielsen 1951, 1959, Wilson et al. 1955, Mills 1974, Cal-
ifano 1976, Papoušek and Aliev 1982, Aliev and Watson
1985):

V (Q) = 1

2

∑
k

λkQ
2
k + 1

6

∑
k,l,m

Φk,l,mQkQlQm

+ 1

24

∑
k,l,m,n

Φk,l,m,nQkQlQmQn + · · · (110)

This type of expansion is useful if there is a unique deep
minimum on the potential hypersurface. The correspond-
ing equilibrium geometry is taken as the reference con-
figuration for the expansion. The normal coordinates Qk

are orthogonal, and with this choice of coordinates, the
quadratic terms in the potential are diagonal, the first mixed
terms being cubic as shown in equation (110). The mini-
mum of the potential energy is taken as zero. Because the
normal coordinates depend on masses, the potential con-
stants Φ are different for different isotopomers even within
the Born–Oppenheimer approximation. However, because
one usually starts with a formulation of the potential in
terms of a set of coordinates in which the potential is inde-
pendent of the masses, such as internal coordinates, the
anharmonic potential constants for each isotopomer can be
derived to satisfy the conditions of the Born–Oppenheimer
approximation or any other effective potential, which is
independent of the atomic masses (see Marquardt and
Quack 2011: Global Analytical Potential Energy Sur-
faces for High-resolution Molecular Spectroscopy and
Reaction Dynamics, this handbook). For ab initio calcula-
tions of such “force fields” or potential functions, we refer
to Yamaguchi and Schaefer 2011: Analytic Derivative
Methods in Molecular Electronic Structure Theory: A
New Dimension to Quantum Chemistry and its Applica-
tions to Spectroscopy, Tew et al. 2011: Ab Initio Theory
for Accurate Spectroscopic Constants and Molecular
Properties and Breidung and Thiel 2011: Prediction of



138 Fundamentals of Rotation–Vibration Spectra

Vibrational Spectra from Ab Initio Theory, this hand-
book. In this article, we do not go into the details of the
normal coordinate treatment including anharmonic poten-
tials (see the extensive literature cited above) but rather
restrict our discussion to the basic concepts. In a man-
ner very similar to the case of diatomic molecules, one
can now either handle the quantum mechanical problem of
molecular vibrations with an exact variational (numerical)
technique or can use perturbation theory, leading to sim-
ple term formulae and “effective Hamiltonians”. The latter
treatment is most commonly used in spectroscopy and first
we discuss it briefly, with the emphasis on anharmonic res-
onance. We then summarize some recent developments on
the relation of the relevant parameters in these two treat-
ments. This relation has been shown to be more complex
than previously anticipated with some unexpected conse-
quences for spectra and dynamics (Lewerenz and Quack
1988, Quack 1990, Marquardt and Quack 1991, 2001,
see also Marquardt and Quack 2011: Global Analytical
Potential Energy Surfaces for High-resolution Molec-
ular Spectroscopy and Reaction Dynamics, this hand-
book). We then briefly discuss local vibrations and group
frequencies in IR spectra, as well as some aspects of tunnel-
ing problems arising in “nonrigid” molecules with multiple
minima.

3.3.2 Term Formulae from Anharmonic
Perturbation Theory for Polyatomic Molecules

If the Taylor expansion of equation (110) converges rapidly
and if there are no “resonances” between close-lying states
(see below), excluding degenerate vibrations, one can write
the anharmonic term formula for a polyatomic molecule
on the basis of perturbation theory in analogy to diatomic
molecules as

Ev1v2. . .

hc
= G(v1, v2, . . .)

=
∑

k

ωk

(
vk + 1

2

)

+
∑
k≥l

xkl

(
vk + 1

2

)(
vl + 1

2

)
+ · · · (111)

The harmonic frequencies and anharmonic constants can be
related to the more fundamental force constants and other
properties of the molecules (see for example Papoušek and
Aliev 1982). For symmetric top molecules with twofold
denegerate vibrations, one has similarly

Ev1v2. . .

hc
= G(v1, v2, . . .; li , li+1, . . .)

=
∑

s

ωs

(
vs + 1

2

)
+
∑

t

ωt (vt + 1)

+
∑
s′

∑
s≥s′

xss′

(
vs + 1

2

)(
vs′ + 1

2

)

+
∑

s

∑
t

xst

(
vs + 1

2

)
(vt + 1)

+
∑
t ′

∑
t≥t ′

xtt ′ (vt + 1) (vt ′ + 1)

+
∑
t ′

∑
t≥t ′

gtt ′ lt lt ′ + · · · (112)

where s and s′ denote non degenerate and t and t ′ twofold
degenerate vibrational normal modes. Here, the l quantum
number is related to the projection of the vibrational angular
momentum of the twofold degenerate vibration on the
symmetry axis. Analogous expressions hold if there are
modes with higher degeneracy dt = 3, 4 . . ., replacing the
expressions in parentheses (vt + 1) by appropriate terms
with (vt + dt/2) in equation (112).

Alternatively, one can relate the level energies to the
energy E0 of the vibrational ground state as being set to
zero. Then, one obtains

Ev1v2. . . − E0

hc
= G0(v1, v2, . . .)

=
∑

j

ν̃
′
j vj +

∑
i

∑
j≥i

x′
ij vivj

+
∑

i

∑
j≥i

g′
ij li lj + . . . (113)

Again the corresponding “spectroscopic constants” ν̃′
j , x′

ij ,
g′

ij . . . can be expressed in terms of the potential param-
eters and other molecular properties. These expressions
are useful in describing vibrational spectra of polyatomic
molecules. They frequently fail, however, if two or more
vibrational states are close in energy, which may lead to an
anharmonic resonance interaction.

3.3.3 Elementary Description of a Two-level
Anharmonic Resonance (Fermi Resonances,
Darling–Dennison Resonances, etc.)

We give here a brief summary of the two-level resonance,
closely retaining the original notation from Herzberg (1945)
for didactic reasons. Let us assume that the harmonic
energies from equation (106) in the normal-mode picture
are labeled as zero-order energies for one energy level
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E0
i = Ev1v2v3. . . and also for a second energy level “acciden-

tally” very close in energy in the normal-mode approxima-
tion E0

n = Ev′
1v′

2v′
3. . .. The corresponding zero-order wave-

functions according to equation (107) are Ψ 0
i = Ψ v1v2v3. . .

and Ψ 0
n = Ψ v′

1v′
2v′

3. . .. The effect of including the higher
order terms beyond the first sum in equation (110) can be
taken into account locally for these two close-lying levels
by computing the matrix element

Win =
∫

. . .

∫
Ψ 0∗

i ŴΨ 0
ndQ1dQ2dQ3 . . . (114)

where the integration is understood to cover the complete
space of the coordinates. Win is supposed to include all
terms in the anharmonic Hamiltonian contributing to the
integral. The effective Hamiltonian matrix for coupling
just the two levels in “resonance”, with “resonance” being
defined as a similar magnitude of the coupling |Win| and
the zero-order energy separation of the two levels

|Win| ≈ |E0
i − E0

n| = |δ| (115)

takes the simple matrix form

H eff =
(

E0
i Win

Wni E0
n

)
=
(

H11 H12

H21 H22

)
(116)

This matrix is Hermitian (W ∗
ni = Win) and in many

cases real and symmetric (Wni = Win = W ), which we
assume here, without loss of generality, because we need
only |Wni |2 = |Win|2 = W 2. The situation is schematically
drawn in Figure 20. The eigenvalues of the two-level
Hamiltonian are

Ei,n = Eni ± 1

2

√
4W 2 + δ2 (117)

Eni = (E0
i + E0

n)

2
= (Ei + En)

2
(118)

Yi
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Yn
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d
Eni

Figure 20 Energy diagram of a Fermi resonance between two
energy levels.

with the eigenfunctions

Ψ i = aΨ 0
i − bΨ 0

n (119)

Ψ n = bΨ 0
i + aΨ 0

n (120)

If one has δ2 � 4W 2, one has approximately

Ei,n � Eni ±
(

δ

2
+ W 2

δ

)
(121)

or Ei → E0
i and En → E0

n with E0
n − E0

i = δ and Ψ i →
Ψ 0

i , Ψ n → Ψ 0
n and thus a very small effect of the “non-

resonant” perturbation, which provides a justification for
neglecting non-resonant levels in isolating just the two-level
resonance problem. For the coefficients in equations (119)
and (120), one has

a =
(√

4W 2 + δ2 + δ

2
√

4W 2 + δ2

)1/2

(122)

b =
(√

4W 2 + δ2 − δ

2
√

4W 2 + δ2

)1/2

(123)

In the classic case of a Fermi resonance (Fermi 1931),
Ψ i corresponds to a fundamental level of one vibration
(v1 = 1, v2 = 0, and all other vk = 0) and Ψ n to an over-
tone of a second vibration (v1 = 0, v2 = 2, and all other
vk = 0). If one assumes that the electric dipole transition
strength for IR absorption is large for the fundamental
(| 〈Ψ 0

o|µ̂|Ψ 0
i

〉 |2 = |M0
oi |2) and essentially zero for the over-

tone (| 〈Ψ 0
o|µ̂|Ψ 0

n

〉 |2 = 0), then one can readily see that the
transition strengths for the observable transitions to the
eigenstates Ψ i and Ψ n in the high-resolution spectrum are
proportional to the squares of a and b, respectively. This
is a common assumption in the analysis of spectra, allow-
ing one to determine all parameters of the Fermi resonance
equations from the observed line frequencies and intensi-
ties. The classic case of the Fermi resonance actually con-
cerned the Raman spectrum of CO2, in which one assumed
that the Raman cross section for the symmetric stretch-
ing fundamental Ψ 0

i = Ψ 100 is large, but small for the
bending overtone Ψ 0

n = Ψ 0200. The zero-order energies are
E0

i /(hc) ≈ 1335 cm−1 ≈ E0
n/(hc), whereas the observed

levels are at about 1388 and 1285 cm−1, both giving a
strong Raman signal. Furthermore, only the Σ+

g compo-
nent Ψ 0200 (with vibrational angular momentum quantum
number l = 0, indicated by the superscript (0,20,0)) can
give a nonzero matrix element W , whereas the Π compo-
nent Ψ 0220 has a vanishing W because of the symmetry
selection rule on the integral in equation (114). There-
fore, E(0, 22, 0) is not shifted by the resonance and the
level separation |E(0, 20, 0) − E(0, 22, 0)|/(hc) is about
50 cm−1, in the observed eigenstate spectrum, where the
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harmonic level labels have obviously no exact meaning
for the E(0, 20, 0) level, which is heavily mixed. A more
detailed discussion of the Fermi resonance in CO2 can be
found in Herzberg (1945) and Califano (1976). Numerous
resonances of similar type have been observed in many
other molecules since the first discussion of the CO2 reso-
nance by Fermi (1931). Another type of “named” resonance
is the so-called Darling–Dennison resonance in which the
two modes of different symmetry but similar harmonic fre-
quency exchange two quanta (thus Ψ 0

i = Ψ 20. . . and Ψ 0
n =

Ψ 02. . .). This type of resonance was discussed by Darling
and Dennison (1940) for H2O and frequently occurs in not
only dihydrides but also in many other molecules. More
general types of resonances are simply called anharmonic
resonances. If rotational levels are involved, one speaks
of rovibrational resonances. We have given this introduc-
tory discussion to provide some basis for a commonly used
analysis for two-level resonances. Several questions deserve
attention in this context:

1. Is the assumption that only one state results in a
zero-order line strength (either Raman or IR, and also
others such as fluorescence) justified? Such a state is
sometimes called the bright state or, perhaps to be
preferred, the chromophore state.

2. Is the neglect of further interacting levels justified?
3. Is the common assumption that the first low-order term

in the Taylor expansion of the potential equation (110)
is sufficient to describe the resonance using the matrix
element in equation (114) justified? For a Fermi reso-
nance, this would be a Φkl2QkQ

2
l term and for a Dar-

ling–Dennison resonance the Φk2l2Q
2
kQ

2
l term, which

might thus then be directly evaluated from the reso-
nance analysis (Mills 1974). This is furthermore fre-
quently complemented by the assumption that low-
order terms are generally larger than higher order terms
in the Taylor expansion.

It turns out that all of these assumptions must be ques-
tioned under many circumstances. They are also obviously

not necessary in a more general treatment, of which we
outline some aspects with some pertinent examples.

3.4 Many-level Anharmonic Resonances in
Molecules Containing an Isolated CH
Chromophore

3.4.1 Overtone Spectra of CHX3 Molecules and
Polyad Structure

Figure 21 shows a survey spectrum of the CH-stretching
overtone absorption in CHF3 (second overtone correspond-
ing to three quanta of CH-stretching, Dübal and Quack
1984a). As the CH-stretching wavenumber is about twice
the CH-bending wavenumber, one expects a strong Fermi
resonance. There are, indeed, two bands of almost equal
strength, each showing the characteristic P, Q, R structure
of a parallel band, as for CH-stretching overtones in this
symmetric top molecule.

Thus, one might be tempted to analyze this observed
spectrum using a two-level Fermi resonance model, and
this was, indeed, the basis of the first analysis by Bernstein
and Herzberg (1948). Although the other bands are quite
weak, nevertheless, they are important for the multistate
Fermi resonance. The effective Hamiltonian is shown in
Figure 22. The Fermi resonance system is, in fact, described
by a polyad (here tetrad) of four strongly coupled zero-order
levels. In the effective Hamiltonian, one takes the term
formula in equation (113) as a diagonal structure, and one
assumes a general form similar to the one from perturbation
theory on a harmonic oscillator model as the off-diagonal
structure. The effective Hamiltonian is assumed to be block-
diagonal in the polyad quantum number N

N = vs + 1

2
vb (124)

where vs is the CH-stretching quantum number and vb

the quantum number for the degenerate CH-bending mode

826079007880 8310

8000 8200 8400 8600 8800

n /cm−1∼

CHF3

A

A B

B

X8

In
 (

I 0
/I

)

2.0

1.0

0

Figure 21 Survey spectrum of the N = 3 Fermi resonance polyad in CHF3. The inserts are magnified portions from the same survey
spectrum (P = 0.5 × 105 Pa, resolution 1 cm−1). [Reproduced with permission from Dübal and Quack (1984a).]
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H 3 =

|3, 0, 0〉

|3, 0, 0〉

|2, 2, 0〉

|2, 2, 0〉

|1, 4, 0〉

|1, 4, 0〉
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|0, 6, 0〉

H 3
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Figure 22 Structure of the Fermi resonance Hamiltonian for the
N = 3 polyad in CHF3. Top: General form. Bottom: Numerical
values in cm−1 units from the best fit. [Reproduced with permis-
sion from Dübal and Quack (1984a).]

(lb is the corresponding vibrational angular momentum
quantum number). The structure of the Hamiltonian takes
the following form for nonzero matrix elements:

HN
vs,vb,lb;(vs−1),(vb+2),lb

=
〈
vs, vb, lb|k′

sbbQ
′
sQ

′
b

2|vs − 1, vb + 2, lb

〉
(125)

= −1

2
k′

sbb

(
1

2
vs(vb − lb + 2)(vb + lb + 2)

)1/2

where we introduce primed quantities for Q′
s and Q′

b for
effective dimensionless reduced normal coordinates and
k′

sbb for the effective anharmonic coupling constant, which
is related to the structure defined by the expansion in
equation (110) but not identical to the corresponding force
constant, as we shall see. Such effective Hamiltonians have
been shown to describe the overtone spectra of many CHX3

molecules reliably. Such success would be interpreted as a
success of low-order perturbation theory to describe the
many-level Fermi resonance. A more careful investigation
shows, however, that some caution is necessary with such
a conclusion.

3.4.2 Variational Treatment and Effective Fermi
Resonance Hamiltonian

Lewerenz and Quack (1988), Dübal et al. (1989), and
Marquardt and Quack (1991) have investigated the rela-
tion between a full vibrational variational treatment of
the CH-stretching and bending Fermi resonance in the

subspace of the relevant normal coordinates and the
effective Hamiltonian. For the variational treatment, one
uses reduced dimensionless normal coordinates and a Tay-
lor expansion of the potential as follows:

V (Q′
s,Q

′
b) = 1

2
ωsy

2 + 1

2
ωbQ

′2
b + CsbbyQ′2

b

+ Cssbby
2Q′2

b + CbbbbQ
′4
b + CsbbbbyQ′4

b

+ Csssbby
3Q′2

b + · · · (126)

Here, we use the “Morse coordinate”

y = [1 − exp (−aQ′
s)]

a
(127)

with an effective Morse parameter a to describe the one-
dimensional, very anharmonic C–H stretching potential
(D = ωs/(2a2) is the corresponding dissociation wavenum-
ber) and about 30 terms in the expression of equation (126)
are generally needed for an accurate representation of
either ab initio potentials or empirically derived poten-
tials. The anharmonic vibrational problem is solved numer-
ically either by basis set representation methods (Lewerenz
and Quack 1988, Marquardt and Quack 1991) or by dis-
crete variable techniques (Luckhaus and Quack 1992, Beil
et al. 1994, 1997). As both the effective (experimental)
and the vibrational variational spectra are well described
by the simple effective Hamiltonian Ĥeff of the previ-
ous subsections, one can derive the following transforma-
tions:

ZTH effZ = Diag(E1, E2 . . . En) (128)

V TH varV = Diag(E1, E2 . . . En) (129)

where Z and V are the corresponding eigenvector matrices
of the effective and variational Hamiltonians. Thus, one can
derive the matrix representation of the effective Hamilto-
nian using the similarity transformation:

H eff = (V ZT)TH varV ZT (130)

If we arrange the eigenfunctions ψn of eigenvalues En as
the column vector

ψ = (ψ1, ψ2, ψ3 . . . ψn)
T (131)

and similarly the basis functions φn of the variational
Hamiltonian Ĥvar as

φ = (φ1, φ2, φ3 . . . φn)
T (132)

and the a priori unknown basis functions χn of Ĥeff as

χ = (χ1, χ2, χ3 . . . χn)
T (133)
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we can write in matrix notation

ψ = V Tφ = ZTχ (134)

and obtain an explicit expression for χ in terms of the
functions φn, which are known in real coordinate space

χ = ZV Tφ (135)

Because of the block diagonal structure of Z , one can
restrict the expansion of χi to the Ni th block with explicit
notation as follows:

χi =
∑
k(Ni)

Zik

∑
j

Vjkφj (136)

These relations are, in fact, generally useful, when relating
a treatment using an effective “spectroscopic” Hamiltonian
defined by a small number of spectroscopic parameters
such as the Hamiltonian of Section 3.4.1 with a full
variational Hamiltonian defined in real coordinate space.
These investigations during the decade following 1980 have
resulted in the following, perhaps surprising, conclusions:

1. Often anharmonic resonance spectra can be described
using effective Hamiltonians similar in structure to
normal coordinate expansions of very low order in
equation (110) with very few parameters.

2. These parameters may not be interpreted, in general,
as potential parameters in real coordinate space, even
though equation (110) might suggest this. This would

only be the case if the expansion of the actual potential
were to stop after very few terms, which is not the case
for the real molecular systems. Rather, the few effective
Hamiltonian parameters are complicated combinations
of very many potential parameters appearing in a long
expansion of the type of equation (110) or (126).

3. The vibrational variational treatment combined with
the effective Hamiltonian treatment allows a compact
representation of spectroscopic data on the one hand.
At the same time, it establishes the nontrivial relation
between the effective Hamiltonian parameters and
the true potential parameters and it allows for a
representation of molecular eigenfunctions and of basis
functions of the effective Hamiltonians in terms of
wavefunctions in real coordinate space by means of
transformations given by equations (128)–(136).

4. In particular, the long-believed dogma of the simple
perturbation theoretical relation between the anhar-
monic potential constants and the effective Hamiltonian
constants cannot be maintained.

We illustrate this last point with some results for proto-
typical molecules in Table 7. One can readily see the fairly
similar magnitude of the various “spectroscopic” effec-
tive Hamiltonian parameters and their difference from the
corresponding potential constants. Clearly, the traditional
relation due to perturbation theory (Nielsen 1951, 1959,
Mills 1974)

k′
sbb = Csbb (137)

Table 7 Spectroscopic constants and force constants for the Fermi resonance in CHX3 molecules (after Quack 1990).

CHD3
(a) CHF3

(b) CHCl3(c) CHBr3
(d) CH(CF3)3

(e)

Constant Exp. Ab initio Exp. Ab initio Exp. Exp. Exp.
ν̃s/(cm−1) 3048 3148 3086 3126 3096 3110 305
ν̃b/(cm−1) 1292 1326 1370 1432 1221 1148 1353
x ′

ss/(cm−1) −58 −67 −64 −67 −65 −66 −68
x ′

bb/(cm−1) −4.5 −5.0 −5.6 −7.5 −6.5 −5.0 1.2
x ′

ab/(cm−1) −22 −34 −29 −34 −26 −21 −22
g′

bb/(cm−1) 2.6 3.8 9.7 11.5 7.8 3.2 1.9
|k′

sbb|/(cm−1) 30 ± 15 31 100 ± 10 99 85 ± 15 75 ± 30 70 ± 15
Csbb/(cm−1) 97 ± 50 140 ± 15 187 187 265(f) 245 115
Cssbb/(cm−1) −50 −78 −92 −85 −116 −94 −50

a)Experiments: Campargue and Stoeckel (1986), Ben Kraiem et al. (1989), Campargue et al. (1989a,b), Lewerenz and Quack (1988), Lewerenz (1987), Ha
et al. (1987), Peyerimhoff et al. (1984). Theory: Dübal et al. (1989), Lewerenz and Quack (1988), Lewerenz (1987), Ha et al. (1987), Peyerimhoff et al.
(1984), Segall et al. (1987).
(b)Experiments: Dübal and Quack (1984a), von Puttkamer and Quack (1989), Quack (1982). Theory: Dübal et al. (1989), Lewerenz and Quack
(1988), Lewerenz (1987), Ha et al. (1987). For 13CHF3, see Hollenstein et al. (1990).
(c)Dübal et al. (1989), Lewerenz and Quack (1986), Baggott et al. (1986), Green et al. (1987), Wong et al. (1987). For 13CHCl3, see Hollenstein et al.
(1990).
(d)Ross et al. (1989a), Hollenstein et al. (1990), Davidsson et al. (1991), Manzanares et al. (1988).
(e)Dübal et al. (1989), von Puttkamer et al. (1983b), Baggott et al. (1985).
(f)An ab initio calculation (Amos et al. 1988) gives Csbb = 278 cm−1 in surprisingly good agreement with experiment (Dübal et al. 1989).
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does not hold very well. Marquardt and Quack (1991) have
derived improved approximations:

k′
sbb = 8ω2

b

ωs(2ωb + ωs)
Csbb (138)

and

k′
sbb =

(
1 − 3

4
a2N

)([
8ω2

b

ωs(2ωb + ωs)

+ 4ωb + ωs

2ωb + ωs
a2N

]
Csbb + aNCssbb

)
+ ∆k′

sbb (139)

where a is the Morse parameter as defined above, N an
averaged polyad quantum number for the polyads retained
in the description, and ∆k′

sbb a correction term defined as:

∆k′
sbb ≈ −aN × 2.6

C2
sbb

ωs
(140)

We do not discuss in detail additional efforts extended
to treatments in curvilinear coordinates (Carrington et al.
1987, Green et al. 1987, Wong et al. 1987, Voth et al.
1984) including contributions by Sibert and coworkers
(Sibert 1990) and other kinds of perturbation theoreti-
cal approaches. Table 8 summarizes the results from the
approximations discussed here. In general, full accuracy
can be achieved only with a complete vibrational varia-
tional treatment. The general Fermi resonance treatment
has been extended to the CH-chromophore in Cs and C1

symmetrical environments; in addition to the Fermi reso-
nances, Darling–Dennison resonances (of a “quartic” type)
involving the two CH-bending modes and “cubic” anhar-
monic resonances coupling the two bending modes a and
b with the stretching mode s by an effective coupling con-
stant ksab are included. We refer to Horká et al. (2008) as
a paper which also includes a summary of results for many
molecules. An extensive treatment of various aspects of

Table 8 Fermi resonance coupling constants; values in cm−1

(after Marquardt and Quack 1991).

k
′(a)
sbb C

(a)
sbb k

′(b)
sbb k

′(c)
sbb

CHF3 100 ± 10 187 118 113
CHD3 30 ± 15 97 75 54
CHCl3 89 265 129 115
CH(CF3)3 65 115 82 74
CHBr3 55±55

15 181 114 81

(a) From direct fit to experimental data (Segall et al. 1987, Lewerenz and
Quack 1988, Dübal et al. 1989, Ross et al. 1989b, Davidsson et al. 1991).
(b) Prediction from equation (138).
(c) Prediction from equation (139); constants from Dübal et al. (1989),
Ross et al. (1989b), Davidsson et al. (1991); N = 3.5 assumed.

effective Hamiltonians can be found in the article by Field
et al. 2011: Effective Hamiltonians for Electronic Fine
Structure and Polyatomic Vibrations, this handbook.

3.4.3 Concluding Remarks on Multistate
Anharmonic Resonances

Many spectra of polyatomic molecules are analyzed with
the effective Hamiltonian as illustrated in Section 3.4.2,
and, even more frequently, only local resonances are iden-
tified, if any, as discussed in Section 3.3. The connection to
the full variational treatment as discussed in Section 3.4.2
is carried out only rarely, but it is very important for the
understanding of the underlying dynamics, in particular,
also time-dependent wavepacket dynamics as discussed in
Section 4.

The very extensive work of Amat et al. (1971) in terms
of various contact transformations should be seen in the
tradition of effective Hamiltonian analyses. Beyond the dis-
cussion of Field et al. 2011: Effective Hamiltonians for
Electronic Fine Structure and Polyatomic Vibrations,
this handbook, already mentioned, the article by Herman
2011: High-resolution Infrared Spectroscopy of Acety-
lene: Theoretical Background and Research Trends,
this handbook, discusses effective Hamiltonian analyses.
Polyad dynamics of effective Hamiltonians has been dis-
cussed by a number of authors from various points of
view (Jung et al. 2001, Kellman and Lynch 1986). Reviews
covering effective Hamiltonian analyses include those by
Quack (1990), Lehmann et al. (1994), Nesbitt and Field
(1996), Gruebele and Bigwood (1998), Perry et al. (1996),
and Herman et al. (1999). In addition, more extensive ref-
erences can be found in the article by Hippler et al. 2011:
Mass and Isotope-selective Infrared Spectroscopy, this
handbook.

The question of treating the anharmonic vibrational prob-
lem in small polyatomic molecules variationally, including
all degrees of freedom, is dealt with in the articles by Ten-
nyson 2011: High Accuracy Rotation–Vibration Calcu-
lations on Small Molecules, this handbook and Carrington
2011: Using Iterative Methods to Compute Vibrational
Spectra, this handbook. So far this is restricted to small
molecules. Our discussion of treating only a subspace vari-
ationally (Lewerenz and Quack 1988) finds its justification
in the substantial separation of timescales and coupling
strengths, when one considers additional degrees of free-
dom. We discuss this question in Section 4.

The final topic concerns the polyad structure, when an
increasing number of degrees of freedom are coupled.
Figure 23 shows the zero-order polyad levels for CHF3 for
A1 polyads from N = 1 to 7. The number of coupled levels
in each polyad is N + 1 ∝ N , because the vibrational angu-
lar momentum l for the bending vibration is approximately
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Figure 23 Reduced energy plot for the zero-order states
|vs, vb, lb〉 of CHF3. The zero of energy is redefined at each N to
be the energy of the |vs, 0, 0〉 state, which is not shown explicitly.
The coupled states for one polyad appear as one column with a
given N . [Reproduced with permission from Dübal and Quack
(1984a).]

conserved on short timescales in C3v molecules (Luckhaus
and Quack 1993). Figure 24 shows a coupling scheme just
for one (N = 4) CH-stretching chromophore polyad in a
C1 or Cs symmetrical environment. Then, the number of
coupled levels in each polyad increases approximately pro-
portional to N2. Finally, if all s vibrational degrees of
freedom are included, the number of levels coupled in
each polyad would increase approximately as N(s−1), pro-
portional to the vibrational density of states. Ultimately,
this leads to a sequential scheme for intramolecular vibra-
tional and finally rotational–vibrational redistribution in
polyatomic molecules and the concept of the global vibra-
tional state, which would be delocalized over all degrees of
freedom (Quack 1981, Quack and Kutzelnigg 1995).

Given the possibility of variational vibrational calcu-
lations and analysis, one might also wonder whether an
effective Hamiltonian analysis has any justification at all.
It turns out that, in practice, a fit to experimental spectra
requires a compact description in terms of few parameters.
For this purpose, fits of effective Hamiltonian parameters
are an ideal intermediate step in spectroscopic analyses. A
direct approach starting with a potential hypersurface and

vibrational variational calculations would be much more
difficult, although perhaps not impossible (see Marquardt
and Quack 2011: Global Analytical Potential Energy Sur-
faces for High-resolution Molecular Spectroscopy and
Reaction Dynamics, this handbook).

3.5 Local Modes, Group Frequencies, and IR
Chromophores

When discussing the CH stretching overtone spectra, one
implicitly uses the notion of a fairly localized normal vibra-
tion of the isolated CH chromophore. Indeed, it is the
“infrared chromophore” nature of this localized vibration
that results in a simple appearance of overtone spectra,
where we have a very dense set of vibrational states that
are “dark” and do not appear in spectra except by cou-
pling to the chromophore levels. Indeed, the chromophore
concept can be made the basis for a description of such
spectra (Quack 1990). Another closely related concept is
that of group frequencies, which are characteristic for cer-
tain types of functional groups. For high-frequency modes
such as O–H stretching in alkanols and N–H stretching
in amines, the relationship to fairly localized normal vibra-
tions is clear and sometimes a quasi-diatomic treatment of
the local vibrations is possible. However, there are also
functional groups leading to more delocalized vibrations
such as the C=O stretching in organic amides and others,
on which there is extensive literature available. A more
interesting variant of the local mode theory has been devel-
oped over many decades for hydrides with two or more
high-frequency modes (XH2, XH3, etc.) and H2O pro-
vides a simple example. Here, the normal modes are, by
definition, delocalized over both X–H coordinates (sym-
metric and antisymmetric stretching). It has been argued,
however, that at high excitations a zero-order Hamilto-
nian starting from localized X–H stretching modes pro-
vides a better approach than the normal-mode approach
(Mecke 1936, 1950, Henry and Siebrand 1968, Child and
Lawton 1981). We refer to Quack (1990) for a sum-
mary of the historical development of this approach. On
the other hand, in large polyatomic molecules, the “high-
resolution” eigenstates at high densities of states may be
assumed to be very delocalized, lending themselves per-
haps to a statistical treatment in terms of global vibrational
states (Quack 1981, 1990, Lehmann et al. 1994). These
concepts go beyond an introductory survey and we refer
to some relevant articles in this handbook (see Herman
2011: High-resolution Infrared Spectroscopy of Acety-
lene: Theoretical Background and Research Trends and
Quack 2011: Fundamental Symmetries and Symmetry
Violations from High-resolution Spectroscopy, this hand-
book).
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Figure 24 The coupling scheme for polyad N = 4 of CHD2I, where the states are labeled in the circles by the quantum numbers
vsvavb in the zero-order picture, where vs is the quantum number for stretching mode and va and vb are quantum numbers for the
bending modes. The underlined states have A′′ symmetry in a Cs symmetric molecule. [Reproduced with permission from Horká et al.
(2008).]

3.6 Large Amplitude Motion in Nonrigid
Molecules Including Several Equivalent
Minima

A straightforward treatment of large-amplitude motions
of very nonrigid molecules with several equivalent or
nonequivalent potential minima of very similar energy
clearly is not possible. In such cases, one may sometimes
define a reaction path connecting the minima and define
normal modes along this path, for instance, inversion in
ammonia and internal rotation in ethane or methanol. The
dynamics and spectra of such nonrigid molecules have been
discussed in the article by Bauder 2011: Fundamentals
of Rotational Spectroscopy, this handbook. Coupling to
vibrational degrees of freedom leads to mode selective tun-
neling, studied for instance in ammonia isotopomers (see
Snels et al. 2011: High-resolution FTIR and Diode Laser
Spectroscopy of Supersonic Jets, this handbook), aniline
(Fehrensen et al. 1998, 1999), or H2O2 (Fehrensen et al.
2007, see Marquardt and Quack 2011: Global Analytical
Potential Energy Surfaces for High-resolution Molec-
ular Spectroscopy and Reaction Dynamics, this hand-
book). For more details on this topic, we refer to these arti-
cles and also to others present in this handbook (see Bauder
2011: Fundamentals of Rotational Spectroscopy, Cami-
nati 2011: Microwave Spectroscopy of Large Molecules
and Molecular Complexes, Hippler et al. 2011: Mass and
Isotope-selective Infrared Spectroscopy, Amano 2011:

High-resolution Microwave and Infrared Spectroscopy
of Molecular Cations and Havenith and Birer 2011:
High-resolution IR-laser Jet Spectroscopy of Formic
Acid Dimer, this handbook). If one has very floppy systems
such as clusters bound by van der Waals or hydrogen bonds,
in general, the best approach is a variational treatment, for
instance, using discrete variable representations (DVR) (see
Bačić and Light 1989, Tennyson 2011: High Accuracy
Rotation–Vibration Calculations on Small Molecules
and Carrington 2011: Using Iterative Methods to Com-
pute Vibrational Spectra, this handbook). In some cases,
quantum Monte-Carlo techniques are useful (Quack and
Suhm 1991).

4 MOLECULAR IR SPECTRA AND
MOLECULAR MOTION

4.1 General Aspects

Deriving molecular motion from IR rotation–vibration
spectra has a long history and can be discussed at several
levels, leading to slightly differing pictures of molecular
motion.

1. The historically oldest and still very widely used
picture is derived from the classical normal-mode
treatment. In this approach, spectroscopy is used to
derive the normal vibrations and the motion of the
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atoms is then described by the classical mechanical
normal vibrations. If one considers the arrows in
Figures 15–19 literally as describing atomic motions
(not just relative displacements along a normal coor-
dinate), then these figures give a schematic view
of these classical vibrations. Didactic movies using
classical dynamics showing these normal vibrations
exist and are widely distributed. The overall motion
when several normal vibrations are excited would cor-
respond to a more complicated classical Lissajous
motion. It turns out that the coherent-state descrip-
tion of the quantum harmonic oscillator also provides
some justification for this picture for the true quan-
tum motion. The coherent quantum state shown for a
typical “molecular” harmonic oscillator in Figure 25
(with a fundamental wavenumber of 1000 cm−1) is a

Gaussian probability following the classical mechani-
cal trajectory (Schrödinger 1926, Quack and Sutcliffe
1985, Marquardt and Quack 1989). This picture would
then remain valid for all harmonic degrees of freedom
and thus the classical picture of molecular vibrations
would be qualitatively valid also for the true quantum
motion, if the harmonic normal-mode description were
adequate to describe vibrational spectra and dynamics
(Quack 1995).

2. It turns out, as we have seen, that anharmonic con-
tributions to the spectra are very important. One might
then think of deriving anharmonic potentials from spec-
tra and describing molecular motion quasi-classically
by computing trajectories using the anharmonic poten-
tials. Indeed, this approach is widely used. However,
it turns out that anharmonicity (when large) leads to

Figure 25 Quasi-classical oscillation of the harmonic oscillator with resonant, coherent excitation (ν̃ = ν̃L = 1000 cm−1) (after Quack
and Sutcliffe 1985). The images show the axis t toward the back (the time step separating two lines is 1 fs). The abscissa from left to
right shows the spatial coordinate q and the ordinate the probability density |Ψ |2. Top: from t = 0 to 0.1 ps (practically unperturbed
ground state). Bottom: from 16.5 to 16.6 ps (practically free oscillation after resonant excitation).
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dynamical consequences, making a quantum descrip-
tion necessary.

3. A quantum description, which has come into wide
use more recently, uses effective Hamiltonians, such
as the Fermi resonance Hamiltonians as discussed
in Section 3, and computes anharmonic intramolecu-
lar vibrational redistribution (IVR) in terms of time-
dependent quantum basis state populations. This
provides some insights into quantum redistribution pro-
cesses. However, it does not provide a complete picture
of the true quantum motion, because the wavefunctions
corresponding to the basis states are either completely
unknown or arbitrary, or they might be known as
approximations, such as normal-mode wavefunctions.
They still carry a large uncertainty, related to the uncer-
tainties originating from the basis states.

4. If the transformation to a true variational Hamilto-
nian is known along the lines of Section 3.4.2, then
a complete quantum description in terms of quantum
mechanical wavepackets and time-dependent probabil-
ity densities is possible, the accuracy of which is only
limited by the uncertainties of the primary spectro-
scopic data and the accuracy of the corresponding spec-
troscopic analysis. We provide here some examples for
analyses along the lines of the last two approaches.

4.2 Time-dependent Population Dynamics from
Simple Coupling Models and Effective
Hamiltonians

Simple coupling models relating spectra and time-depen-
dent population dynamics can be traced to the early model
of Bixon and Jortner (1968). This model for an exponen-
tial decay of an initial state into a dense set of back-
ground states was motivated by the need to understand
the irreversible relaxation of excited electronic states by
internal conversion and intersystem crossing processes (see
Merkt and Quack 2011: Molecular Quantum Mechan-
ics and Molecular Spectra, Molecular Symmetry, and
Interaction of Matter with Radiation, this handbook).
The essence of the result of Bixon and Jortner (1968) is
the realization that exponential decay of an initial state
can occur not only with truly continuous spectra, such as
in predissociation (Herzberg 1966), but also with quasi-
continua, such as in internal conversion processes. In addi-
tion, the Bixon–Jortner model provides an important result:
the “Golden Rule”

k = 2πΓ

h
= 4π2V 2

h
ρ (141)

This provides a relation between the exponential decay rate
constant k and the full width at half maximum Γ (FWHM)

of a Lorentzian line shape with the coupling strength V 2 to
a quasi-continuum of state density ρ. It can be derived from
an (almost) exactly solvable model and is not a consequence
of first-order perturbation theory. The application of this
idea to an exponential decay of a highly excited vibrational
state into a quasi-continuum of vibrational states by IVR
and an exponential line shape analysis was done by
Bray and Berry (1979), deriving very short (100 fs) decay
times for highly excited CH-stretching states in benzene.
Numerous analyses of this kind have appeared since then.
Of course, one can also find exponential decay through
IVR by vibrational predissociation into true continua, for
instance, for (HF)2 (Hippler et al. 2007, Manca et al.
2008).

More generally, one can go beyond these simple coupling
schemes (Quack 1981) and finally derive state populations
pk for some spectroscopic effective Hamiltonian. The basic
equations, given some Hamiltonian matrix H (“effective”
or “true”), are given by the propagator

U (t, t0) = exp (−2π iH (t − t0)/h) (142)

b(t) = U(t, t0)b(t0) (143)

pk = |bk|2 (144)

For the two-level Fermi resonance problem, the full time
evolution matrix can be easily written (see Merkt and
Quack 2011: Molecular Quantum Mechanics and Molec-
ular Spectra, Molecular Symmetry, and Interaction of
Matter with Radiation, this handbook, for the mathemat-
ically identical Rabi problem, which is explicitly solved
in terms of the U matrix therein). The numerical calcu-
lation for more complicated examples is straightforward.
Figure 26 shows the result for basis state populations of the
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Figure 26 Time evolution for the populations of states inter-
acting in the N = 3 polyad of CHF3 calculated with the spec-
troscopic Fermi resonance Hamiltonian and the initial condition
p(|3, 0, 0〉) = 1. [Reproduced with permission from Dübal and
Quack (1984a).]
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Table 9 Typical IVR lifetimes of initial CH-stretching excitation in alkyl and acetylene compounds estimated from spectroscopic data.
See reviews (Quack 1990, 1991, Lehmann et al. 1994) for further tables (after Quack and Kutzelnigg 1995).

Example τ IVR/ps Method and reference

Alkyl CH <0.1(a) Effective Hamiltonian Heff dynamics
X3CH (Quack 1990, 1991, Baggott et al. 1985)
(X=D,F,Cl,Br,CF3) or real molecular Hamiltonian dynamics Hmol in

subspace (Quack 1991, Marquardt et al. 1986,
Marquardt and Quack 1991)

XF2CH <0.1(a) Heff (Dübal and Quack 1984a,b
X2FCH <0.1(a) Amrein et al. 1985, Quack 1991) or Hmol

(X=D,Cl,(CF3)) (Luckhaus and Quack, 1992, 1993,
Quack 1991, Quack and Stohner 1993)

Acetylene CH Temperature-dependent lineshape
(CX3)3CC≡CH(X=F) ≥10–20 (von Puttkamer et al. 1983a)
(v=1) ≥60 Molecular beam linewidth, bolometric
(X=F) (Gambogi et al. 1993, Lehmann et al. 1994)
X=H >200 Molecular beam, bolometric

(Lehmann et al. 1994) linewidth
X=D ≥40 Molecular beam, bolometric

(Lehmann et al. 1994) linewidth
(CH3)3Si–C≡C–H Inhomogeneous FTIR, temperature dependent
(v=1) ≥2000 (von Puttkamer, K. and Quack, M. (1983) unpublished work cited

in Quack 1991) bolometric
(Kerstel et al. 1991)

CH3CH2C≡C–H ≥269 Statistical Heff (band structure
(McIllroy and Nesbitt 1990,
Bethardy and Perry 1993)).

(a) Detailed dynamics (nonexponential) obtained from 10 to 1000 fs.

effective Hamiltonian represented for CHF3 in Figure 22
(spectra in Figure 21). An interesting observation beyond
the very short time for IVR (<100 fs for a complete initial
decay of the vs = 3 CH-stretching state) is the very sub-
stantial population of two other states (achieving maximum
populations of about 80 and 40%), although the spectrum in
Figure 21 shows only two prominent bands. Nevertheless,
a two-level Fermi resonance analysis would be dynamically
quite misleading as it would lead to a periodic beating of
just two states instead of the correct involvement of three
as shown in Figure 26.

Quite a few examples of this type have been analyzed in
terms of IVR along those lines and Table 9 gives a summary
of some results (Quack and Kutzelnigg 1995).

One of the more interesting results concerns the very
different initial redistribution times for the isolated alkyl
CH chromophore states (τ < 100 fs) and the acetylenic
CH chromophore (τ > 1 ps) originally derived by von Put-
tkamer et al. (1983b) and since confirmed by many exper-
iments, now also including time-resolved femtosecond-
pump probe experiments (Kushnarenko et al. 2008a,b).
Rather than discussing more such examples, we now con-
sider evolution of the quantum mechanical wavepacket
derived from high-resolution IR spectra, which provides an
additional level of understanding.

4.3 Time-dependent Wavepacket Analysis

The state population analyses contain an element of arbi-
trariness, because the time evolution of populations depends
upon the choice of basis states (Beil et al. 1997). For
instance, if one chooses eigenstates as the basis there is
no time evolution of populations, and if one chooses some
very highly localized states, one might get evolution on a
1-fs or even shorter timescale. While often the physical sit-
uation may suggest some reasonable effective Hamiltonian,
the ambiguities can be removed altogether if a transforma-
tion to a “true” variational Hamiltonian can be carried out
along the lines of Section 3.4.2.

Figure 27 shows such a result for CHF3, which was,
in fact, the first example where such a wavepacket anal-
ysis was carried out (Marquardt et al. 1986, Marquardt and
Quack 1991). The new aspect beyond the short timescale
is now the evolution of probability density in space. As
can be seen, this evolution is not simply a quasi-classical
oscillation between two coupled pendula, but rather one
finds a nonclassical delocalization. It has been found
that with artificially very small anharmonicities one has
a quasi-classical coherent state propagation, very similar
to the behavior of two classical anharmonically coupled
oscillators. On the other hand, with large anharmonicity (as
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Figure 27 Wavepacket motion for the two strongly coupled CH-stretching (Qs) and bending (Qb) vibrations in the CHF3 molecule.
|Ψ (Qs,Qb, t)|2 is the probability distribution on the femtosecond timescale after the initial CH-stretching excitation at t = 0.
[Reproduced from Marquardt and Quack (2001).]

applicable to CHF3), one finds nonclassical delocalization
on the timescale of IVR. This introduces the new concept
DIVR (delocalization IVR) as opposed to CIVR (classical
IVR) and the tuning of this phenomenon by anharmonic-
ity constitutes a fundamental finding for intramolecular
dynamics (Marquardt and Quack 1991, 2001, Quack 1993,
1995).

These phenomena can be investigated both for isolated
molecules as shown in Figure 27 and for molecules under
coherent excitation (Quack and Stohner 1993). Figure 28
shows such an example for CH-stretching and bending
wavepackets in CHD2F (Luckhaus et al. 1993). One can
recognize an initial almost coherent state oscillation for
the first 100 fs, followed by IVR and delocalization on
timescales <1 ps. In addition, with wavepacket analysis
under coherent excitation, one finds the pronounced differ-
ence in timescales for the alkyl–CH chromophore and the
acetylenic–CH chromophore as derived from the spectrum
(Quack and Stohner 1993). Taking a slightly different line

of thought, one can also analyze the dynamics in a very
coarse-grained way by studying time-dependent entropy
(Quack 1990, Luckhaus et al. 1993, Quack 2011: Fun-
damental Symmetries and Symmetry Violations from
High-resolution Spectroscopy, this handbook).

5 ROTATION–VIBRATION SPECTRA OF
POLYATOMIC MOLECULES

5.1 General Aspects

The basic concepts of the interaction of vibration and rota-
tion in polyatomic molecules are similar to the ones dis-
cussed in Section 2 for diatomic molecules. However, the
exact separation of rotational and vibrational motion pos-
sible for diatomic molecules cannot be directly translated
to polyatomic molecules. Nevertheless, one can distinguish
between the two approaches.
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50–150 fs (exc. 2865 cm−1) 400– 450 fs (exc. 2865 cm−1) 950–1050 fs (exc. 2865 cm−1)

(a) (b) (c)

Figure 28 (a) Time-dependent probability density P(qv, t) of CHD2F under IR-multiphoton excitation with I = 20 W cm−2, ν̃FL =
2865 cm−1. The abscissa shows a dimensionless CH-stretching normal coordinate range −4.5 ≤ qs ≤ +8.5, the timestep separating two
lines toward the back is 0.5 fs; total time range shown from 50 to 150 fs after the start of radiative excitation. (b) As (a) but from 400 to
450 fs with time step 0.25 fs. (c) As (a) but showing probability density P(qi, t), integrated over qs, and the dimensionless CH-bending
out-of-plane qo, time range 950–1050 fs, time step 0.5 fs, range of the dimensionless CH-bending in-plane −8 ≤ qi ≤ +8. [Reproduced
with permission from Luckhaus et al. (1993).]

1. Exact (numerical) treatment of the rotation–vibration
problem given an effective multidimensional poten-
tial hypersurface (the lowest dimension, for a triatomic
molecule, would be a three-dimensional hypersurface
in a four-dimensional space–with the fourth dimen-
sion being the potential energy coordinate). Such
approaches are discussed in this handbook by Ten-
nyson 2011: High Accuracy Rotation–Vibration
Calculations on Small Molecules, and Carrington
2011: Using Iterative Methods to Compute Vibra-
tional Spectra, this handbook. Until today, these
approaches have been limited to triatomic, four atom,
and at most five atom molecules and very few anal-
yses of rotation–vibration spectra along these lines
have been carried out, quite in contrast to diatomic
molecules, where this type of “exact” approach is
more common.

2. Effective Hamiltonian analyses leading to sets of
spectroscopic parameters. Different from diatomic
molecules, the effective rotation–vibration parameters,
however, concern matrix representations of appropri-
ate Hamiltonians prior to diagonalization; thus, rota-
tion–vibration energies cannot, in general, be given
as simple formulae for the Hamiltonian in diagonal
structure. For the purely vibrational problem of anhar-
monic resonances, an example has already been given
in Section 3, where we introduced diagonal term for-
mulae for a zero-order Hamiltonian and other param-
eters defining the off-diagonal structures. The rota-
tion–vibration problem has been addressed already
in the preceding article by Bauder 2011: Funda-
mentals of Rotational Spectroscopy, this handbook,

with emphasis on the rotational level structure. Here,
we complement this with a brief summary of the
basic theory and a short section on the practice
of rotation–vibration analysis including a discussion
of an efficient general program available for rota-
tion–vibration analysis of asymmetric tops.

5.2 The Rotation–Vibration Hamiltonian

The rotation–vibration Hamiltonian of polyatomic mole-
cules is discussed in the article by Bauder 2011: Fun-
damentals of Rotational Spectroscopy, this handbook,
and has a long history. We may refer here to the clas-
sic papers by Nielsen (1951, 1959), the work by Wilson
et al. (1955) (particularly Chapter 11 therein) and Wat-
son (1968), with important subsequent work by Howard
and Moss (1971), Louck (1976), Makushkin and Ulenikov
(1977), Meyer (1979), and Islampour and Kasha (1983).
We introduce here the basic concepts, with the aim of
defining notations. The usual starting point is the classi-
cal Hamiltonian of equation (97) in Cartesian coordinates
for all particles written in quantum mechanical operator
form:

Ĥ = − h2

4π2

3N∑
i=1

1

2mi

∂2

∂x2
i

+ V̂ (x1, . . . , x3N) (145)

=
3N∑
i=1

p̂2
i

2mi

+ V̂ (x1, . . . , x3N)
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Transformation to a system of arbitrary coordinates qk fol-
lowing Podolsky (1928) gives

Ĥ = 1

2
|g|−1/4

∑
j,k

p̂j |g|1/2Gjkp̂k|g|−1/4 + V̂ (q1, . . . , q3N)

(146)

with the momentum operators p̂k given by

p̂k = −i
h

2π

∂

∂qk

(147)

and

Gjk =
∑

i

1

mi

∂qj

∂xi

∂qk

∂xi

(148)

gjk =
∑

i

mi

∂xi

∂qj

∂xi

∂qk

(149)

|g| = Det(g) (150)

This can be simplified to

Ĥ = 1

2

∑
j,k

p̂jGjkp̂k + û(q1, . . . , q3N)

+ V̂ (q1, . . . , q3N) (151)

û(q1, . . . , q3N) = h2

8π2

∑
j,k

(
1

4

∂

∂qj

[
Gjk

∂ ln (|g|)
∂qk

]

+ 1

16

∂ ln (|g|)
∂qj

Gjk

∂ ln (|g|)
∂qk

)
(152)

Using center of mass separation, Euler angles for rotation,
Eckart conditions, and transformation to normal coordi-
nates, Watson (1968) has derived a simplified general effec-
tive rotation–vibration Hamiltonian, which we write here
in the notation of Aliev and Watson (1985)

Ĥ = 1

2M
p2

f + h2

8π2

∑
α,β

(Ĵα − Π̂α)µαβ(Ĵβ − Π̂β)

+ 1

2

∑
k

p̂2
k + û + V̂ (q1, . . . , q3N) (153)

where

û = − h2

32π2

∑
α

µαα (154)

Ĵα are the angular momentum operators in the molecule-
fixed system, and pf the total linear momentum in space-
fixed direction f .

µαβ =

Iαβ −

∑
i,j,k

ζ α
ikζ

β

jkqiqj




−1

(155)

Iαβ are the components of the moments of inertia tensor,
with α, β = x, y, z, and i, j, k = 1, . . . , 3N − 6, and ζ α

ik

the common Coriolis coupling parameters. Π̂α are the
components of vibrational angular momentum:

Π̂α =
∑
i,j

ζ α
ij qi p̂j (156)

ζ α
ij = −ζ α

ji =
N∑

n=1

(lnβ,i lnγ ,j − lnγ ,i lnβ,j ) (157)

where the matrix l defines the transformation from normal
coordinates to mass-weighted Cartesian coordinates in the
molecule-fixed system.

5.3 Effective Hamiltonian Analysis for
Rotation–Vibration Spectra of
Asymmetric Tops

The general Hamiltonian of the preceding section can be
applied in several ways to rotation–vibration spectra. One
can distinguish three cases depending on the moments of
inertia Ia , Ib, Ic after transformation to the principal axis
system (see Bauder 2011: Fundamentals of Rotational
Spectroscopy, this handbook) or the corresponding rota-
tional constants ordered by convention A ≥ B ≥ C and
with X = A,B,C:

X = h

8π2
cIX

(158)

For rigid rotors, apparently simple forms can be derived for
the rotational energy levels when some of the A, B, C are
identical (see Bauder 2011: Fundamentals of Rotational
Spectroscopy, this handbook). For A = B = C, one has a
spherical rotor (or spherical top); for A �= B = C, one has
a prolate symmetric top and for A = B �= C, one has an
oblate symmetric top. We refer to Bauder 2011: Funda-
mentals of Rotational Spectroscopy, this handbook and
Herzberg (1945, 1966) for rotational–vibrational energy
level structures for these cases. It turns out, however, that
the rotation–vibration problem for spherical and symmet-
ric rotors is actually complicated by the occurrence of
degeneracies, which are lifted at higher order. In general,
spherical and symmetric rotors possess degenerate vibra-
tions, if the identity of moments of inertia arises from the
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symmetry of the molecule (Herzberg 1945). Here, we do
not discuss these cases in more detail, referring to Bauder
2011: Fundamentals of Rotational Spectroscopy, this
handbook, and in particular to Boudon et al. 2011: Spher-
ical Top Theory and Molecular Spectra, this handbook,
for spherical rotors.

Asymmetric rotors have no simple term value formulae;
however, they have the advantage that degenerate vibra-
tions do not occur, in general. This allows one to deal
with the rotation–vibration problem in a fairly general way.
We discuss here an implementation, which exists also in
the form of a computer program (Luckhaus and Quack
1989), which was designed to allow for treating all kinds
of interaction of rotation and vibration in a very general
way. A similar approach was later also used by Pickett
(1991). Following Watson, one can, on the basis of the
general Hamiltonian discussed in Section 5.2, define effec-
tive Hamiltonians that form blocks of “polyads” similar to
those discussed in Section 3. However, now both anhar-
monic and Coriolis-type rotation–vibration couplings are
included (see the scheme in Figure 29). If the molecule has
some symmetry, anharmonic interactions are allowed only
between states of the same vibrational symmetry species
(as indicated by vertical arrows in Figure 29), whereas rovi-
brational Coriolis interactions also couple states of different
vibrational symmetry (but with the same total, rovibrational
symmetry species, of course). Figure 29 shows a case of
a Cs-symmetrical molecule (for example, CHClF2 (Luck-
haus and Quack 1989, Albert et al. 2006)). As an example
with C2v symmetry, we mention CH2D2 (Ulenikov et al.
2006). Watson (1968) has given several representations
for such effective Hamiltonians and we give here the S-
reduced effective Hamiltonian in the I r representation as
an example, with terms diagonal in the vibrational quantum

E

A′ A′′

Figure 29 Illustration of a resonance polyad of an effective
Hamiltonian including various types of interactions.

number v

Ĥ
vv(S)
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−) + HJ Ĵ 6
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6
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where

Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z and Ĵ± = Ĵx ± iĴy

Note that in Equation (159) as well as in the following
equations in this section we do not explicitly write the
v-dependence of the rotational constants to simplify the
expressions.

We also give the A-reduced Hamiltonian in the I r

representation as another example with terms diagonal in
the vibrational quantum number v:

Ĥ
vv(A)
rot = A(A)Ĵ 2

z + B(A)Ĵ 2
x + C(A)Ĵ 2

y

− ∆J Ĵ 4 − ∆JKĴ 2Ĵ 2
z − ∆KĴ 4

z

− 1

2
[δJ Ĵ 2 + δKĴ 2

z , Ĵ 2
+ + Ĵ 2

−]+

+ φJ Ĵ 6 + φJKĴ 4Ĵ 2
z + φKJ Ĵ 2Ĵ 4

z + φKĴ 6
z

+ 1

2
[ηJ Ĵ 4 + ηJKĴ 2Ĵ 2

z + ηKĴ 4
z , Ĵ 2

+ + Ĵ 2
−]+

(160)
Note that in the following discussion the choice of the rep-
resentation will not be explicitly mentioned in the notation
of the rotational constants to simplify the expressions. For
the off-diagonal terms representing a α-Coriolis coupling
(α = x, y, z), one has:

Ĥ v′v
rot = iξ v′v

α Ĵα + ηv′v
βγ [Ĵβ, Ĵγ ]+ (161)

where α, β, γ are all different. The ξα constants are related
to the common Coriolis parameters ζ α by

ξ v′v
α = 2Bαζα

m,n

(√
ωn

ωm

+
√

ωm

ωn

)(
(vm + 1)

vn

4

)1/2

(162)
in which ωm and ωn are the harmonic frequencies of the
fundamentals, the coupling being between the (vm, vn, vk)
and the (vm+1, vn−1, vk) states.

For anharmonic coupling, which can be of the Fermi
resonance, Darling–Dennison type, or more complicated,
one has

Ĥ v′v
rot = F + FJ Ĵ 2 + FzzĴ

2
z + Fxy(Ĵ

2
x − Ĵ 2

y ) (163)
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This introduces a rotational dependence of the anharmonic
resonance. In the program WANG of Luckhaus and Quack
(1989) all these couplings (and higher terms, if needed)
are included. The symmetry of Hamiltonian and coupling
schemes can be specified in a very simple and general
way as described in the Appendix of Luckhaus and Quack
(1989) which we almost literally recall here.

The number of diagonal blocks into which the Hamilto-
nian is split has to be specified. For each of these “symmetry
blocks”, a small matrix determines the mechanism that cou-
ples the different vibrational states and the Wang blocks that
appear in the symmetry block. By the numbers contained
in these matrices (“coupling schemes”), the program iden-
tifies the subroutines to be called for setting up the various
diagonal (Wang) and off-diagonal (coupling) blocks. The
diagonal numbers consist of two digits: the first one specify-
ing the vibrational state and the second one the Wang block
(1, 2, 3, 4 = E+, E−, O+, O−). The off-diagonal numbers
stand for the type of coupling (0, 1, 2, 3 = none, x-, y-,
z-Coriolis coupling). The corresponding block structure of
the program is very easily extended to include other types
of coupling simply by assigning a new number to another
subroutine containing the necessary formulae for the matrix
elements.

As an example we give the coupling scheme used
for the a-Coriolis interaction of the two CF-stretching
fundamentals in CH35ClF2 (Luckhaus and Quack 1989):
the lower state is identical with the vibrational ground state
(state no. 1). There is no coupling and, therefore, each of
the four Wang blocks forms a symmetry block by itself

11 12 13 14

The upper state consists of the two CF-stretching funda-
mentals (a′ : ν3 = state no. 2; a′′ : ν8 = state no. 3) coupled
by a-Coriolis interaction (a-axis corresponding to z-axis in
I r representation). Neglecting the (symmetry allowed) c-
Coriolis coupling (code:2) leads to four symmetry blocks
containing two Wang blocks each

a′: 21 3 24 3 a′′: 22 3 23 3
3 32 3 33 3 31 3 34

If c-Coriolis coupling were included, the Hamiltonian for
the upper state would only split into two symmetry blocks:

a′: 21 3 0 2 a′′: 22 3 0 2
3 32 2 0 3 31 2 0
0 2 24 3 0 2 23 3
2 0 3 33 2 0 3 34

The advantage of this method over simply setting the c-
Coriolis coupling blocks equal to zero is obvious since
the operations count for matrix diagonalization is roughly
quadratic in the matrix dimension.

For the parameter refinement, the program uses the
Marquardt (1961) algorithm (Press et al. 1986), a nonlinear
least squares fit procedure. The required first derivatives
of χ2 (the sum of squared deviations) with respect to
the spectroscopic parameters pα are calculated analytically,
using the Hellmann–Feynman theorem, i.e., the derivatives
of the eigenvalues εi are obtained according to

∂

∂pα

εi = c
†
i

(
∂

∂pα

H

)
ci (164)

where εi is the ith eigenvalue, ci is the ith eigenvector,
H the Hamiltonian matrix, and pα the αth spectroscopic
parameter.

As long as there is no coupling between vibrational
states, the usual set of rotational quantum numbers will
generally provide an unambiguous assignment of a transi-
tion to a pair of eigenstates (the vibrational states involved
have, of course, also to be specified). This is not true in the
case of coupled vibrational states, as the energetical order-
ing of eigenstates belonging to different Wang blocks varies
with the spectroscopic parameters. On the other hand, the
ordering of rotational quantum numbers within the same
Wang block is normally independent of the actual parame-
ters. One, therefore, first assigns the eigenvectors of a given
symmetry block (of a given J value) to the various Wang
blocks, where care must be taken that the number of eigen-
vectors assigned to a Wang block is equal to its dimension.
The sum over the squared coefficients of the corresponding
basis functions serves as a criterion. Within these sets, the
same correspondence between rotational quantum numbers
and the eigenvalue-ordered eigenvectors as in the absence
of coupling is assumed. This method guarantees a smooth
transition from the cases of appreciable to those of van-
ishing coupling. The assignments have generally proved
stable, i.e., there is no “switching” (or crossing) of assign-
ments over a reasonable range of values of the coupling
parameters.

Only assignments for which the deviations between
observed and calculated wavenumbers are less than a
given tolerance are considered for the calculation of χ2

and its derivatives. The number of assignments consid-
ered changes, therefore, from one refinement cycle to the
next (floating data base). Convergence is assumed for
relative changes of the weighted mean square deviation
(χ2/Σ[statistical weights]) of less than 0.5 × 10−4. This
not only helps cope with typing errors in large sets of
assignments but is also necessary when combining the pro-
gram with a simple automatic assignment procedure.

In this case, a stick spectrum is calculated with the refined
parameters and the experimental spectrum is searched for
peaks coinciding within a given tolerance, with calculated
transitions not yet assigned. An intensity limit helps avoid
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Table 10 Spectroscopic parameters (in cm−1) for the ν3- and ν8-
fundamentals (C–F stretching) of CH35ClF2. Standard deviations
are given in parentheses as uncertainties in the last digits (after
Luckhaus and Quack 1989).

ν3 ν8

ν̃0 /cm−1 1108.7292(1)(a) 1127.2854(1)(a,b)

A /cm−1 0.341271(39) 0.338478(38)
B /cm−1 0.16226587(82) 0.16195055(61)
C /cm−1 0.11616297(59) 0.11735914(52)
DJ /(10−6 cm−1) 0.02937(37) 0.05887(26)
DJK /(10−6 cm−1) 0.0607(22) 0.2872(11)
DK /(10−6 cm−1) 0.2237(71) 0.1318(83)
d1 /(10−6 cm−1) −0.02107(26) −0.01081(21)
d2 /(10−6 cm−1) −0.01010(10) −0.001183(92)
HJ /(10−12 cm−1) 0.227 0.227
HK /(10−12 cm−1) 1.958 1.958
ξ z /cm−1 0.38370(94)
rms error /cm−1 0.0018
Assignments 1424 2748
Max. J 40 51
Range/cm−1 1095–1158

(a) Corrected by a small average calibration shift of +0.0018 cm−1.
(b) Here we correct a misprint of the original paper.

“assignment” of noise. A new fit is then performed and
the whole procedure is repeated until no new assignments
are found. As extrapolations beyond the range of quantum
numbers for which a set of spectroscopic parameters has
been optimized are rather unreliable, the simulation in each
step is limited to quantum numbers only slightly higher
than those already assigned. The range of assigned quantum
numbers is thus extended stepwise. As the program can be
run interactively, the necessary calculations can be carried
out efficiently.

As an example, Table 10 gives the results for param-
eters obtained for the two Coriolis-coupled CF-stretching
fundamentals in CH35ClF2 (a “dyad”). A more compli-
cated example is provided by the tetrad of levels 2ν9(A′),
2ν6(A′), ν6 + ν9(A′′), and the fundamental ν4(A′) in that
same molecule analyzed by Albert et al. (2006). Here, ν4

and 2ν6 are coupled by a Fermi resonance, whereas 2ν9

and 2ν6 are coupled to ν6 + ν9 by Coriolis interactions.
The set of parameters obtained is given in Table 11. See
also Snels et al. 2011: High-resolution FTIR and Diode
Laser Spectroscopy of Supersonic Jets, this handbook, for
an extended treatment of ν3/ν8 Coriolis resonance band of
CHClF2.

When considering the relatively large numbers of param-
eters in the effective Hamiltonians of this kind, one should
also see the much larger number of line data analyzed in
such spectra. Frequently, many thousands of lines are accu-
rately measured and assigned and thus an enormous data
set is described in a very compact form by such effective

Hamiltonians. Line intensity information complements this,
usually by comparing simulated and experimental data,
although least squares analyses of intensities are also pos-
sible and sometimes carried out. These effective Hamilto-
nians can then be used for analyses of time-dependent state
populations. One can also use the rotational constants in the
various vibrational states to determine Ae, Be, and Ce at the
equilibrium geometry, very similar to diatomic molecules
discussed in Section 2 but with added complexities. We
refer here to the critical discussion of equilibrium struc-
tures of methane derived from spectra of CH2D2 (Ulenikov
et al. 2006). Another approach to equilibrium structures of
polyatomic molecules is to adjust parameters of a potential
hypersurface in the calculation of vibrational ground-state
properties and compare these with the experimental con-
stants A0, B0, C0 of the vibrational ground state (Hollen-
stein et al. 1994). Such calculations have been carried out
even for high-dimensional (CH4) and very floppy molecules
(such as (HF)2) (Quack and Suhm 1991). Along fairly simi-
lar lines, Gauss and Stanton (1999) have proposed comput-
ing the difference between Ae, Be, Ce and A0, B0, C0 from
ab initio calculations combined with perturbation theory to
derive semi-experimental equilibrium structures.

6 PATTERN RECOGNITION FOR
SPECTROSCOPIC ASSIGNMENTS AND
ANALYSIS OF ROVIBRATIONAL
SPECTRA WITH LOOMIS–WOOD
DIAGRAMS

6.1 General Aspects

The high-resolution rotation–vibration spectra of poly-
atomic molecules often show an enormous complexity,
which makes assignment of the rotation–vibration states
connected in a transition, the first step in any analysis,
sometimes very difficult. There are several techniques that
help to establish and confirm such quantum number assign-
ments:

1. One can check the assignments by ground-state (or
excited-state) combination differences, which must
match to within the experimental accuracy (Section 2).

2. One can establish the symmetry assignment by means
of nuclear spin statistical weights and the resulting line
intensity alternations in high-resolution spectra.

3. One can simulate intensities in spectra obtained as
a function of temperature and thereby gain effective
information on the lower state of the observed line.

All these methods are quite widely used and the combina-
tion difference technique has even provided the basis for a
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Table 11 Spectroscopic constants (in cm−1) of the ν4, 2ν6, ν6 + ν9, and 2ν9 tetrad of CH35ClF2 (after Albert et al. 2006).

Ground state(a) ν4(A′) 2ν6(A′) ν6 + ν9(A′′)(b) 2ν9(A′)(b)

ν̃0 0.0 812.9300(45) 825.4091(45) 778.61 732.41
A 0.341392948 0.34103816(137) 0.34151924(138) 0.34218295 0.34302622
B 0.162153959 0.16119383(30) 0.16194755(30) 0.16195124 0.16197450
C 0.116995535 0.11651661(52) 0.11671129(40) 0.11658536 0.11648176
∆J /10−8 5.2247979 5.0155(35) 5.5275(30) 5.224797 5.2247979
∆JK/10−8 15.3149617 13.497(27) 10.741(22) 15.3149617 15.3149617
∆K/10−8 16.4159900 18.651(34) 20.507(37) 16.4159900 16.4159900
δJ /10−8 1.4746802 1.4383(11) 1.4998(10) 1.4746802 1.4746802
δK/10−8 16.7271720 16.342(11) 13.4991(87) 16.7271720 16.7271720
ΦJ /10−12 0.02341953 0.02341953 0.02341953 0.02341953 0.02341953
ΦJK/10−12 0.33456479 0.33456479 0.33456479 0.33456479 0.33456479
ΦKJ /10−12 −0.03422368 −0.03422368 −0.03422368 −0.03422368 −0.03422368
ΦK/10−12 0.09860155 0.09860155 0.09860155 0.09860155 0.09860155
φJ /10−12 0.01093423 0.01093423 0.01093423 0.01093423 0.01093423
φJK/10−12 0.18072503 0.18072503 0.18072503 0.18072503 0.18072503
φK/10−12 3.05377929 3.05377929 3.05377929 3.05377929 3.05377929
F −7.6839(36)
Fzz/10−3 1.4715(12)
ξz 0.023 0.023
ξy −0.218 −0.218
ηKxz/10−8 7.593(94)(c)

ndata 2284 1590
max J 78 78
max Ka 30 30
drms/10−3 0.308 0.288

(a) Blanco et al. (1996).
(b) Rotational constants and Coriolis interaction constants transferred from Kisiel et al. (1997).
(c) Interaction between ν4 and ν6 + ν9.

computer program for automatic assignments in the Zürich
group. Nevertheless, often the initial assignment is difficult
and this cannot be readily carried out automatically. Here,
interactive visual aids for pattern recognition can be help-
ful and we describe as an important example the method
originally published by Loomis and Wood (1928) and now
used in some laboratories.

The Loomis–Wood algorithm uses the periodicity of a
recurring pattern of lines in the spectrum and organizes
the lines in such a way that the periodicity is translated
into emerging, recognizable, continuous patterns in the
Loomis–Wood diagram. The concept of the Loomis–Wood
diagram arose in 1928 (Loomis and Wood 1928): to assign
the rotational structure of the blue-green bands of the
diatomic molecule Na2, Loomis and Wood plotted ν̃(J ) −
ν̃[Q(J )], the difference between the observed transition and
that corresponding to the Q-branch, as a function of the
J quantum number for four measured bands. P- and R-
branches always appear as smooth curves, nearly straight
lines with different slopes.

These diagrams seem helpful but were not often used in
the beginning since they are time consuming when built
manually. The first significant improvement came with

the development of personal computers. Scott and Rao
(1966) studied the 13.7 µm region of the acetylene spec-
trum with the first program able to generate Loomis–Wood
diagrams. Later, several interactive Loomis–Wood assign-
ment programs were developed, including the pioneering
work of Winnewisser et al. (1989). The so-called Giessen
Loomis–Wood program was originally designed only for
linear molecules (Haas et al. 1994, Schulze et al. 2000,
Albert et al. 1996, 1997a,b, 1998, 2001) but is also useful in
the analysis of spectra of asymmetric top molecules (Albert
et al. 2003, 2004a,b, Albert and Quack 2007). The first
generation of Loomis–Wood programs uses line positions
and intensities to recognize spectral patterns (McNaughton
et al. 1991, Winther et al. 1992, Stroh et al. 1992). Most of
the programs were based on a DOS interface, which limits
the resolution. Some programs already provided approaches
to assign spectra of symmetric top molecules (Moruzzi
et al. 1994, Brotherus 1999) and distinguish asymmetry
splitting components (Moruzzi et al. 1998). Nowadays, the
new programs take advantage of graphic tools and mouse-
interactive approaches in order to make the assignment
process easier. Here, we refer to the Giessen Loomis–Wood
program adapted for Igor Pro (Neese 2001), the program
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written by Gottselig (2004) for the Zürich group, the
CAAARS package (Medvedev et al. 2005) and its alter-
native AABS (Kisiel et al. 2005) optimized for asymmetric
top rotors, LWW (Lodyga et al. 2007) for symmetric rotors
developed for Windows, PGOPHER (Western 2010), or
ATIRS (Tasinato et al. 2007). Besides Loomis–Wood plots,
some of these programs provide further help such as the
calculation of combination differences or simulation of the
experimental spectrum following a fit procedure.

In our group, we have recently developed a new pack-
age called LOOM4WANG (Albert et al. 2011) to plot
Loomis–Wood diagrams, which has the advantage of work-
ing on Unix, Windows, and Mac platforms. The pro-
gram was developed under Linux using the GTK+/Gnome
Application Development suite (Version 2) packagea for
the graphical interface. For the optimization and fit pro-
cedures, the code uses the Fortran C-MINUIT package
from the CERN program library (James 1998). All the C-
MINUIT fitting facilities for the different expressions of
the Hamiltonian operator can be used. The present ver-
sion of the program can fit spectroscopic parameters of
a linear molecule, taking the centrifugal distortion cor-
rections up to the second-order into account, and the
upcoming version will also be able to treat the case of
symmetric top molecules. Furthermore, LOOM4WANG
provides an interface for the external fit program WANG
(Luckhaus and Quack 1989). All the Loomis–Wood
diagrams shown in the following were generated with
LOOM4WANG.

6.2 Linear Molecules

The concept of Loomis–Wood diagrams is based on
the expression of the rovibrational transitions for linear
molecules. Here, we detail the case of transitions for
the P-branch with correction of the centrifugal distortion
constants up to the first order as an example:

ν̃[P(J )] = ν̃0 + Fv′(J − 1) − Fv′′(J )

= ν̃0 + Bv′J (J − 1) − Dv′(J − 1)2J 2

− [
Bv′′J (J + 1) − Dv′′J 2(J + 1)2] (165)

where ν̃0 = G(v′) − G(v′′) is the band center of the vibra-
tional transition, Bv′′ is the rotational constant for the lower
vibrational state and Bv′ for the upper vibrational state,
Dv′′ is the correction of the centrifugal distortion to the
first order for the lower vibrational state, and Dv′ that
for the upper vibrational state. We use the following rela-
tions

Bv′ = Bv′′ + ∆B (166)

Dv′ = Dv′′ + ∆D (167)

to rewrite equation (165) in powers of (−J ):

ν̃[P(J )] − ν̃0 =(2Bv′′ + ∆B)(−J ) + (∆B − ∆D)(−J )2

−2(2Dv′′ + ∆D)(−J )3−∆D(−J )4 (168)

Equation (168) is a polynomial of fourth degree in (−J ).
The same treatment can be done for transitions of the
R-branch:

ν̃[R(J )] = ν̃0 + Fv′(J + 1) − Fv′′(J ) (169)

Analogous to Equation (168), ν̃[R(J )] − ν̃0 can then be
written as a polynomial, in (J + 1) this time, with the same
coefficients:

ν̃[R(J )]−ν̃0 = (2Bv′′ +∆B)(J + 1)+(∆B−∆D)(J + 1)2

−2(2Dv′′ +∆D)(J + 1)3−∆D(J + 1)4

(170)
In general, the transitions for P- and R-branches can
be written as a polynomial of fourth degree in m with
m = −J for the P-branch and m = J + 1 for the R-
branch:

ν̃LW(m) = ν̃[P(−m)] − ν̃0 for m < 0 (171)

= ν̃[R(m − 1)] − ν̃0 for m ≥ 1 (172)

with

ν̃LW(m) = (2Bv′′ + ∆B)m + (∆B − ∆D)m2

−2(2Dv′′ + ∆D)m3 − ∆Dm4 (173)

Usually, ∆B, Dv′′ , and ∆D are several orders of magni-
tude smaller than Bv′′ , which means that, in a first approx-
imation, all the terms in m of degree higher than one are
negligible compared to 2Bv′′ + ∆B in equation (173), at
least for m values that are not very large. For example,
in the case of carbonyl sulfide (OCS), the vibrational
band at ν̃0 = 3095.55442(9) cm−1 has been assigned to the
1200–0000 transition of the main isotopomer 16O12C32S
(Maki and Wells 1991); the analysis of the rotational
transitions results in the following rotational constants:
Bv′′ = 0.202849 cm−1, ∆B = 6.23025 10−4 cm−1, Dv′′ =
4.24954 10−8 cm−1, and ∆D = −7.14171 10−9 cm−1; in
other words, terms with order higher than one are negligible
up to J = 64.

The almost linear relationship between m and the tran-
sition (the higher order terms being negligible at first
approximation) is exploited as follows: in the modern
form of the Loomis–Wood diagram, the rovibrational
spectrum is cut in segments of width ∼2Bv′′ (actually
2Bv′′ + ∆B) and stacked one beneath the other in order to
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Figure 30 FTIR spectrum of OCS recorded with a White type cell of 19.2 m length with the Bruker IFS125 prototype ZP 2001 in
the 3055–3130 cm−1 region. The box indicates the region illustrated in Figure 31 (pressure of OCS is ca 0.2 mbar, decadic absorbance
lg(I0/I) is shown).

highlight lines belonging to the same group of transitions.
Figure 30 shows the FTIR spectrum of the OCS molecule
in the 3055–3130 cm−1 region and Figure 31 shows how
the ∼2Bv′′-wide slices of the 3100–3104 cm−1 region of
the spectrum are arranged one beneath the other in order to
reveal patterns in the spectrum.

The corresponding Loomis–Wood diagram constructed
with the LOOM4WANG program is shown in Figure 32:
the lines of the spectrum are represented by bars with
lengths proportional to the intensity of the transitions
in the spectrum. If a correct value of Bv′′ is used, the
bars corresponding to the same group of rovibrational
transitions appear aligned in the Loomis–Wood diagram.
The pattern at the center of Figure 32 is composed of the
most intense lines of the spectrum and corresponds to the
transitions of the 1200–0000 band of the main isotopomer
16O12C32S.

The top of the diagram corresponds to the lower end of
the spectral range shown in Figure 30, and as the wavenum-
ber increases from left to right in Figure 30, it increases
from top to bottom by row in Figure 32. Therefore, the
top half of the diagram illustrates transitions lower than the
band center ν̃0, i.e., the P-branch, and the bottom half of
the diagram shows transitions higher than the band center,
i.e., the R-branch. The closer the transition to the center of
the diagram, the lower is the J value. Figures 33(a) and (b)
illustrate the effect of neglecting the correction of the cen-
trifugal distortion: the deviation from the vertical straight
line for large J values (tails of the plot) in Figure 33(a)
indicates the limitations of the linear approximation of the
polynomial because Dv′′ as well as ∆D were set to zero
in Figure 33(a), whereas they were optimized in 33(b), all
other parameters being kept the same.

For larger molecules, a more exact description of the tran-
sition, taking into account the correction of the centrifugal
distortion constants up to the second or even higher order,
may be required; it leads to a polynomial of at least the
sixth degree in m:

ν̃LW(m) = (2Bv′′ + ∆B)m + (∆B − ∆D)m2

− 2(2Dv′′ + ∆D − Hv′′ − ∆H/2)m3

+ (3∆H − ∆D)m4 + 3(2Hv′′ + ∆H)m5

+∆Hm6

+ · · · (174)

Hv′′ is the correction of the centrifugal distortion to the
second order in the lower vibrational state, and Hv′ is that
in the upper vibrational state with ∆H = Hv′ − Hv′′ . These
terms are smaller than Dv′′ and ∆D, which does not change
the interpretation of the Loomis–Wood diagram.

Plotting the same Loomis–Wood diagram as in Figure 34,
one beside the other three times, allows the user to
recognize the continuity of the patterns. They are of weaker
intensity and with different slopes: these patterns have
been assigned to the splitting of the 131–010 transition
(see Maki and Wells 1991 and references therein). Since
v′′

2 > 0, l > 0, the state is split into e and f components of
l, corresponding to the B and C branches on the diagram
(Figure 34).

Obviously, the interpretation of the spectrum of a linear
molecule such as OCS is one of the simplest cases for
a Loomis–Wood plot and may not require such graphical
tools to get the proper assignment. This section has
illustrated the key points of the Loomis–Wood diagram,
which can be useful for more complex spectra.
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Figure 32 Loomis–Wood diagram of the FTIR spectrum of OCS shown in Figure 30. The box indicates the spectral region
selected in Figure 30. The spectroscopic parameters are as follows: ν̃0 = 3095.55442 cm−1, B = 0.2028567408 cm−1, and ∆B =
−0.0005455008 cm−1.

−B +B0.0 0.0−B +B
(a) (b)

Figure 33 Loomis–Wood diagram of the FTIR spectrum of OCS shown in Figure 30. The spectroscopic parameters are as
follows: ν̃0 = 3095.55442 cm−1, B = 0.2028567408 cm−1, and ∆B = −0.0005455008 cm−1. (a) D = 0 cm−1 and ∆D = 0 cm−1;
(b) D = 4.409752 10−8 cm−1, and ∆D = −5.7191468 10−9 cm−1.

6.3 Nonlinear Molecules

Each type of molecule has its own selection rules and,
therefore, displays different patterns in Loomis–Wood
diagrams. In this section, we describe how we can anticipate
the Loomis–Wood plot patterns of nonlinear molecules, on
the basis of that observed for linear molecules.

6.3.1 Symmetric Top Molecules

Here we discuss the case of the prolate symmetric top
(A > B = C), and that for the oblate symmetric top (A =
B > C) can be easily obtained by analogy (see below).
Two kinds of bands are observable: parallel (∆K = 0 and
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Figure 34 Loomis–Wood diagram of the FTIR spectrum of OCS shown in Figure 30 reproduced three times. The spectroscopic
parameters are as follows: ν̃0 = 3095.55442 cm−1, B = 0.2028567408 cm−1, ∆B = −0.0005455008 cm−1, D = 4.409752 10−8 cm−1,
and ∆D = −5.7191468 10−9 cm−1.

Table 12 Rotational constants (in cm−1) of the ground state and the ν1 state of CH3I (after Paso and Antilla 1990).

Rotational constant X Ground state ν1 state ∆X = Xν1 − X′′

A 5.173931 5.121724 −52.207 × 10−3

B 0.250215625 0.250167425 −0.0482 × 10−3

DJ 0.2103983 × 10−6 0.2118883 × 10−6 1.49 × 10−9

DJK 3.294545 × 10−6 3.254545 × 10−6 −0.04 × 10−6

DK 87.34 × 10−6 88.06 × 10−6 0.72 × 10−6

∆J = ±1 for K = 0, or ∆J = 0,±1 for K �= 0), and
perpendicular (∆K = ±1, ∆J = 0, ±1).

The expression of the rotational term value is

Fv(J, K)prolate = BvJ (J + 1) + (Av − Bv)K
2 − DJvJ

2

× (J +1)2−DJKvJ (J + 1)K2−DKvK
4

(175)
where we have considered the centrifugal distortion cor-
rection up to the first order to simplify the mathematical
treatment.

Parallel Band
In the case of parallel bands, the transition for the
Loomis–Wood diagram can be written as follows for both
P- and R-branches:

ν̃LW(m) = (2Bv′′ + ∆B + ∆DJKK2)m + (∆B − ∆DJ

−∆DJKK2)m2

− 2(2DJ ′′ + ∆DJ )m3 − ∆DJ m4

+ (∆A − ∆B)K2 − ∆DKK4 (176)

For K = 0, the equation is analogous to equation (173)
obtained in the case of the linear molecule as discussed
in Section 6.2 with DJ ′′ = Dv′′ , and therefore we expect
a pattern similar to that shown in Figure 32 for the
OCS molecule. Regarding K �= 0, for each K value, we
get a new pattern in the Loomis–Wood diagram, shifted
from (∆A − ∆B)K2 − ∆DKK4 compared to the K = 0
pattern. Since (∆A − ∆B) is generally much larger than
∆DK , as soon as the K = 0 and K = 1 patterns are
identified, the other are shifted by roughly K2 times the
difference between the K = 0 and K = 1 patterns. For
instance, Table 12 lists the spectroscopic constants of the
ν1 band of the symmetric top molecule CH3I. In this
case, ∆DJK is seven orders of magnitude smaller than
2Bv′′ + ∆B, and up to K = 300, ∆DJKK2 is negligible
compared to 2Bv′′ + ∆B: the patterns appear with almost
the same slope as that for K = 0. The deviation from
the “straight line”, however, starts at lower J values
with increasing K value since ∆DJ is only two orders
of magnitude smaller than 2DJ ′′ (third power of m in
equation (176)).
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Regarding the oblate symmetric top molecules, one has
to replace (Av − Bv) in equation (175) by (Cv − Bv), which
leads to

Fv(J, K)oblate = BvJ (J +1)+(Cv−Bv)K
2−DJvJ

2(J +1)2

−DJKvJ (J + 1)K2 − DKvK
4 (177)

and the corresponding transition for the Loomis–Wood
diagram:

ν̃LW(m) = (2Bv′′ + ∆B + ∆DJKK2)m + (∆B − ∆DJ

− ∆DJKK2)m2 −2(2DJ ′′ +∆DJ )m3−∆DJ m4

+ (∆C − ∆B)K2 − ∆DKK4 (178)

The treatment of the Loomis–Wood diagram is, there-
fore, exactly the same as for prolate symmetric top
molecules.

Since the ∆J = 0 transitions are allowed for K �= 0,
one could wonder how the Q-branches are handled in a
Loomis–Wood diagram:

ν̃[Q(J )] − ν̃0 = Fv′(J, K) − Fv′′(J, K)

= Bv′J (J + 1) + (Av′ − Bv′)K2

−DJv′ J
2(J + 1)2 − DJKv′ J (J + 1)K2

−DKv′ K
4−[Bv′′J (J +1)+(Av′′ −Bv′′)K2

−DJv′′ J
2(J + 1)2 − DJKv′′ J (J + 1)K2

−DKv′′ K
4] (179)

ν̃[Q(J )] − ν̃0 = (∆B − ∆DJKK2)J + (∆B − ∆DJ

−∆DJKK2)J 2

− (2∆DJ )J 3 − (∆DJ )J 4 + [(∆A − ∆B)

−∆DK ]K4 (180)

Here again, the Loomis–Wood term can be considered to
be a polynomial of fourth degree in m with m = J , but
the coefficients of the first and third powers are different
than those in equation (176). Since for the first power of
the polynomial, ∆B is much smaller than the largest term
2Bv′′ found in the other expressions of ν̃[P(J )] − ν̃0 and
ν̃[R(J )] − ν̃0, the pattern of the Q-branch appears as a
horizontal line in the center of the diagram and cannot
be as easily assigned with the help of the Loomis–Wood
diagram as the P- and R-branches. Other programs have
been developed to analyze this part of the spectrum, for
example, QBRASS (Stroh 1991).

Perpendicular band
Here, we discuss the characteristics of the Loomis–Wood
plot by comparing it to that corresponding to a parallel
band. In the case of a perpendicular band, the transition
can be written as follows:

ν̃LW(m) = [2Bv′′ + ∆B + ∆DJK(K ± 1)2 − DJK ′′

× (2K ± 1)]m + [∆B − ∆DJ − (∆DJK

× (K ± 1)2 − DJK ′′(2K ± 1))]m2 − 2(2DJ ′′

+∆DJ )m3 − ∆DJ m4 + (∆A − ∆B)

× (K ± 1)2 − (Av′′ − Bv′′)(2K ± 1)

−∆DK(K ± 1)4 − DK ′′(2K ± 1)[K2

+ (K ± 1)2] (181)

with ∆K = ±1, m = −J for the P-branch and m = (J +
1) for the R-branch.

Given the rotational constant X in equation (176) for
a parallel band, ∆XK2 is replaced by ∆X(K ± 1)2 −
X(2K ± 1) in equation (181) for a perpendicular band. In
this case, the added correction −X(2K ± 1) may be larger
than the term ∆X(K ± 1)2 itself. Moreover, this correction
may be nonnegligible for the low powers of m in the
polynomial. Therefore, no more straight line–like patterns
can be expected, as seen in the Loomis–Wood plot for a
parallel band, although patterns should still be recognizable.
The main component of the distance to the band center ν̃0

is proportional to DK ′′K3: patterns with different values of
K start at different slices of the spectrum in the diagram,
and are apparently similar to those at different m values
when the parameters of the diagram are optimized for a
parallel band. For an oblate symmetric top molecule, the
transition can be written as follows:

ν̃LW(m) = [2Bv′′ + ∆B + ∆DJK(K ± 1)2

− DJK ′′(2K ± 1)]m + [∆B − ∆DJ

− (∆DJK(K ± 1)2 − DJK ′′(2K ± 1))]m2

− 2(2DJ ′′ + ∆DJ )m3 − ∆DJ m4

+ (∆C − ∆B)(K ± 1)2 − (Cv′′ − Bv′′)(2K ± 1)

−∆DK(K ± 1)4 − DK ′′(2K ± 1)

× [K2 + (K ± 1)2] (182)

6.3.2 Spherical Top Molecules

The similarity in the expressions for the rotational energy
of a spherical top and that of a linear molecule makes the
analysis of the spherical top’s Loomis–Wood plot easier.
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Indeed, a spherical top molecule can be considered to
be the limiting case of a symmetric top molecule with
Ia = Ib = Ic (i.e., A = B = C) with all coefficients of K2

in the expression of the term value equal to zero:

Fv(J, K)sph. top = BvJ (J + 1) − DJvJ
2(J + 1)2 (183)

In equation (183), we have once again considered the
centrifugal distortion correction up to the first order to
simplify the mathematical treatment. This equation is the
same as that used in the case of linear molecules. The
Loomis–Wood diagram of a spherical top molecule should,
therefore, look similar to that of a linear molecule as
described in Section 6.2.

6.3.3 Asymmetric Top Molecules

The case of asymmetric top molecules may seem to be
the most complicated because the K degeneracy of the
symmetric top is removed. The three kinds of allowed
transitions are defined with J , Ka , and Kc:

∆J = ±1, ∆Ka = 0, ±2,±4 . . . ,

∆Kc = ±1, ±3,±5 . . . , for Ka = 0 and (184)

∆J = 0, ±1, ∆Ka = 0, ±2,±4 . . . ,

∆Kc = ±1, ±3,±5 . . . , for Ka �= 0 (185)

for a-type transitions,

∆J = ±1, ∆Ka = ±1,±3, ±5 . . .

∆Kc = ±1,±3, ±5 . . . (186)

for b-type transitions, and

∆J = ±1, ∆Ka = ±1, ±3,±5 . . . ,

∆Kc = 0, ±2, ±4 . . . for Kc = 0, and (187)

∆J = 0, ±1, ∆Ka = ±1,±3, ±5 . . . ,

∆Kc = 0, ±2, ±4 . . . for Kc �= 0 (188)

for c-type transitions.
The second reason for the complexity of the treatment is

the term Wτ in the expression of the rotational energy:

F(Jτ ) = (B + C)

2
J (J + 1) +

[
A − (B + C)

2

]
Wτ (189)

where τ is the subscript added to take the K-type dou-
bling into account (−J ≤ τ ≤ J ) and Wτ is a function
of the rotational constants A, B, and C and the quantum
number J . For more details, see the algebraic expressions
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Figure 35 Illustration of the CHD2I molecule and its principal
axis system. The ac plane defines the Cs symmetry plane in
the plane of the page, the b axis being perpendicular to the ac

plane. The equilibrium geometry parameters are from ab initio
calculations by Horká et al. (2008). [Reproduced with permission
from Albert et al. 2010.]

for J = 0 − 6 in Herzberg (1945) and citations therein.
Nevertheless, it is sometimes possible, in the first approxi-
mation, for the analysis (and not for the determination of the
rotational constants) to consider the molecule as a nearly
symmetric top. In this case, the Loomis–Wood diagram
is quite similar to that of a symmetric top molecule; a−
(respectively b− and c−) type bands of an asymmetric
top exhibit similar patterns to those of a parallel (respec-
tively perpendicular) band of a symmetric top molecule.
To illustrate this point, we discuss the case of CHD2I, a
molecule belonging to the Cs point group. Figure 35 shows
the structure of the molecule with the principal axes a, b,
and c.

The asymmetry parameter κ of CHD2I defined by
equation (190)

κ = 2B − A − C

A − C
(190)

is close to −1 (−0.9978; Riter and Eggers 1966); therefore,
the molecule can be considered to be a nearly prolate
symmetric top. Figure 36 shows an overview of the ν1 band
of CHD2I corresponding to the CH-stretching component
(Albert et al. 2010). Typical features of an a/c-type hybrid
band are visible: the more intense a-type transitions form
the central Q-branch and the almost symmetric P- and
R-branches are well resolved. The c-type transitions are
detectable due to the strong ∆Ka=±1Q-branches spaced by
more than 5 cm−1. The most intense region of the spectrum
has already been assigned (Hodges and Butcher 1996) and
data presented here include a larger spectral range.

The Loomis–Wood diagram of the a-type transitions of
the ν1 band is shown in Figure 37 in the approximation of
a linear molecule Hamiltonian. In this case, each almost
straight pattern corresponds to the P-(top half of the
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Figure 36 Overview of the FTIR spectrum of CHD2I in the ν1 region recorded in a White-type cell of 9.6 m length with the Bruker
IFS125 prototype ZP 2001. [Reproduced with permission from Albert et al. (2010).]
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Figure 37 Loomis–Wood diagram of the a-type transitions of the ν1 band of CHD2I. The following parameters were used:
ν̃0 = 3029.68 cm−1, (B + C)/2 = 0.215 cm−1, ∆[(B + C)/2] = 2.006 10−6 cm−1, D = 0 cm−1, and ∆D = 0 cm−1. [Reproduced
with permission from Albert et al. 2010.]

diagram) and R-(bottom half of the diagram) branches
of a-type transitions with the same Ka value; they are
similar to those expected for a parallel band of a prolate
symmetric top with the spacing between a given Ka

pattern and the Ka = 0 pattern roughly proportional to
K2

a . The difference from a Loomis–Wood diagram of a
prolate symmetric top is due to the asymmetry splittings
(Ka + Kc = J or J + 1) observed for low Ka values

(Ka = 1, 2): each P- and R-branch pattern is split into two
components.

Figure 38 shows a larger view of the Loomis–Wood dia-
gram of Figure 37, in which weaker patterns corresponding
to the P-and R-branches of the c-type transitions are also
visible. The middle part of the diagram corresponds to
the a-type transitions discussed above. The curved pat-
terns observed at the top of the diagram correspond to the
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Figure 38 Loomis–Wood diagram of the a- (in the middle of the diagram) and c-type transitions (above the a-type transitions for the P-
branch and below for the R-branch, respectively) of the ν1 band of CHD2I. The following parameters were used: ν̃0 = 3029.68 cm−1,
(B + C)/2 = 0.215 cm−1, ∆[(B + C)/2] = 2.006 10−6 cm−1, D = 0 cm−1, and ∆D = 0 cm−1. [Reproduced with permission from
Albert et al. 2010.]

P-branches of the c-type transitions, while those on the bot-
tom of the diagram correspond to the R-branches. They are
similar to those expected for a perpendicular band of a pro-
late symmetric top. The lines in a given pattern have the
same K ′

a ← K ′′
a value but not the same K ′′

c (and therefore
K ′

c) value; the c-type patterns are no longer almost straight
like the a-type patterns because of the correction in the

expression of the transitions due to ∆Ka �= 0 compared to
the linear molecule Hamiltonian approximation used to plot
the Loomis–Wood diagram.

Figure 39 shows the same Loomis–Wood diagram as
Figure 37, without taking the intensity of the spectral lines
into account. This makes it possible to highlight small
deviations observed from the smoothed patterns: these are

−(B+C ) 0.0 +(B+C )

P-branch

Q-branch

R-branch

m
 v

al
ue

s

Figure 39 Loomis–Wood diagram of the a-type transitions of the ν1 fundamental of CHD2I. The diagram is obtained
with the same parameters as in Figure 37. Circles highlight some of the weak resonances observed.
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local resonances that can be revealed by Loomis–Wood
diagrams. They prove the existence of at least one other
vibrational state interacting with the ν1 state, which must
also be considered during the fitting procedure as discussed
in Section 5.3.

7 CONCLUDING REMARKS

At high resolution, molecular rotation–vibration spectra
contain an enormous amount of information on molecular
structures and vibrational and rotational quantum motions.
This information is encoded in spectral line intensities
and positions, which can frequently be measured with
stunning precision. In addition, the amount of information
can be quantitatively enormous and involves the necessity
of analyzing thousands and tens of thousands of ro-
vibrational transitions. We have discussed here some of
the fundamental aspects, ranging from the basic concepts
for the relatively simple case of diatomic molecules to
the tools available for analyzing the great complexity
of the spectra of polyatomic molecules. Many of the
other articles in this handbook provide further insight
at the current level of research in this exciting area of
spectroscopy.
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END NOTE

a.http://developer.gnome.org/.

ABBREVIATIONS AND ACRONYMS

BO Born–Oppenheimer
DVR discrete variable representations
FTIR fourier transform infrared
GSCDs ground-state combination differences
IR infrared
MW microwave
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Herzberg, G. (1939) Molekülspektren und Molekülstruktur,
Theodor Steinkopff Verlag, Dresden/Leipzig.

Herzberg, G. (1945) Molecular Spectra and Molecular Structure,
Vol. II, Infrared and Raman Spectra of Polyatomic Molecules,
1st edition, van Nostrand Reinhold, New York.

Herzberg, G. (1950) Molecular Spectra and Molecular Structure,
Vol. I, Spectra of Diatomic Molecules, van Nostrand Reinhold,
New York.

Herzberg, G. (1966) Molecular Spectra and Molecular Structure
Vol. III; Electronic Spectra and Electronic Structure of Poly-
atomic Molecules, van Nostrand, New York.

Hippler, M., Miloglyadov, E., Quack, M., and Seyfang, G. (2011)
Mass and isotope-selective infrared spectroscopy, in Handbook
of High-resolution Spectroscopy, Quack, M. and Merkt, F.
(eds), John Wiley & Sons, Ltd., Chichester, UK.

Hippler, M., Oeltjen, M., and Quack, M. (2007) High-resolution
continuous-wave-diode laser cavity ring-down spectroscopy of
the hydrogen fluoride dimer in a pulsed slit jet expansion: two
components of the N = 2 triad near 1.3 µm. The Journal of
Physical Chemistry A, 111(49), 12659–12668.

Hodges, C.J. and Butcher, R.J. (1996) Difference frequency spec-
troscopy of methyl Iodide 12CHD2I in the ground and ν1
vibrational states. Journal of Molecular Spectroscopy, 178(1),
45–51.

Hollenstein, H., Lewerenz, M., and Quack, M. (1990) Isotope
effects in the Fermi resonance of the CH chromophore in CHX3
molecules. Chemical Physics Letters, 165(2–3), 175–183.

Hollenstein, H., Marquardt, R., Quack, M., and Suhm, M. (1994)
Dipole moment function and equilibrium structure of methane
in an analytical, anharmonic nine-dimensional potential surface
related to experimental rotational constants and transition
moments by quantum Monte Carlo calculations. Journal of
Chemical Physics, 101(5), 3588–3602.
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