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Approximate rotational characterization of variational rovibrational wave functions via the rigid
rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of in-
ternal coordinates and axis embeddings. An efficient and general procedure is given that allows
employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical
approach. RRD tables formed by projecting rotational-vibrational wave functions into products of
rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels
for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses
are performed, up to high energies and rotational excitations, for the H2

16O isotopologue of the water
molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing
unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational
states of H2

16O proves to be increasingly difficult beyond about 10 000 cm−1, close to the barrier to
linearity of the water molecule. For medium energies and excitations the Eckart embedding yields
the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4707463]

I. INTRODUCTION

Molecular spectra have been studied at high resolu-
tion extensively as accurate knowledge of rovibronic data
is needed in a large number of scientific and engineering
applications.1, 2 Experiments provide accurate but highly in-
complete information, as shown, for instance, on the example
of the relatively thoroughly studied isotopologues of the wa-
ter molecule.3, 4 Variational quantum chemical techniques2, 5–9

have been developed and applied to molecules containing a
“few” atoms to study their rotation-vibration states up to10

and even beyond11, 12 the first dissociation limit for a given
potential energy surface (PES). One of the results of a vari-
ational solution of the nuclear Schrödinger equation is a set
of rovibrational eigenvalues, from which transition wavenum-
bers and thus positions in a high-resolution spectrum can be
deduced. Another set of results comes in the form of rovi-
brational eigenfunctions, underlying transition intensities and
line shapes. A variational nuclear motion computation of
spectroscopic significance is not complete without character-
ization of the eigenstates of the molecule, usually in form
of exact and/or approximate quantum numbers attached to
the eigenstates. It is this last task which is the subject of the
present investigation.

There are several techniques developed to provide a
qualitative understanding of the characteristics of the com-
puted eigenvalues and eigenstates. The perhaps simplest and
most traditional technique involves an energy decomposi-
tion scheme, employing the energy dependence of the vibra-
tionally computed eigenenergies based on the normal mode
quantum numbers and the knowledge of the vibrational fun-
damentals. Above a certain, usually rather low, energy thresh-
old, the density of rovibrational states increases considerably

and there are often several candidates for a given set of vi-
brational normal mode quantum numbers making the assign-
ment via this scheme impossible or at least dubious. Further-
more, as the wavefunction-based normal mode decomposition
(NMD) analysis8, 13, 14 showed, even when normal-mode la-
bels can be allocated based on this scheme, their physical rel-
evance can clearly be questioned. Second, inspection of 2D
cuts of the real wave function plots along appropriately cho-
sen coordinates sometimes gives valuable qualitative informa-
tion on the molecular state.10 However, these plots cannot be
used to get quantitative information on states of heavy mix-
tures of basis states without significant manipulation,15 which
is rarely attempted. It would also be hard to identify multiply
excited levels by visual inspection even if such a state was
fairly harmonic. Third, certain expectation values of physical
quantities related to the molecule studied can be computed re-
sulting in approximate quantum numbers for each vibrational
level. Normal-mode-like labels can also be created this way.10

Fourth, perturbing certain cuts along the PES helps in the as-
signment of vibrational quantum numbers to levels with large
quantum numbers associated with that coordinate. Changes
in an eigenstate’s energy is often found to be practically in-
dependent of the other quantum numbers, facilitating the as-
signment procedure.

Notwithstanding these possibilities, the most sound
approach to assigning approximate quantum numbers to
variationally computed wave functions must employ overlaps
of the exact wave function with approximate model wave
functions characterized by certain well-defined quantum
numbers, perhaps exact for the models. This procedure is
especially relevant, straightforward, and useful for spec-
troscopic applications when the model corresponds to the
rigid rotor and harmonic oscillator approximations and the
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associated functions. Such a procedure was developed in
Ref. 13 for the Eckart−Watson Hamiltonian,16, 17 and was
named NMD for vibrations and rigid rotor decomposition
(RRD) for rotations. The Eckart−Watson Hamiltonian,
however, can rarely be employed for large-amplitude motions
and for nonrigid molecules. Energy levels and wave functions
for such molecules must be computed with variational proce-
dures based on Hamiltonians employing internal coordinates.
One particularly appealing choice for triatomic molecular
systems is the use of the Sutcliffe−Tennyson Hamiltonian.18

A complementary approach with an exact kinetic energy
operator (KEO) is provided by the GENIUSH (general
nuclear motion code with numerical, internal-coordinate,
user-specified Hamiltonians) protocol19, 20 having the follow-
ing main characteristics: (a) it is applicable to all molecular
systems of feasible size, irrespective of the fact whether
their PESs contain a single minimum or multiple minima
and what choice is made for the internal coordinates and the
coordinate system embedding; (b) the exact analytical form
of the KEO does not need to be known a priori as the KEO
is constructed fully numerically; and (c) it allows the use
of arbitrary reduced-dimensional nuclear motion treatments
within the same code. Due to the well-known features of the
Eckart embedding,16 which minimizes the coupling between
molecular vibrations and rotations away from equilibrium, it
is desirable to employ this embedding in a large number of
applications. However, the Eckart embedding leads to a com-
plex analytical form of the rovibrational Hamiltonian even
for a triatomic molecule;21, 22 consequently, to the best of our
knowledge, no general polyatomic code employing internal
coordinates exists which could perform rovibrational compu-
tations utilizing an Eckart frame. As shown here, the explicit
knowledge of the kinetic energy operator can be circumvented
and the numerical construction of the kinetic energy operator
within the GENIUSH scheme results in a straightforward use
of the Eckart embedding for arbitrary molecular systems.

In this work the embedding dependence and the range
of applicability of the RRD scheme with respect to rotational
excitation and rovibrational energy is investigated through nu-
merical tests based on variational computations using curvi-
linear internal coordinates. In particular, rotational quantum
labels are assigned to the rovibrational states of the H2

16O
molecule via the RRD algorithm, using Jacobi coordinates ei-
ther with the R1 or bisector embeddings,18 or employing va-
lence coordinates (two OH bond lengths and the HOH bond
angle) with the Eckart embedding.

II. THEORY OF RIGID ROTOR DECOMPOSITION

The following description of the RRD protocol follows
closely that given in Ref. 13.

For a closed-shell molecule, in the absence of an exter-
nal field and when neglecting hyperfine interactions, the J
rotational quantum number is a good quantum number for
the description of the overall molecular rotation; thus, the
labeling of the nuclear motion states can be performed in-
dependently for different J values. Let us assume that the
following three criteria are satisfied for an asymmetric-top
molecule under investigation. (1) Given a J rotational quan-

tum number, the rovibrational time-independent Schrödinger
equation Ĥ rovib�rovib

n = Erovib
n �rovib

n , n ∈ {1, 2, . . . , nrovib} is
solved for nrovib number of eigenpairs. Furthermore, the rovi-
brational Erovib

n energy levels and �rovib
n wave functions (func-

tions of the vibrational internal ccordinates and the rotational
coordinates) are both available, but lack rovibrational quan-
tum labels. (2) For the given J rotational quantum number,
the rigid-rotor Schrödinger equation Ĥ RR�RR

n = ERR
n �RR

n , n
∈ {1, 2, . . . , 2J + 1} is also solved, providing 2J + 1 rotational
wave functions for each vibrational state. These wave func-
tions depend on the rotational coordinates, and each of them
can be characterized by a unique set of rotational quantum la-
bels. In the case of asymmetric tops, these quantum numbers
are {J, Ka, Kc}, where J is the quantum number correspond-
ing to the overall rotational motion of the molecule, while Ka

and Kc correspond to the projections of the rotational angu-
lar momentum on the body-fixed z-axis for the prolate and
oblate symmetric-top limits of the rigid rotor, respectively.
(3) The J = 0 pure vibrational Schrödinger equation Ĥ vibψvib

n

= Evib
n ψvib

n , n ∈ {1, 2, . . . , nvib} is solved for nvib eigenpairs.
A unique vibrational label is assigned to each vibrational
eigenstate, which could be obtained for low-energy states us-
ing the NMD protocol described in Ref. 13.

The RRD scheme is based on a (2J + 1) · nvib-
dimensional |ψvib

k �RR
l 〉 = |ψvib

k 〉 ⊗ |�RR
l 〉, k ∈ {1, 2,. . . ,

nvib}, l ∈ {1, 2,. . . , 2J + 1}, orthonormal, direct-product basis.
As a result, each direct-product basis function has a unique
rovibrational label.

The next step is the computation of the overlaps

Sn;k,l = 〈
�rovib

n

∣∣ ψvib
k �RR

l

〉
, n ∈ {1, 2, . . . , nrovib} ,

k ∈ {1, 2, . . . , nvib} , l ∈ {1, 2, . . . , 2J + 1} . (1)

Then, for each �rovib
n the quantities Pn;k = ∑2J+1

l=1 S2
n;k,l are

evaluated and collected into a table. These quantities are in-
terpreted as the “total overlap” of the kth vibrational state
and the nth rovibrational state. For each value of n, kmax

n is
determined, Pn;kmax

n
being the largest of the Pn; k values. Fi-

nally, �rovib
n is labeled with the rovibrational quantum num-

bers of the direct-product basis function with which its Sn;kmax
n ,l

overlap is the largest. Naturally, to obtain unique labels
(2J + 1) · nvib ≥ nrovib must hold.

Besides providing unique quantum labels, determining
the symmetry of the rovibrational states is also defined as a
step in the RRD scheme. This can be done by determining the
symmetry of the direct-product basis function which was used
for the RRD labeling, which naturally has the same symmetry
as the rovibrational state.

Since the |ψvib
k �RR

l 〉 = |ψvib
k 〉 ⊗ |�RR

l 〉, k ∈ {1, 2,. . . ,
nvib}, l ∈ {1, 2,. . . , 2J + 1} direct-product functions span the
rovibrational Hilbert space for a given J value, the |ψvib

k 〉 ⊗
|�RR

l 〉 direct-product functions transform among each other if
operated on by a symmetry operator of the molecular sym-
metry (MS) group.23 Let |ψvib〉 and |φRR〉 be given vari-
ational vibrational and rigid-rotor eigenfunctions, respec-
tively. If the symmetry of the |ψvib〉 and |φRR〉 functions
are known and they belong to a one-dimensional irreducible
representation of the molecular point group (PG) and the
molecular rotation group (RG), respectively, determining
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the symmetry of |ψvib〉⊗|φRR〉 is straightforward. Let R̂MS
i ,

R̂PG
k , and R̂RG

l denote the ith, kth, and lth symmetry opera-
tion of the MS, PG, and RG groups, respectively. If the |ψvib〉
and |φRR〉 functions transform according to one-dimensional
irreducible representations (assuming real character values),
then R̂PG

k |ψvib〉 = ±|ψvib〉 and R̂RG
l |φRR〉 = ±|φRR〉. Thus, if

the Ci
kl coefficients defined by R̂MS

i = ∑
k,l C

i
klR̂

PG
k R̂RG

l are
determined (for a given i all Ci

kl coefficients are zero, ex-
cept one which equals to one, i.e., Ci

kl = δkk′
i
δll′i ), the ex-

pression R̂MS
i |ψvibφRR〉 = ∑

k,l C
i
kl(R̂

PG
k |ψvib〉 ⊗ R̂RG

l |φRR〉)
= R̂PG

k′
i
|ψvib〉 ⊗ R̂RG

l′i
|φRR〉 = ±|ψvibφRR〉 can be evaluated,

and |ψvibφRR〉 can be labeled as a one-dimensional irre-
ducible representation of the MS group. When the |ψvib〉 and
|φRR〉 functions transform according to multi-dimensional ir-
reducible representations, the R̂MS

i |ψvibφRR〉 functions will be
linear combinations of the |ψvib

k �RR
l 〉 functions; thus, deter-

mining the symmetry is not as simple and requires further
considerations not discussed here.

III. ROVIBRATIONAL HAMILTONIANS

In this section we briefly describe the basics of rovibra-
tional Hamiltonians related to our quantum chemical nuclear-
motion approaches used for computing rotational-vibrational
energies and wave functions variationally.

A. Embeddings

RRD overlaps Sn;kmax
n ,l depend on the embedding of the

molecule-fixed axis system chosen. Investigation of this de-
pendence is one of the principal goals of the present study.

In this work RRD tables for the H2
16O molecule, chosen

as our test system during all (ro)vibrational computations, are
determined using the Jacobi (also known as scattering) coor-
dinates with either the R1 or bisector embeddings.18 Although
in the case of the bisector embedding the use of Radau coor-
dinates seems to be a better choice for computing RRD over-
laps, test computations show that RRD coefficients obtained
with Radau coordinates are essentially identical with the ones
obtained using Jacobi coordinates. Computations were also
performed with valence internal coordinates and an Eckart
embedding.16 In the R1 embedding (see Figure 1), the z-axis
of the body-fixed frame is chosen to lie parallel to the inter-
atomic vector described by the R1 coordinate. In the bisector
embedding, the x-axis of the body-fixed frame is chosen to
bisect the angle between the interatomic R1 vector and the R2

vector connecting the center of mass of the diatom with the
third atom. In the Eckart embedding, the body-fixed frame is
chosen such that the nuclei satisfy the Eckart conditions.16

In order to make the body-fixed embeddings closer to the
principal-axis system, in which the rigid-rotor computations
were carried out, during the present study unorthodox choices
were made for the R1 and bisector embeddings (see Fig. 1).
Within the R1 embedding the molecule was placed in the (z,x)-
plane with the body-fixed z-axis chosen to lie along the two H
atoms, the x-axis “looking towards” the O atom in the plane
of the molecule, and the y-axis chosen to give a right-handed
coordinate system. In the bisector embedding the molecule

FIG. 1. Pictorial representation of (a) the R1-embedding of the molecule in
the body-fixed frame and (b) implementation of the Jacobi-coordinates in the
R1-embedding for the (ro)vibrational calculations.

was placed in the (z,x)-plane with the body fixed x-axis chosen
to bisect the HOH bond angle in symmetric configurations.

In the case of the Eckart embedding the origin of the
body-fixed frame was attached to the nuclear center of mass
of the molecule. Thus, the three translational Eckart condi-
tions are satisfied. There are two possible ways of maintaining
the three rotational Eckart conditions. On one hand, the wa-
ter molecule is to be placed into any of the three coordinate
planes, thus two of the three rotational Eckart conditions are
automatically statisfied. The third rotational Eckart condition
can be maintained by rotating the nuclear position vectors by
an angle given by Eq. (14) of Ref. 24. Alternatively, one can
invoke the Eckart transformation method proposed in Ref. 25.
The second method was favored in this study as it is general,
while the first one applies only to triatomics.

B. Hamiltonians and their representation

The particular forms of the rovibrational Hamiltonians
in the R1 and bisector embeddings are taken from Refs. 26
and 27, respectively. To keep the discussion as brief as pos-
sible, the case of the R1 embedding is discussed in detail in
Sec. S.1 of the supplementary material,28 while the case of
the bisector embedding being essentially the same is omitted.
For obtaining the matrix representation of the (ro)vibrational
Hamiltonian in the R1 and bisector embeddings, the D2FOPI
algorithm26 was employed. Computations in the Eckart frame
are based on a different approach, i.e., using the GENIUSH
program suite which uses a fully numerical grid represen-
tation of the Hamiltonian. Interested readers should consult
Refs. 19 and 20 for details on the GENIUSH protocol. Al-
though the explicit form of the Hamiltonian in the Eckart em-
bedding with Jacobi coordinates has been derived,22 the fully
numerical GENIUSH approach was chosen for these compu-
tations in order to take a more general and computationally
more feasible route.

1. R1 and bisector embeddings

The D2FOPI (Ref. 26) approach utilizes an or-
thogonal and normalized product basis of the form
{χn1 (R1)χn2 (R2)P K

l (cos �)CJp

MK (ϕ, χ, ψ)}N1,N2,J,K+NL−1
n1=1,n2=1,K=p,l=K ,

where the χn1 (R1) and χn2 (R2) functions are discrete vari-
able representation (DVR) functions, P K

l (cos �) is the lth
normalized associate Legendre function, C

Jp

MK (ϕ, χ,ψ) are
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symmetry-adapted rotational functions of the form

C
Jp

MK (ϕ, χ,ψ) = [2 (1 + δK0)]−1/2 [
DJ

MK + (−1)p DJ
M−K

]
,

p ∈ {0, 1} ,K ∈ {p, p + 1, . . . , J − 1, J } ,

(2)

where p stands for parity,29 M and K are the usual quantum
numbers corresponding to space- and body-fixed projections
of the rotational angular momentum on the appropriate z-axis,
and DJ

MK are the normalized Wigner rotation functions.29

Due to the “almost” direct-product nature of the basis set
(almost refers to the coupling between the P K


 (cos �) Legen-
dre polynomials and the C

Jp

MK (ϕ, χ,ψ) rotation functions via
K), the matrix representation of the triatomic Hamiltonian18

can be written as a sum of direct product matrices, detailed in
Sec. S.1 of the supplementary material.28

In order to have a compact basis expansion, in the R1

and bisector computations χn1 (R1) and χn2 (R2) were chosen
to be “potential optimized” (PO) DVR functions,30–32 i.e.,
DVR functions obtained from the eigenfunctions of the 1D
effective Hamiltonian Ĥ 1D

j = − 1
2μj

d2

dR2
j

+ V̂ (Rj ; Rj ′ ,�), j, j′

= 1, 2 or 2, 1 with V̂ (Rj ; Rj ′ ,�) chosen to be a relaxed 1D
potential, i.e., V̂ (Rj ; Rj ′ ,�) is obtained by optimizing the Rj′

and � coordinates for each value of Rj, and μj is an appro-
priately defined mass-dependent constant.26

One can see from the formulae of Sec. S.1 of the
supplementary material28 that the matrix representation of the
Hamiltonian has a very sparse and a priori known structure.
This makes the use of an iterative eigensolver, e.g., the Lanc-
zos algorithm33–35 straightforward for obtaning the required
eigenpairs.

The computation of rigid-rotor eigenpairs is performed
by representing the rigid-rotor Hamiltonian on the same
C

Jp

MK (ϕ,χ,ψ), p∈{0, 1},K∈{p, p+1, . . . , J−1,J } rotatio-
nal basis which was used for the rovibrational calculations in
order to make the Sn;k,l = 〈�rovib

n |ψvib
k �RR

l 〉 RRD overlap
computations straightforward. Details on the rigid-rotor
computations are presented in Sec. S.2 of the supplementary
material.28

2. Eckart embedding

The Eckart embedding16 minimizes the coupling be-
tween molecular vibrations and rotations and is defined
by three translational,

∑N
i=1 miri = 0, and three rotational,∑N

i=1 mi(ri × Ri) = 0, conditions for a nonlinear molecule,
where mi, ri, and Ri stand for the nuclear masses, nuclear po-
sition vectors, and nuclear position vectors of the reference
geometry of the Eckart frame, respectively.

To satisfy the three translational conditions the origin
of the body-fixed frame needs to be shifted to the nuclear
center of mass of the molecule. As a next step, the nuclear
position vectors are to be rotated to the Eckart frame. The
detailed description of this transformation for a general N-
atomic molecule is given in Ref. 25 and thus it is not repeated
here. However, in the special case of triatomics, two of the
three rotational Eckart conditions are automatically satisfied
if the molecule is placed to any of the three coordinate planes

of the body-fixed frame. The third condition can be main-
tained by a two-dimensional rotation with an angle given by
Eq. (14) of Ref. 24. The first method, generally applicable for
N-atomic molecules, has been implemented in the GENIUSH
protocol. It is important to emphasize that the analytic form of
the Eckart-embedded kinetic energy operator is not needed as
the kinetic energy operator is represented numerically in the
GENIUSH protocol.

IV. COMPUTATIONAL DETAILS

The test system chosen for the RRD analysis of the
present study is the H2

16O isotopologue of the water
molecule. The PES of Ref. 36 was employed in all nuclear
motion computations. This choice facilitates comparison of
the present results with those of the BT2 linelist.37 Masses
mO = 15.9994 u and mH = 1.00794 u were used throughout
this study.

For the determination of the J = 0 (vibrational) and J
�= 0 (rovibrational) eigenpairs in the R1 and bisector embed-
dings, the D2FOPI program suite26 was used. For the rigid-
rotor computations the rotational constants were chosen, in
cm−1, as A = 14.5964, B = 9.5274, and C = 27.4348 when
using the R1 embedding, while A = 9.5274, B = 14.5964, and
C = 27.4348 when using the bisector embedding. The same
rotational constants are employed for all vibrational states. It
appears to be natural to compute RRD overlaps using the vi-
brationally averaged rotational constants of each vibrational
state. Our computations in the R1 embedding for the J = 15
case show, however, that even a major change in the rotational
constants, i.e., employing A = 15.2770, B = 8.4600, and C
= 73.0396 which correspond to the (0 5 0) excited bending
state, resulted in no change in the list of well-defined RRD
labels.

When using the R1 or bisector embeddings, the varia-
tional (ro)vibrational computations on the H2

16O molecule
were performed employing (15, 20, 30) and (20, 25, 35) vi-
brational basis sets, respectively, whereby (n1, n2, np) means
n1 and n2 PO spherical-DVR functions (with 300 primitive
spherical functions) for the two distance-type and np Legen-
dre basis functions for the angle-type coordinates. Naturally,
a complete set of 2J + 1 rotational basis functions was used
in all cases. Following the notation of Ref. 26, the spherical
oscillator basis functions of the R1 and R2 coordinates had pa-
rameters Rmax

1 = 4.6 bohrs and Rmax
2 = 3.2 bohrs, respectively.

When using the Eckart embedding via the GENIUSH
protocol, valence coordinates (OH bond lengths r1 and r2,
HOH bond angle �) were employed. The applied direct-
product vibrational basis of size 12 000 consisted of 20 PO
Hermite-DVR functions (with 80 primitive Hermite polyno-
mials) for the two stretch coordinates and 30 Legendre-DVR
functions for the bend coordinate. The GENIUSH computa-
tions utilized Wang combinations of the well-known symmet-
ric top eigenfunctions as rotational basis functions.

V. EMBEDDING, ENERGY, AND J DEPENDENCE
OF THE RRD SCHEME

Following the RRD scheme, rovibrational quantum la-
bels were generated for the H2

16O molecule for all three
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FIG. 2. Percentage of clearly assignable rovibrational states during the RRD
analysis as a function of rovibrational energy in the R1, bisector, and Eckart
embeddings, for J = 5 rotational excitation.

embeddings and for rotational quantum numbers J = 5, 10,
and 15 for 30 × (2J + 1) rovibrational eigenstates for each
J. Vibrational normal-mode labels (n1 n2 n3) were taken from
Ref. 10 by matching energies, which is straightforward for
the vibrational states investigated, while the rotational asym-
metric top limit JKaKc

labels were generated during the rigid-
rotor computations following the standard rigid-rotor labeling
scheme.29

In terms of rovibrational states being the linear combi-
nation of the direct-product functions obtained from vibra-
tional and rigid-rotor eigenfunctions, rovibrational states be-
come more “mixed” with increasing energy and J rotational
quantum number. This naturally leads to less dominant RRD
overlaps [see Eq. (1)]. Figures 2–4 show the percentage of
clearly assignable rovibrational states as a function of rovibra-
tional energy for J = 5, 10, and 15, respectively. Each figure
includes results for all three embeddings. RRD labels were

FIG. 3. Percentage of clearly assignable rovibrational states during the RRD
analysis as a function of rovibrational energy in the R1, bisector, and Eckart
embeddings, for J = 10 rotational excitation.

FIG. 4. Percentage of clearly assignable rovibrational states during the RRD
analysis as a function of rovibrational energy in the R1, bisector, and Eckart
embeddings, for J = 15 rotational excitation.

considered “well defined” if for the given rovibrational state
the square of the largest Sn;kmax

n ,l coefficient from Eq. (1) ex-
ceeded 0.5, as suggested by the Hose–Taylor theorem.38 As
expected, less and less RRD labels are “well defined” with
increasing energy and J quantum number. Nonetheless, for
a wide range of both of these parameters a large number of
“well defined” labels can be assigned via the RRD proto-
col. Out of the total of 1865 states included in Figs. 2–4,
973, 1211, and 1288 states could be given a “well defined”
status when using the R1, bisector, and Eckart embeddings,
respectively.

It is noted that the choice of 0.5 as a lower limit for
the square of the largest Sn;kmax

n ,l coefficients for considering
a RRD label “well defined” is not the only possible one. With
a lower threshold, one could extend the range of applicabil-
ity of the RRD scheme considerably; however, this may lead
to embedding-dependent quantum labels and in a few cases
to duplicate labels. For example, choosing a cut-off value of
0.33, we obtain 1368, 1566, and 1596 well-defined labels for
the R1, bisector, and Eckart embeddings, respectively, but out
of these 10, 17, and 25 are assigned twice and in 21 cases
the assigned RRD labels are embedding dependent, i.e., the
assigned labels differ in the different embeddings.

Another strategy is to consider a RRD label well defined
if the second largest Sn;kmax

n ,l overlap is smaller than some
portion of the largest Sn;kmax

n ,l overlap. Although with this
method the number of well-defined labels can be increased,
it leads, unfortunately, to some duplicate labels. Curing this
problem needs special attention and the procedure cannot be
automated.

As emphasized already in Ref. 13 and seen clearly in
Figs. 2–4, the RRD coefficients depend on the embedding
used for the rovibrational computations. Naturally, one ex-
pects and indeed experiences the least RRD “mixing” when
the coupling between the rotational and vibrational coordi-
nates is minimal, i.e., in the Eckart embedding. The Eckart
embedding is clearly the best choice especially at the lowest
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FIG. 5. The largest RRD coefficients obtained in the Eckart embedding as a function of rovibrational energy. (n 0 0), (0 0 n), and (0 n 0) refer to approximate
vibrational quantum labels for symmetric stretch, antisymmetric stretch, and bend, respectively. In all these cases the states included in the given plot have
vibrational quantum labels such that all normal modes but the one excited by n quanta are in their ground state. Blue rectangles stand for rovibrational states,
while red squares depict rovibrational states with the largest RRD overlap within a given vibrational manifold.

end of the spectrum. Although the Eckart embedding min-
imizes the coupling between molecular vibrations and rota-
tions, Fig. 4 shows the “breakdown” of the Eckart embedding
farther away from the equilibrium structure. At higher ener-
gies and rotational excitation rovibrational coupling is con-
siderable even in the Eckart embedding, which is represented
by the small maximum RRD coefficient values in such spec-
tral regions. For the computation of rovibrational eigenstates
an embedding different from the Eckart one might be more
efficient. In a given application, one has to find a balance be-
tween computational efficiency and “mixing” of the RRD co-
efficients and choose the embedding accordingly.

Finally, the relation between monodromy39–42 and as-
signing RRD labels is examined. Quantum monodromy,43

which leads to a change in the energy level structure when
a bent molecule starts to sample linear geometries, was dis-
cussed for the H2

16O water isotopologue in Ref. 44. As noted
by Zobov et al.,44 “monodromy in quantum mechanical sys-
tems implies the absence of a single, smoothly varying set
of quantum numbers with which to characterize the system.”
Monodromy could explain the breakdown of the RRD pro-
tocol when high excitation of the bending mode is involved.
Rovibrational states for the H2

16O molecule with assigned vi-
brational labels including excitations for only a single normal
mode were included in Fig. 5 to compare the energy depen-
dence of the Sn;kmax

n ,l overlap values for rovibrational states
with different types of vibrational excitation. Inspecting the
red squares in Fig. 5, standing for rovibrational states with
the largest Sn;kmax

n ,l overlap within a given vibrational state,
one can observe that states with pure bending excitations
[plots with (0 n 0)] show a breakdown in the Sn;kmax

n ,l overlaps
from around 10 000 cm−1, close to the barrier to linearity of
water.45–47 Thus, it seems that monodromy might at least par-
tially explain the breakdown of the RRD protocol for rovibra-

tional states with high bending excitation. Such a breakdown
is not observable for the symmetric (n 0 0) and antisymmetric
(0 0 n) stretching states. Nevertheless, as the n and J values
increase the stretching states also start exhibiting smaller and
smaller maximum RRD coefficients.

VI. COMPARISON WITH BT2 LABELS

One of the linelists available for H2
16O is the so-called

BT2 linelist.37 Comparing the “well defined” rovibrational la-
bels of H2

16O obtained from the RRD in the Eckart embed-
ding with the labels found in the BT2 linelist one can observe
and appreciate the usefulness of the RRD labeling protocol.

Based on this comparison, one might divide the calcu-
lated rovibrational states into five groups: (a) rovibrational
states which are assigned both in the BT2 linelist and during
the RRD and have the same labels in the two cases, (b) states
which are assigned both in the BT2 and during the RRD but
have different labels in the two cases, (c) states which are as-
signed during the RRD but have no assignment in the BT2,
(d) states which have an assigned label in the BT2 linelist
but are not assigned during the RRD, and finally (e) states
which are not assigned in either the BT2 or during the RRD.
In Fig. 6 rovibrational states of H2

16O are separated according
to their (a)-(e) type and are marked on the figure based on their
energy.

As expected, for lower-energy states both the RRD
scheme and the protocol employed when generating the BT2
linelist provide assigned labels which are in excellent agree-
ment. It is only at around 5500 cm−1 that a few states start
to show “mixing” in the RRD and thus cease to be “well
defined.”

The few dozen cases where both BT2 and RRD have as-
signed but different labels need special attention and need to
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FIG. 6. J = 5, J = 10, and J = 15 rovibrational states of H2
16O separated according to their (a)-(e) type (see Sec. VI) and marked on the figure based on their

energy.

be examined individually. The RRD scheme is thus useful not
only to provide labels for yet unassigned states but also to
verify existing labels.

The usefulness of the RRD scheme can especially be ap-
preciated from about 10 000 cm−1, where the BT2 linelist
starts lacking assigned labels. From around 10 000 cm−1 up
to around 15 000 cm−1, there are many states which lack BT2
labels, but can be assigned via the RRD scheme.

The number of states lacking RRD labels, as seen in
Fig. 6, naturally increases with energy. One might notice
that from around 10 000 cm−1 states lacking any assign-
ment start appearing quite suddenly. The explanation of this
behavior may again involve arguments based on quantum
monodromy.44

VII. SUMMARY AND CONCLUSIONS

In the fourth age of quantum chemistry5 codes im-
plementing the variational solution of the time-independent
nuclear-motion Schrödinger equation become more and more
standard tools of theoretical molecular spectroscopy. Assign-
ing exact and approximate quantum numbers to the large col-
lection of computed eigenstates is important to turn data into
knowledge, solve chemically significant problems, and de-
velop self-consistent spectroscopic databases built upon spec-
troscopic networks.48, 49

In this work the original13 RRD scheme developed with
respect to the Eckart–Watson Hamiltonian has been extended
to work with Hamiltonians written in terms of internal co-
ordinates using either the R1, the bisector, or the Eckart em-
beddings. The RRD coefficients are still defined by projecting
rotational-vibrational wave functions onto products of rigid-
rotor basis functions and previously determined vibrational
eigenstates. The rotational label of the rovibrational eigen-
state is selected based on the largest overlap in a row of the
RRD table.

As one would expect, numerical comparison of RRD
overlaps for H2

16O in the different embeddings shows the
superiority of the Eckart embedding, i.e., Eckart-based RRD
overlaps exhibit less mixing than those corresponding to the
other embeddings. The bisector embedding performs slightly
better than the R1 embedding, at least for the water molecule.

Irrespective of the embedding employed, the RRD tables
yield unambiguous labels for the overwhelming majority of
the eigenstates corresponding to the lower-energy end of the

spectrum. However, the RRD scheme starts breaking down at
higher excitation energies and for higher J values. Numerical
results clearly show that the RRD scheme provides consider-
ably more unambiguous labels for rotations than the NMD
scheme is able to do for vibrations. This suggests that the
rigid-rotor approximation holds better for rotations than the
normal-mode approximation for vibrations.

Based on Fig. 6, several labels in the BT2 linelist37 of
H2

16O might be problematic, since they disagree with clear
assignments obtained from the RRD protocol. This aspect of
the present study will be explored in more detail.
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