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Developments during the last two decades in nuclear motion theory made it possible to obtain

variational solutions to the time-independent, nuclear-motion Schrödinger equation of polyatomic

systems as ‘‘exact’’ as the potential energy surface (PES) is. Nuclear motion theory thus reached a

level whereby this branch of quantum chemistry started to catch up with the well developed and

widely applied other branch, electronic structure theory. It seems to be fair to declare that we are

now in the fourth age of quantum chemistry, where the first three ages are principally defined by

developments in electronic structure techniques (G. Richards, Nature, 1979, 278, 507). In the

fourth age we are able to incorporate into our quantum chemical treatment the motion of nuclei

in an exact fashion and, for example, go beyond equilibrium molecular properties and compute

accurate, temperature-dependent, effective properties, thus closing the gap between measurements

and electronic structure computations. In this Perspective three fundamental algorithms for the

variational solution of the time-independent nuclear-motion Schrödinger equation employing

exact kinetic energy operators are presented: one based on tailor-made Hamiltonians, one on the

Eckart–Watson Hamiltonian, and one on a general internal-coordinate Hamiltonian. It is argued

that the most useful and most widely applicable procedure is the third one, based on a

Hamiltonian containing a kinetic energy operator written in terms of internal coordinates and an

arbitrary embedding of the body-fixed frame of the molecule. This Hamiltonian makes it feasible

to treat the nuclear motions of arbitrary quantum systems, irrespective of whether they exhibit a

single well-defined minimum or not, and of arbitrary reduced-dimensional models. As a result,

molecular spectroscopy, an important field for the application of nuclear motion theory, has

almost black-box-type tools at its disposal. Variational nuclear motion computations, based on an

exact kinetic energy operator and an arbitrary PES, can now be performed for about 9 active

vibrational degrees of freedom relatively straightforwardly. Simulations of high-resolution spectra

allow the understanding of complete rotational–vibrational spectra up to and beyond the first

dissociation limits. Variational results obtained for H2O, H+
3 , NH3, CH4, and H2CCO are used to

demonstrate the power of the variational techniques for the description of vibrational and

rotational excitations. Some qualitative features of the results are also discussed.

1 Introduction

For about 200 years,1–6 atomic and molecular spectroscopy

has been a pioneering field for and a principal source of

improving our understanding of chemical phenomena. About

80 years ago,7–9 in order to provide a qualitative explanation

of the available experimental results, quantum mechanics

was adapted to chemical (molecular) systems and thus the

development of quantum chemistry has begun. Molecular systems

were treated using a quantum mechanical description of the

electrons moving in the field of clamped nuclei, i.e., employing

the Born–Oppenheimer (BO) approximation.10–15 This readily

provided a successful qualitative description of many available

experimental results. Besides the ‘‘numerical’’ achievements,

the theoretical framework of molecular systems corresponding

to the quantum mechanical description of electrons moving in

the field of fixed, classical nuclei provided a formal ground to

many important chemical constructs, like the concept of

distinct potential energy surfaces (PES),16–21 equilibrium

structures,22–26 transition states,27–29 and atomic and molecu-

lar orbitals.8,9 These concepts have remained central to our

understanding of chemical phenomena. In influential publica-

tions and related lectures, Richards30 and Schaefer31,32 cate-

gorized the development of computational quantum chemistry
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into three ages and called this the first age of quantum

chemistry. As the numerical methods for solving the electronic

Schrödinger equation evolved and improved, electronic struc-

ture theory started to result in more accurate, already at least

semi-quantitative description of experi-

mentally measurable quantities. This period of extensive

method development within electronic structure theory was

coined the second age of quantum chemistry.30–32 Later,

perhaps as early as in 1970,30 theoretical predictions with an

accuracy comparable to contemporary measurements were

provided by the numerically precise solution of the electronic

Schrödinger equation, marking the beginning of the third age of

quantum chemistry. In this era application of state-of-the-art

quantum chemical methods produced results which could legiti-

mately challenge existing experiments or provide significant

challenges for the design and execution of new experiments.

As experimental spectroscopy developed and provided more

and more detailed and accurate results for a number of more

and more complex systems, it became evident that electronic

structure theory with fixed nuclei is not sufficient for simulat-

ing experiments. The computation of equilibrium properties,

i.e., properties corresponding to nuclei fixed at a local

minimum of the PES, restricted the picture of a molecule to

a rigid or at least semirigid structure, or maybe to a handful of

(semi-)rigid structures or conformations.33 Electronic struc-

ture theory34–36 has been quite successful in yielding equili-

brium quantities which can be related to experimental

observables but are distinct from them. Quantitative agree-

ment with results of most experiments can only be expected if

the motion of the nuclei are considered explicitly, as well. It is

hoped in this respect that in the fourth age of quantum

chemistry, which we are living in, efficient quantum chemical
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(electronic structure and nuclear motion) computations can be

performed which not only treat all particles of a molecule

quantummechanically but can bridge the gap between ‘‘effective’’,

experimental observables and ‘‘equilibrium’’ computed quantities

at even elevated temperatures of interest, thus providing treatment

of molecules in constant and rapid motion.37

Molecules are non-rigid assemblies of electrons and

nuclei.22,38 ‘‘Effects’’ due to the rotations and vibrations of

the nuclei are omnipresent whether one takes them into

account explicitly or not. Nevertheless, the BO separation of

the motion of electrons and nuclei is a remarkably good

approximation for chemistry.22,25,39–42 Thus, after solving

the electronic problem, the motion of nuclei can be considered

on a PES provided by electronic structure theory.20 One of the

simplest dynamical descriptions of molecules is introduced by

considering the classical motion of the nuclei on a PES.43,44

This classical description is useful in a semi-quantitative

understanding of many dynamical processes,45 but the zero-

point energy of molecules45–47 and the tunneling of nuclei,48–52

most importantly that of protons, are not readily incorporated

in this model and must be considered as special ‘‘effects’’,

showing limitations of this approach.

A next significant step toward a sophisticated and detailed,

quantitative description of molecular phenomena is the con-

sideration of nuclei as quantum particles moving on a PES. As

to the conceptual part, this framework naturally includes not

only various conformational changes of the molecular struc-

ture but also the zero-point vibrational energy of molecules as

well as the ‘‘tunneling’’ of protons or other nuclei. As to the

numerical results, after decades of methodological develop-

ments of quantum nuclear motion theory, see, e.g., ref. 19,

53–80, the joint technology provided by electronic structure

and nuclear motion methods is now able to yield, among other

quantities less relevant for this Perspective, remarkably

accurate rovibrational energies and related transitions, state-

to-state and overall reaction rates, as well as effective,

temperature-dependent molecular structure parameters and a

detailed understanding of ‘‘exotic’’ chemical phenomena such

as resonance states and tunneling. As in all fields of rapid

development, there are various trends within nuclear motion

theory, including time-dependent81–83 and time-independent

(treated in detail below) descriptions, perturbational84,85 and

variational (treated in detail below) algorithms, various forms

of rovibrational Hamiltonians,39,86–89 as well as different

numerical representations of the Hamiltonians.90–96 One may

wonder which is the best combination of the numerous

possible choices or whether a unified protocol would soon

emerge. At this point we have to leave these questions open

and say that the applications should determine the most

appropriate choices. What can be said with confidence is that

the extensive use of the different algorithms and protocols

indicates that the current quantum chemical adaptation of

quantum mechanics to molecular systems is a successful one.

As a result, the outcome of quantum chemical simulations

based on the technology developed can be used in applied

fields of science and engineering, for instance for improving

the outcome of atmospheric radiative models.97,98

The spectacular development of experimental spectroscopic

techniques continues and as it can be seen at present there are

two major directions. On one hand, not only smaller models

but larger and larger molecular systems, including bio-

mimetics, true biomolecules and biopolymers, are studied with

the ultimate goal of a molecular-level understanding of life.

On the other hand, more and more accurate experiments are

designed in order to test physical theories, fundamental

symmetries, and perhaps their violations in molecular

systems.6,99,100 The development of experimental spectroscopy

in either direction will certainly continue challenging molecular-

scale theoretical methods and serve as a driving force, as it did

in the past, for their improvement.

We feel that at this point it is important to mention another

direction of the development of theoretical chemistry, namely

that dealing with the collection, critical evaluation, and validation

of the increasing amount of data on molecular systems,101–107

which goes toward the completion of information and aims

at providing extensive and reliable knowledge on molecules.
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In spectroscopy, this involves joint efforts of high-resolution

but narrow-band as well as broad-band but maybe lower-

resolution techniques together with computer-aided handling

of spectroscopic networks108 and related large-scale data-

bases.107,109–111 Ultimately it is the joint utilization of (spectro-

scopic) experiments, quantum theory, and information

technology which helps to secure and extend our firm chemical

knowledge and makes it applicable in diverse scientific and

engineering areas.

There have been many successes, some extensively

reviewed,56,74–79 in the nuclear motion theory branch of

quantum chemistry. In the present work we focus on some

of the recent developments of quantum nuclear motion theory

which, together with electronic structure theory, provide a

comprehensive description of molecules in motion. The litera-

ture even of this restricted field is extensive and in this

Perspective we admittedly present a more thorough overview

of those areas where we have gained experience during the last

ten years or so and describe recent developments in our group

on BO quantum nuclear motion theory and focus on using

(quasi-)variational procedures for the solution of the time-

independent rovibrational Schrödinger equation.

2 Nuclear motion theory

In spite of various unification efforts, different variants of

quantum chemical nuclear motion theory coexist and they

often serve different purposes. Nevertheless, a unified descrip-

tion of the basics is attempted here.

2.1 Time-independent Schrödinger equation of the nuclei

The fundamental equation for this study and for the computa-

tion of stationary nuclear-motion states C of molecular

systems containing M nuclei considered as quantum particles

is the time-independent nuclear Schrödinger equation corres-

ponding to the Hamiltonian Ĥ0,

Ĥ
0
C ¼ �

XM
i¼1

1

2mi
DXi
þ V̂

 !
C ¼ EC; ð1Þ

written in atomic units. In eqn (1), mi denote the masses

associated with the nuclei, which in practice are either the

atomic or the nuclear masses of the nuclei (or perhaps some-

where in between to mimic non-BO behavior),112 and Xi are the

position vectors in the laboratory-fixed (LF) frame with the

corresponding Laplace operator Dxi
. Out of the possible mathe-

matical solutions of eqn (1), the physically relevant solutions are

constrained by the spin statistics theorem,33 i.e., by considering

the spin associated with each nucleus. In what follows V̂ is

chosen as a geometric potential, depending only on the inter-

nuclear distances and is identified with the PES corresponding

to the ground electronic state of the molecular system (though

any separated excited electronic state could also be chosen). The

system is considered to be isolated, no external fields are acting,

and no hyperfine couplings are considered; thus, the angular

momentum corresponding to the overall rotation of the mole-

cular system is a conserved quantity.

After separating the translational motion of the nuclear

center of mass from Ĥ0 in eqn (1), the translationally invariant

Hamiltonian38,113 is considered with the domain of square-

integrable functions, L2, for bound states, characterized by

real eigenvalues, and a manifold with complex eigenvalues for

non-bound, resonance states.114

2.2 (Quasi)-variational solutions

Stationary rovibrational states are computed by solving the

time-independent Schrödinger equation (TISE) of the nuclei,

eqn (1), by approximating the rotational–vibrational wave

function as a linear combination of carefully chosen basis

functions. The matrix representation of the translationally

invariant, rovibrational Hamiltonian employing this basis set

is constructed using various efficient numerical methods. The

overall procedure is termed quasi-variational, as in the

practical schemes the matrix elements may not be computed

analytically, and thus the eigenvalues may not necessarily

satisfy the variational principle. The essential parts of this

approximation technique are discussed in this subsection.

2.2.1 The coordinate dilemma. The coordinate

‘‘dilemma’’115–119 in spectroscopy and kinetics originates from

the traditional reasoning that it is useful to set up the

rotational–vibrational problem of molecular systems using

coordinates more or less adapted to the various types of

nuclear motion120–123 and thus provide the most separable

zeroth-order basis functions for quantum dynamics. These

motions are drastically different for the different systems and

energy regimes; thus, there is little hope to find a unique set of

coordinates which is widely applicable. Furthermore, the

coordinate domains must allow for a one-to-one corres-

pondence with the geometrical domain of the molecule. In

some cases the use of coordinates which mimic the point-

group or MS-group33 symmetry of the system under study or

help to reduce the complexity of the rovibrational kinetic

energy operator is advantageous.

Coordinate systems and their transformations employed in

the description of molecular systems have been presented in

thorough and formal discussions by Sutcliffe.38,113 The first

step is the separation of the overall translational motion of the

center of mass of the nuclei by defining translationally invar-

iant Cartesian coordinates introduced via a simple linear

transformation of the original Cartesians. Then, a frame is

introduced attached to the non-rigid body (body-fixed frame

(BF), embedding, or gauge) and three variables are introduced

to describe the orientation of the BF with respect to the LF

frame.86,124–126 Furthermore, 3M � 6 internal coordinates are

defined to describe the internal motion of the nuclei. Mathe-

matical and technical complications are introduced as this

transformation of the translationally invariant Cartesian

coordinates is nonlinear and the resulting orientational and

internal coordinates are curvilinear. This makes the formalism

somewhat involved and it also results in a Hamiltonian which

has to be defined over a slightly more restricted domain, due to

the vanishing Jacobian, than the original one.120

2.2.2 Quantum chemical Hamiltonians. Starting from the

TISE, the kinetic energy operator is expressed in terms

of internal coordinates, qk (k = 1,2,. . .,D r 3 M � 6)

with D active coordinates, and orientational coordinates,
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aa (a = 1(x), 2(y), 3(z)), in order to obtain a rotational–

vibrational Hamiltonian. In what follows the most essential

expressions are collected, for a more detailed discussion see,

for example, ref. 66 and 71, as well as ref. 39, 74, 127–130.

The coordinate transformation is accomplished either by

applying the chain rule for the kinetic energy operator131 or by

writing down the classical Lagrangian and Hamiltonian in the

new, internal and rotational coordinates and employing the

correspondence principle together with the properties of

differential operators, as suggested by Podolsky.132 The

rotational–vibrational Hamiltonian obtained either way is

Ĥ
rv ¼ 1

2

XDþ3
k¼1

XDþ3
l¼1

~g�1=4p̂ykGkl~g
1=2p̂l~g

�1=4 þ V̂ ð2Þ

with

p̂k ¼ �i
@

@qk
; k ¼ 1; 2; . . . ;D ð3Þ

and

p̂Dþa ¼ �i
@

@aa
¼ Ĵa; a ¼ 1ðxÞ; 2ðyÞ; 3ðzÞ; ð4Þ

where Ĵa refers to the body-fixed components of the rotational

angular momentum if the three aas are chosen to describe

rotations around the three orthogonal axes of the BF frame.

Furthermore, for non-vanishing g̃ = det g

Gkl = (g�1)kl, k, l = 1, 2, . . .,D+3 (5)

with

gkl ¼
XM
i¼1

mi
@Xi

@qk
� @Xi

@ql
; k; l ¼ 1; 2; . . . ;Dþ3 ð6Þ

where Xi gives the position vector of the ith nucleus in the

space-fixed reference frame and qk refers to either the qk
internal or the ak rotational coordinates. The corresponding

volume element is

dV = dq1dq2. . .dqDda1 da2 da3. (7)

For some choices of the BF frame and internal coordinates the

quantum chemical Hamiltonian can be written down explicitly

and maybe after some formal rearrangements its matrix

representation implemented in a computer code. There are

various possible choices for the coordinates for the M nuclei

and the corresponding quantum chemical Hamiltonians have

different forms.120,131,133–135 All the different mathematical

forms can be used in a computer code resulting in many

different implementations. A special and popular choice is

the use of the Eckart embedding86 and rectilinear coordi-

nates,136 resulting in a Hamiltonian whose most compact form

was derived by Watson.87,88 We prefer to call this the

Eckart–Watson Hamiltonian, its detailed form and an imple-

mentation in a computer code is discussed in Section 3.2.

2.2.3 Potential energy hypersurfaces. The concept of a PES

is so fundamental to the understanding of most branches of

chemistry that it is worth discussing it separately even in this

Perspective on nuclear motions.

There are many possible ways to define PESs applicable for

nuclear motion computations. Ab initio construction of PESs

usually involves20 (a) choice of a physically correct and robust

electron correlation methodology, including choice of a

non-relativistic35,36 or relativistic137,138 Hamiltonian; (b) appli-

cation of a highly flexible and still compact basis set139

describing both the correlation hole and the longer-range

region of the electronic wave function; (c) inclusion of all

‘‘small corrections’’140,141 affecting the precision of composite

PESs; (d) design of a suitable geometrical grid for the electronic

structure computations defined;142 and (e) an artful selection of

a functional form resulting in a flexible and compact inter-

polating and extrapolating function.16,54,143–146

There are basically three distinct families of PESs used,

hypersurfaces for (ro)vibrational spectra, chemical reactions,

and intermolecular interactions. While these surfaces have a

lot in common, there are many important and noteworthy

differences in their construction.

For the computation of measured (ro)vibrational spectra

and the related dynamics it is often sufficient to have the PES

in the vicinity of a minimum (or of a stationary point). Thus,

techniques based on power series expansions about a single

stationary point can be highly useful.147,148 These expansions

define what is usually referred to as an anharmonic force field.

Force fields are usually expanded up to quartic terms and they

are independent of the nuclear masses only if are based on

geometrically defined internal coordinates. There are several

minor issues which should be considered when employing

force field representation of the PES during the variational

computation of rotational–vibrational spectra.57 Generation

of complex PESs, not employing any force field expansions,

for (ro)vibrational spectrum simulations is abundant.53,54,149

During the course of chemical reactions bonds are broken

and formed. The global requirements for these PESs21,150,151

are considerably more stringent than those used for spectro-

scopy and regions have to be sampled where most electronic

structure methods perform quite unevenly.

Intermolecular surfaces,152,153 a prime target of non-covalent

chemistry, are always multi-dimensional, which is often the

greatest obstacle in obtaining quantitative accuracy for them.

2.2.4 Basis sets. In multidimensional cases the basis func-

tions are usually taken as products of one-dimensional (1D)

functions. The frequently used 1D functions, called primitive

basis functions, are eigenfunctions of analytically solvable

(model) problems, such as the harmonic136 or Morse154

oscillators. One can also use more sophisticated, so-called

potential optimized (PO) basis functions,94,155,156 obtained

by solving a 1D Schrödinger equation with a potential that

is well adapted for the physical problem of interest. For the

numerical solution of the 1D problem one usually uses primi-

tive basis functions; thus, the PO basis functions are linear

combinations of the primitive functions.

The simplest way for constructing a multidimensional basis

set is to use the direct product of a set of 1D, primitive or PO,

functions. The resulting basis set is called a direct-product

basis. These direct-product basis sets are widely employed in

nuclear motion computations since their use results in matrix

representations with special structure, where the matrix elements
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can be computed straightforwardly by using standard numerical

integration techniques.157,158

One can construct nondirect-product basis sets via different

ways, such as (a) truncating a direct-product basis; (b) intro-

ducing couplings between the product functions; or (c) using

non-product multidimensional basis functions. (c) is rarely

employed, whereas (a) and (b) are widely used. (a) is the

simplest way to reduce the size of the multidimensional basis

set by getting rid of the basis functions that are expected to have

the smallest coefficients in the wave function. In a discrete

variable representation (DVR)90–92 of the Hamiltonian (see

Section 2.2.5), the truncation can be simply achieved by throwing

out grid points based on, for example, an energy cutoff para-

meter by checking the function value of the potential at the given

multidimensional grid point. In a finite basis representation

(FBR), truncations are usually made using the idea of the

n-mode representation,159,160 i.e., each basis function has a

maximum dimensionality of n, where n is (much) less than the

full dimension of the physical problem investigated.

As will be mentioned in Section 3, singularities in the

Hamiltonian can come into play when a radial coordinate

becomes zero. Furthermore, when the radial coordinate goes

to zero, an angle usually becomes undefined; thus, the radial

and angular singularity is coupled. Therefore, an efficient basis

is always a nondirect-product of functions depending on the

coupled coordinates. One can construct such a basis via

introducing couplings between the product functions. A typical

example is a basis having structure similar to that of spherical

harmonics.161,162 Even if a nondirect-product basis provides a

more compact representation of the wave function, in many

applications the direct-product basis can be computationally

more efficient due to its simplicity.

2.2.5 Matrix representation of the Hamiltonians. There are

several representations developed for the Hamiltonians of

Section 2.2.2 which can be employed in variational-type

nuclear motion theory: the variational basis representation

(VBR),56 the finite basis representation (FBR),56 and several

grid-based representations. During the last decades the use of

grid-based techniques,76,90–92,163–181 almost revolutionized

the variational-type quantum chemical treatment of nuclear

motions by allowing the development of much improved

algorithms. Application of these algorithms contributed to

an improved understanding of highly excited states of mole-

cules, studied experimentally via high-resolution molecular

spectroscopy,53–55,62–66,69–72,103,104,182–187 as well as quantum

reaction dynamics.170,188–195

It is generally appreciated that grid-based techniques are not

strictly variational. This is due to the fact that the variational

principle for the eigenenergies holds if the Hamiltonian matrix

elements are evaluated ‘‘exactly’’. This can be achieved either

by their analytic computation, corresponding to what is called

the VBR, or by highly accurate numerical procedures, whereby

arbitrarily accurate quadrature schemes are employed, as in a

general FBR. In more approximate and apparently more

useful schemes, like in a discrete variable representation

(DVR),90–92 quadratures and basis functions are entangled

and one looses the monotonic convergence of the eigenvalues

offered by the variational principle. Nevertheless, the

improved numerical behavior of the DVR more than offsets

this inconvenience. For the present Perspective, DVR techni-

ques hold a special place and only these techniques are

discussed in some detail below.

Based on earlier work,90,91 the DVR technique was intro-

duced to quantum chemistry by Light and co-workers76,92,167,172

for the efficient variational quantum chemical treatment of

nuclear motions. It has been used in a number of variational

computational spectroscopic studies, even to determine full

rotational–vibrational spectra of triatomic molecules,

involving a large number of converged eigenvalues and

eigenvectors.183–187 Some useful properties of the DVR: (a) it

is built upon a compact underlying quadrature scheme; (b) the

potential matrix is diagonal and these matrix values are simply

local values of V̂; (c) all multiplicative operators also have a

diagonal form due to the ‘‘local-diagonal’’ or ‘‘quadrature’’

approximation; and (d) it provides a highly efficient frame-

work for the computation of expectation values and integrals

involving rovibrational wave functions.

It is important to stress that in DVR computations the matrix

elements of operators dependent only upon coordinates are

inexact. Using a given basis set and quadrature scheme for

numerical integration, the FBR and the DVR are equivalent

representations in the sense that they lead to the same eigenvalues.

Since an N-point Gaussian quadrature gives exact result for any

integrand which is a polynomial of degree less than or equal to

2N � 1,157,158 many elements in the FBR of the Hamiltonian are

exact. This and the equivalence of the FBR and DVR representa-

tions explain why the DVR based on Gaussian quadrature gives

highly accurate eigenvalues and eigenfunctions in spite of the

inaccuracy of the DVR matrix elements.186,196

Singular terms always arise in the nuclear motion Hamilto-

nian when it is expressed in internal coordinates.113 A common

singular term in practical applications, often present in rovibra-

tional Hamiltonians, is the term r�2 with r A [0, N). Several

useful strategies have been devised for treating singularities in

grid-based applications.161,185,197,198 These approaches include

the use of different coordinate systems devoid of essential

singularities and nondirect-product basis sets. When applying

the diagonal DVR approximation for the calculation of matrix

elements of r�2, numerical computations employing basis func-

tions with suitable boundary conditions result in accurate eigen-

values showing fast convergence.186 This becomes especially

important, for example, for the computation of complete spectra.

2.2.6 Determination of required eigenvalues and eigenvectors.

Most applications of nuclear motion theory involve very large

Hamiltonian matrices from which a large number of eigen-

values and eigenvectors need to be computed. One general,

a priori strategy is to aim at lower-dimensional Hamiltonian

matrices via sequential contraction of the basis. This results in

non-direct-product bases and a dense Hamiltonian matrix.

Other strategies, based on direct-product bases, produce

sparse but much larger matrices with a special structure. In

order to compute the required many (thousands of) eigenvalues

for medium-sized molecules, an iterative eigensolver (the usual

choice is the Lanczos199–202 technique) must be implemented,

adapted specifically to the features and requirements of the

nuclear motion protocol. The following criteria should be
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considered when the effectiveness of a particular ‘‘diagonaliza-

tion’’ method is investigated: (a) maximum amount of main

memory required; (b) disk storage requirements (minimize

input/output operations); (c) efficiency of matrix-vector multi-

plication and the sheer number of such operations; (d) inde-

pendence of the solution strategy to the characteristics of the

problem at hand; and (e) parallelizability of the resulting code.

One of the prime features making iterative eigensolvers parti-

cularly attractive in this context is the fact that the Hamilto-

nian matrix does not need to be constructed explicitly, only its

product with a vector is required. This can be done very

efficiently, as demonstrated several times.64,121,203

In order to compute the lowest or interior eigenvalues

instead of the largest ones the original Hamiltonian matrix

must be transformed so that the required eigenvalues become

the largest eigenvalues of the transformed matrix. There are

several possibilities to set up such a spectral transforma-

tion.204–207 The cost of the transformation and the spectral

properties of the resultant matrix can be very different. Poly-

nomial, exponential, and shift-invert transformation techni-

ques were studied in detail in ref. 64.

In the case of the Lanczos method, there are three main

factors that contribute to the total timing of the iterative

diagonalization approach: (a) the number of matrix-vector

multiplications in a single Lanczos step, which is generally the

most CPU-intensive part of the computation; (b) reortho-

gonalization of the Lanczos vectors to maintain (semi-) ortho-

gonality among them, which is an I/O-intensive step and CPU

usage becomes significant only if the size of the Krylov subspace

is very large; and (c) the convergence rate of the total Lanczos

iteration influenced by the relative separation of the eigenvalues

of the matrix introduced in the Lanczos iteration. After having

studied the interplay of these three factors in considerable

detail, we found64,72 that for larger applications, specifically

for the computation of the lowest few hundred eigenpairs of

five-atomic molecules, a simple and clever choice is the usage of

the shift-fold filter, periodic reorthogonalization, and the thick-

restart Lanczos method. When not the lowest eigenvalues but

an interior part of the spectrum is to be computed, the shift-

invert technique seems to be an appealing choice, but to find an

efficient black-box method to carry out the spectral transforma-

tion is challenging. A safe and practical technique might be the

usage of a carefully optimized shifted version of the exponential

transformation, the shift-Gaussian filter.

The computation of interior eigenvalues opens a promising

route toward the computation of a very large number of

eigenvalues and eigenvectors, i.e., toward the determination of

the complete spectrum. This task could be distributed to practi-

cally independent computing nodes by distributing smaller

ranges of the spectrum to different machines. This would make

the computation of a very large number of eigenpairs an

embarrassingly parallel problem. Eigenpairs from different

ranges of the spectrum can be converged independently, i.e.,

the lower end of the spectrum could be computed using a smaller

grid. If only very few interior eigenvalues, e.g., 10 eigenvalues,

are required in each run, the total storage requirement, Lanczos

and a few auxiliary vectors, of the computation fits into the main

memory of nowadays standard machines, which eliminates the

time-consuming I/O operations on the hard disk.

2.3 Post-processing

Three topics relevant after executing a variational nuclear

motion computation and the required eigenvalues and eigen-

functions become available are discussed next.

The complete internal wave function, a product of the

rovibronic and nuclear spin wave functions, has important

symmetry restrictions dictated by quantum statistics.33 Thus,

the allowed nuclear spin states, different for the different

isotopologues of a molecule, determine which computed

rovibronic states are allowed. This practically means that

out of the legitimate eigenstates computed for a given

rovibronic Hamiltonian some could be forbidden due to

symmetry restrictions. Thus, statistical weights need to be

determined for the different symmetry classes of the molecular

symmetry (MS) group. If the statistical weight is zero for a

given isotopologue (e.g., for 14NH3 this is the case for the A01
and A001 irreducible representations of the D3h(M) group) and a

given class, those energy levels are forbidden and cannot

‘‘participate’’ in rovibronic transitions. The symmetry restric-

tions and spin statistical weights should also be taken into

account when (temperature-dependent) rovibronic averaging

of molecular properties is performed (see Section 4.4).

An ideal labeling scheme applicable for eigenstates com-

puted through the variational solution of the nuclear

Schrödinger equation would be physically incisive and

independent of the coordinates and basis functions used to

represent the Hamiltonian and the wave function. However,

assignment schemes can be very useful even if these require-

ments are not fully met. Among the techniques that have been

employed in the analyses of variationally computed nuclear-

motion wave functions are ‘‘node counting’’ along specified

cuts of coordinate space,54,187 the determination of ‘‘optimally

separable’’ coordinates,115,116,208–216 the use of natural modal

representations,54,217 and the evaluation of coordinate

expectation values.187 An alternative approach to assigning

molecular eigenstates is provided by effective Hamiltonian

methods, particularly in relatively low-energy regions. The

canonical models of the vibrations and rotations of a molecule

are the quantum mechanical harmonic oscillator (HO)136 and

rigid rotor (RR)218 approximations, respectively. The low-

lying states of semirigid molecules have traditionally been

described by labels based on multidimensional normal-mode

vibrational wave functions conjoined with rigid-rotor rotational

wave functions represented in a symmetric-top basis. A wide-

spread preference for RRHO labels persists, both for the

appealing simplicity of the underlying models and for historical

reasons. Of course, the RRHO labeling scheme is inherently

model-dependent, unlike methods based on natural modals,

for example. Variational (ro)vibrational computations have

often63,64,74,85,89,159,219–228 employed the Eckart–Watson

Hamiltonian expressed in normal coordinates,86–88 which

leads straightforwardly to an RRHO labeling of the lower-

lying eigenstates. For more details on an RRHO labeling

scheme see Section 4.3.

To connect nuclear motion computations to spectroscopic

experiments, it is often particularly important to compute not

only transition (line) energies but also line intensities and even

line shapes (the latter is not discussed here). For one-photon
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absorption and emission spectra this requires the availability

of a dipole moment surface (DMS).229,230 This DMS, together

with the rovibrational wave functions, can result in, via

expectation-value-type computations, line intensities. Line

intensities have an extremely large dynamical range. Compu-

tation of a DMS has similar challenges as that of a PES

detailed in Section 2.2.3, composite schemes are again highly

useful, but the fitting process is even more elaborate and even

more prone to significant errors.229

3 Practical implementations

In this section different choices for the nuclear motion

Hamiltonian are presented and discussed. The computations

built upon these Hamiltonians give some insight into the

current status of nuclear motion theory. As to the technical

details, in actual implementations the various steps are not

necessarily distinct parts of the computer code, as an overall

consideration of the algorithm might result in a more efficient

implementation. In Table 1 characteristics of those codes are

summarized which our group developed for spectroscopic

applications.

3.1 Tailor-made Hamiltonians, DOPI

One of the traditional ways to treat nuclear motions varia-

tionally is based on Hamiltonians expressed in a given choice

of curvilinear coordinates,120,121 e.g., orthogonal122,123 or

valence136 internal coordinates. This approach is feasible for

a small number of nuclei.57,58,121,182,203,231–236 The required

explicit knowledge of the Hamiltonian, in fact of the kinetic

energy operator,131,133–135 offers the advantage that appropriate

basis sets can be chosen, and with proper and efficient repre-

sentations, matrix element computations, and diagonalization

techniques one could compute the complete bound-state

eigenspectrum of molecules. The most important drawback

of this so-called tailor-made Hamiltonian approach is that the

explicit construction of the kinetic energy operator is needed

for the different internal coordinate choices, which can be

demanding in many cases. However, for small molecules this is

still one of the simplest possible strategies for variational

nuclear motion computations, and a possible algorithm can

be set up as follows: the Hamiltonian is expressed in ortho-

gonal (O) coordinates, its matrix is represented by the discrete

variable representation (D, see Section 2.2.5) coupled with a

direct product (P) basis (see Section 2.2.4), and advantage can

be taken of the sparsity and special structure of the resulting

Hamiltonian matrix whose required eigenvalues can be

determined extremely efficiently by variants of iterative (I)

‘‘diagonalization’’ techniques (see Section 2.2.6). In our own

work, a three-atomic variant of the tailor-made approach is

termed D3OPI,57,58,186 standing for discrete variable represen-

tation for all three internal coordinates, while the rest of the

abbreviations are explained above.

Focusing only on triatomic cases, program suites can be

developed which use a generalized Hamiltonian120 containing

parameters which can be fixed to different values giving

different Hamiltonians corresponding to different (orthogonal

and non-orthogonal) internal coordinate choices. Assuming

that an orthogonal coordinate system is chosen, the Sutcliffe–

Tennyson rovibrational Hamiltonian120 of a triatomic

molecule, incorporating the radial part of the Jacobian, can

be written in the R1 embedding as

Ĥ
rv ¼ � 1

2m1

@2

@R2
1

� 1

2m2

@2

@R2
2

� 1

2m1R2
1

þ 1

2m2R2
2

� �

� @2

@y2
þ cot y

@

@y
� ĵ

2

z

sin2 y

 !
þ 1

2m1R2
1

� ðĴ2 � 2Ĵzĵz � Ĵþ ĵ� � Ĵ� ĵþÞ þ V̂ðR1;R2; yÞ;

ð8Þ

where m1 and m2 are effective masses related to the actual

masses in a way that depends on how precisely the orthogonal

coordinate system is chosen, R1 and R2 are two radial internal

coordinates whose form may be chosen at will within the limits

imposed by the coordinate orthogonality constraint, y is the

angle between the two radial coordinates, while Ĵ and jˆrefer to

the appropriate120 rotational angular momenta.

Note that it is not always computationally most efficient to

make an orthogonal coordinate choice. Furthermore, even

when making this choice, one particular scheme can prove to

be better than another, as can a particular choice of attaching

a body frame to the molecule.

Although tailor-made Hamiltonians of tetratomic molecules

and beyond most often lead to codes suitable for a unique type

of physical system and are not appropriate for a general,

black-box-type approach for nuclear motion computations,

this uniqueness leads to high efficiency. Choosing internal

coordinates which reflect the physical nature of the system

under investigation can have many advantages. Properly

chosen coordinates and coordinate frame embeddings make

Table 1 Characteristics of nuclear motion codes developed in our group for spectroscopic computations and their applications

Characteristics DOPI57,58,186 DEWE63,64,72 GENIUSH66,71

Coordinate system Orthogonal (O) internal,
e.g., Jacobi122 or Radau123

Rectilinear normal136 Arbitrary internal (I),136

e.g., Z-matrix
Embedding R1, R2, bisector

120 Eckart86 Arbitrary
Hamiltonian tailor-made, Sutcliffe–Tennyson120 Eckart–Watson (EW) General (GE), numerical (N),

user-specified (US)
Basis Direct product (P) + Wang

symmetric-top eigenfunctions
Direct-product Hermite +
Wang symmetric-top
eigenfunctions

Direct-product Hermite,
Legendre + Wang symmetric–top
eigenfunctions

Matrix representation DVR (D), DVR–FBR DVR (D) DVR
Eigensolver Iterative (I), Lanczos Iterative, Lanczos Iterative, Lanczos
Applications H2O,53,187 H+

3 ,186 CH2
58 CH4,

64 H2CCO
72 NH3

71
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it easier to exploit the symmetry of the system,237,238 or grant

the possibility of using basis functions well adopted to the

internal coordinates, leading to a compact expansion of the

wave function. Well-defined internal coordinates and embed-

dings can also help by leading to singular terms, necessarily

present in Hamiltonians expressed in internal coordinates, for

which singular nuclear configurations are at a physically

hardly reachable region of the PES. It is also worth mentioning

that inspecting different Hamiltonians given in different

coordinate embeddings and internal coordinates, one might

even decide between various possible matrix representations,

some leading to special matrix structures which can be

exploited for the sake of efficiency.

Referring to even just the most important applications of

tailor-made Hamiltonians is beyond the scope of this Perspective;

thus, we only mention a few works which we consider to be

representative examples of the method. To make use of the

possible high efficiency of a well-chosen Hamiltonian and matrix

representation, many studies were carried out to optimize the

computational protocols, for example treating numerical issues

arising from singularities162,186,239 or optimizing basis

sets155,186,198 and numerical integral evaluation.161 The latest

applications include various computations of eigenenergies and

spectra of molecules up to dissociation, which requires PESs

adequate near dissociation. Having such PESs available, high

accuracy computations on the water isotopologues have been

carried out, producing a nearly complete set of vibrational labels

for H2
16O187 and, with the help of a dipole moment surface,

a huge amount of data on the line list of the water isotopo-

logues.240,241 Highly accurate computations were also carried out

on the H+
3 molecular ion resulting in vibrational eigenenergies

of cm�1 accuracy up to nearly all vibrational states below

dissociation and line lists for the H+
3 isotopologues.242,243

3.2 The Eckart–Watson Hamiltonian, DEWE

The Eckart–Watson Hamiltonian has numerous implementa-

tions,59,63,64,72,85,188,220,221,224–226 though seemingly only one of

them63,64,72 has at present the capability to perform an ‘‘exact’’

computation of rovibrational eigenpairs corresponding to a

given PES for molecules with more than four nuclei. In this

section this implementation is reviewed. A special feature of

this implementation is that symmetry labels of the corres-

ponding largest Abelian molecular symmetry group with �1
characters only are automatically distributed to the computed

rotational–vibrational levels (see Section 3.5).72

The coordinates are defined by specifying a non-linear

Eckart reference structure, c, which fixes through the Eckart

conditions86 the Cartesian coordinates in the BF, xi,

XM
i¼1

mixi ¼ 0 and
XM
i¼1

mici � xi ¼ 0: ð9Þ

Furthermore, orthogonal, rectilinear internal coordinates are

introduced87

Qk ¼
XM
i¼1

ffiffiffiffiffi
mi

p
likðxi � ciÞ; k ¼ 1; 2; . . . ; 3M� 6; ð10Þ

with specifying the constants lik A R3 which satisfy the

orthogonality and the Eckart conditions. As a special case,

c is the equilibrium structure and Qks are the normal coordi-

nates corresponding to a given PES.

The compact and popular form of the rovibrational

Hamiltonian corresponding to this coordinate choice was first

given by Watson87 for nonlinear molecules. For convenience,

the corresponding vibrational, rotational, and rotational–

vibrational coupling terms of the kinetic energy operator can

be denoted separately by T̂ v, T̂ r, and T̂ rv, respectively. Then,

the Eckart–Watson Hamiltonian is

Ĥrv = T̂ v + T̂ r + T̂ rv + V̂, (11)

where

T̂
v ¼ 1

2

X3M�6
k¼1

P̂
2

k þ
1

2

X
ab

p̂amabp̂b �
�h2

8

X
a

maa; ð12Þ

T̂
r ¼ 1

2

X
a

maaĴ
2

a þ
1

2

X
aob

mab½Ĵa; Ĵb�þ; ð13Þ

and

T̂
rv ¼ �

X
ab

mabp̂bĴa ð14Þ

with P̂k ¼ �i @
@Qk

and the components of the rotational

angular momentum Ĵx, Ĵy, and Ĵz in the BF. The Coriolis

operator and the generalized inertia tensor have here the usual

definition

p̂a ¼
X3M�6
kl¼1

zaklQkP̂l and zakl ¼
X
bg

eabg
XM
i¼1

lbiklgil ð15Þ

mab ¼ ðI0
�1Þab and I 0ab ¼ Iab �

X3M�6
klm¼1

zakmz
b
lmQkQl ; ð16Þ

where eabg denotes the Levi–Civita symbol, Iab is the instanta-

neous inertia tensor, and [Ĵa, Ĵb]+ is the anticommutator of Ĵa

and Ĵb. The volume element of the integration is

dV = df sinydydwdQ1 dQ2. . .dQ3M�6

where f, y, and w are Euler angles with f, w A [0,2p), y A [0,p],
andQkA (�N,N). Whenever detI0 equals zero the Hamiltonian

is singular.244

In our own work, the protocol based on the Eckart–Watson

Hamiltonian is termed DEWE,63,64,72 standing for discrete

variable representation (D) of the Eckart–Watson Hamiltonian

(EW) with an exact (E) inclusion of an arbitrary PES.

In DEWE, after specifying the reference structure, c, and the

coefficients, l, a matrix representation of the vibrational terms

of the Hamiltonian are considered on a direct-product

Hermite-DVR basis (grid). In order to represent the rovibra-

tional Hamiltonian for a given J value, the direct product of

the vibrational basis and the Wang combination of symmetric-

top eigenfunctions is formed. Analytic matrix elements are

computed for Qk, P̂k, P̂
2
k, and the various angular momentum

operators containing Ĵa in the BF. At the same time, any

coordinate-dependent operator terms which do not contain

differential operator are expressed in terms of the actual

internal coordinates, Qk, and are approximated by a diagonal
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matrix in the direct-product Hermite DVR. A Hamiltonian

matrix thus constructed is real. The matrix element evaluation

is facilitated by the insertion of the truncated resolution of

identity in the vibrational basis between every mab and p̂a and
p̂b terms occurring in the Hamiltonian. As a result the matrix

representation of the Hamiltonian can be written as a sum of

products of simple operators. In the actual implementation the

matrix representation of the Hamiltonian is not constructed

explicitly, as the Lanczos eigensolver (see Section 2.2.6)

requires only the multiplication of the Hamiltonian matrix with

a trial vector. This allows a substantial reduction in storage

requirements, which nevertheless scales linearly with the overall

dimension of the direct product vibrational grid (storage of the

diagonal V and lab terms) and also linearly with J due to the

required storage of Lanczos vectors. The Hamiltonian matrix-

vector multiplication step is one of the most time-consuming

parts of the program, with an almost linear scaling with the size

of the direct product space and J, and is parallelized with

OpenMP. If a large number of eigenvalues and eigenvectors

are required for a five atomic molecule the overall storage

requirement can exceed, say, 10 GB, and the Lanczos vectors

are stored on hard disk.64,72 An optimized storage and input/

output operation sequence allowed the computation of a few

hundred of (ro)vibrational eigenvalues and eigenvectors of five-

atomic molecules and six-atomic semi-rigid species deem to be

tractable in the near future.

A rationalized vibrational subspace (VS) procedure72 (see

Section 3.4) developed for the computation of rotational–

vibrational energy levels and wave functions corresponding

to large J values is interfaced with the presented rovibrational

DEWE program, thus extending the possibilities of handling

semi-rigid molecules.

Approaches based on the Eckart–Watson Hamiltonian

have well-defined limitations. The rectilinear nature of the

coordinates Qk is not well suited for the treatment of some

vibrations, e.g., highly excited bends. Furthermore, as the

Eckart conditions are based on the existence of a single and

well-defined energy minimum on the PES, it is difficult to

apply this method for the description of molecules which

exhibit multiple accessible minima.

3.3 General internal-coordinate Hamiltonians, GENIUSH

The third choice for a rovibrational Hamiltonian incorporates

the advantages of the above two Hamiltonians. It is general

for all molecular systems, employs curvilinear, arbitrarily

chosen internal coordinates, allows the selection of the most

suitable embedding, and ready for reduced-dimensional

treatments. In contrast to the first method, the rotational–

vibrational Hamiltonian is represented numerically; thus, the

explicit, analytical construction of the kinetic energy operator

is circumvented. In our own work, this approach is called

GENIUSH,66,71 in reference to its main characteristics:

general (GE) code with numerical (N), internal-coordinate (I),

user-specified (US) Hamiltonians (H). This numerical

approach to the use of kinetic energy operators has also

been pursued by others, for example by Luckhaus and

co-workers,61,70,245,246 Lauvergnat et al.,62,247 Yurchenko

et al.,69 and Makarewicz.129

The coordinate choice (and dilemma, see Section 2.2.1) is

left to the user as much as possible. A Z-matrix-type reader is

implemented to help the coordinate definition but in principle

any specification of the BF Cartesian coordinates, xi corres-

ponding to the chosen body-fixed frame, in terms of the

chosen qk internal coordinates can be provided, e.g., Jacobi

coordinates.

Our implementation favors the ‘‘t-vector’’ formalism, i.e.,

evaluation of @xi@qk
-type quantities is required in terms of internal

coordinates, qk. Thus, for convenience, the symmetric matrix g

in eqn (6) is rearranged to

gkl ¼
XM
i¼1

mi
@xi
@qk
� @xi
@ql

ð17Þ

gaþD;l ¼
XM
i¼1

miðea � xiÞ �
@xi
@ql

ð18Þ

gaþD;bþD ¼
XM
i¼1

miðea � xiÞ � ðeb � xiÞ; ð19Þ

where ea is the unit vector along the ath axis BF frame and xi
denotes the Cartesian coordinates of the ith nucleus in the BF

frame. The elements of G and g̃ are expressed in terms of the

internal coordinates and they are not functions of the orienta-

tional coordinates; thus, eqn (2) can be rearranged to

Ĥrv = T̂ v + T̂ r + T̂ rv + V̂ (20)

where

T̂
v ¼ 1

2

XD
k¼1

XD
l¼1

~g�1=4p̂ykGkl~g
1=2p̂l~g

�1=4; ð21Þ

T̂
r ¼ 1

2

X3
a¼1

GaþD;aþDĴ
2

a þ
1

2

X3
a¼1

X3
b4a

GaþD;bþD½Ĵa; Ĵb�þ; ð22Þ

and

T̂
rv ¼ 1

2

XD
k¼1

X3
a¼1
ð~g�1=4p̂ykGk;lþD~g1=4 þ ~g1=4Gk;lþDp̂k~g�1=4ÞĴa;

ð23Þ

where T̂ v is the vibrational and T̂ r is the rotational kinetic

energy and T̂ rv gives the coupling between vibration and

rotation. In eqn (22) [Ĵa, Ĵb]+, refers to the anticommutator

of Ĵa and Ĵb.

The ‘‘effective’’ vibrational Hamiltonian corresponding to

rotational angular momentum J = 0 is (‘‘Podolsky form’’)

Ĥ
v ¼ T̂

v þ V̂ ¼ 1

2

XD
k¼1

XD
l¼1

~g�1=4p̂ykGkl~g
1=2p̂l~g

�1=4 þ V̂ : ð24Þ

In applications the T̂ v term is often further rearranged

(‘‘rearranged form’’),

T̂
v ¼ 1

2

XD
k¼1

XD
l¼1

~g�1=4p̂ykGkl~g
1=2p̂l~g

�1=4 ¼ 1

2

XD
k¼1

XD
l¼1

p̂
y
kGklp̂l þU;

ð25Þ
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with the extrapotential term

U ¼ 1

32

XD
k¼1

XD
l¼1

Gkl

~g2
@~g

@qk

@~g

@ql
þ 4

@

@qk

Gkl

~g

@~g

@ql

� �� �
: ð26Þ

Of course, by making use of the special properties of a chosen

set of internal coordinates and the BF this form can be further

rearranged, maybe simplified in order to obtain one of the

various tailor-made Hamiltonians. Instead of this route, the

early forms of the Hamiltonian, eqn (20)–(26), are considered

and implemented in a computer program. The requirement of

numerical stability and reproducibility of the computed

results, certainly better than o0.01 cm�1 , requires a careful

validation and often leads to a painful debugging of a pilot

implementation. In GENIUSH both the Podolsky and the

rearranged forms of the vibration-only kinetic energy operator

were implemented. The Podolsky form has been used in

rovibrational computations.

A matrix representation of the vibrational terms of the

Hamiltonian were considered using a direct product DVR

grid, which can be constructed using Hermite, Legendre, and

other DVRs. The differential operators were constructed

analytically, while the coordinate-dependent (non-differential)

operators were approximated as diagonal matrices in DVR.

Between the differential and coordinate-dependent operators

the truncated resolution of identity (RI) was inserted. As the

truncated RI had satisfactory numerical properties in this

representation, in practice we preferred the use of the

‘‘Podolsky’’ form of the Hamiltonian as its matrix representa-

tion can be built by calculating only the first derivatives of the

BF Cartesian coordinates with respect to internal coordinates,

eqn (17)–(19), which can be evaluated either analytically or

numerically in 8-byte real (‘‘double precision’’ in Fortran)

arithmetics. If the ‘‘rearranged form’’ of the kinetic energy

operator is used, the extrapotential term, U, requires the

evaluation of not only first, but also second and third

derivatives, which assumes the knowledge of analytic deriva-

tives or 16-byte real (‘‘quadruple precision’’ in Fortran)

arithmetics in order to provide a numerically stable and

reliable implementation meeting the rigorous spectroscopic

precision. These technical considerations explain our prefer-

ence for the Podolsky-form.

Matrix representation of the rovibrational Hamiltonian,

eqn (20), was constructed using the direct product of the

vibrational terms in DVR and the rotational matrices

constructed with the Wang functions.71 The resulting

Hamiltonian matrix is real.

Instead of an explicit construction of the Hamiltonian

matrix the consecutive multiplication of its terms with a trial

vector (parallelized with OpenMP) is implemented and used in

a Lanczos eigensolver (see Section 2.2.6). The overall storage

requirements scale linearly with the size of the DVR grid and

the J rotational quantum number.

3.4 Rovibrational computations for high J values, vibrational

subspace (VS) method

In this section a highly efficient method, inspired by the rigid

rotor decomposition (RRD) algorithm detailed in Section 4.3.2,

is described which is suitable for the computation of

rovibrational energy levels for high values of the J rotational

quantum number and was first presented in ref. 72. This idea is

related to a two-step procedure120 advocated by Sutcliffe and

Tennyson.

To start, the rovibrational Hamiltonian is split into a

vibrational and a rovibrational part. After solving the

Ĥvfi = Eifi (27)

Schrödinger-equation of the vibrations-only Ĥv Hamiltonian,

it is worth employing the orthonormal fi, i = 1,. . .,n

vibrational wave functions as vibrational basis functions for

the expansion of the Ci rovibrational wave function:

Ci ¼
Xn
j¼1

X2Jþ1
k¼1

cijkfjRk; ð28Þ

where Rks are elements of an orthonormal rotational basis of

dimension 2J+1. If the Rk rotational basis functions are

chosen to be the rigid rotor eigenfunctions of the molecule

under examination, the absolute squares of the cijk coefficients

are equivalent to the RRD coefficients defined in Section 4.3.2.

It is straightforward to derive generally the matrix elements of

Ĥv in this basis as the fi functions are eigenfunctions of Ĥv:

Hv
ij,kl = hfiRj|Ĥ

v|fkRli = Ei�dik�djl, (29)

while matrix elements of the T̂ r and T̂ rv operators of eqn (11)

cannot be given universally as they depend on the particular

choice of the rovibrational Hamiltonian.

This vibrational subspace (VS) method exhibits the follow-

ing advantages: (a) the vibrational basis is very compact

(it consists of typically the first few hundred vibrational band

origins), which results in a Hamiltonian of modest size even

for high J values; (b) the RRD analysis, which facilitates the

assignment of the variational rovibrational levels, becomes

straightforward and its coefficients are easy to compute; (c) the

vibrational basis functions are automatically symmetry

adapted (as they are basis functions of the irreducible repre-

sentations of the molecular symmetry group) which supports

the easy exploitation of molecular symmetry during the com-

putation; (d) once the necessary vibrational matrix elements

for the construction of the representation of T̂ r and T̂ rv have

been computed, they can be saved in a file of modest size for

later use, which greatly reduces the cost of further computa-

tions; and (e) due to the modest size of the Hamiltonian one

can use direct eigensolvers instead of the Lanczos algorithm,

thus the density of the rovibrational energy levels does not

affect the convergence rate of the eigenstates.

3.5 Symmetry in rovibrational computations

The starting point of symmetry considerations in nuclear

motion theory is the concept of molecular symmetry (MS)

groups.33 In this section two approaches are outlined briefly,

which proved to be successful in our recent spectroscopic

applications. A technical and detailed description can be

found in ref. 72. For other uses of symmetry in nuclear motion

computations see, e.g., ref. 121 and 248.

The first application of symmetry in nuclear motion

computations employs the symmetry-adapted Lanczos (SAL)

method.249–251 In our case, it was implemented within the
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DEWE code. The current implementation is applicable to

either vibrational or rovibrational variational computations

but it is limited to the use of molecular symmetry groups

having characters of �1. The basic idea behind SAL is the

projection of the Lanczos vectors onto the irreducible repre-

sentations of the MS group during the Lanczos iteration

process. This is done by an efficient matrix-vector multiplica-

tion procedure as the matrix representation of the necessary

projectors is sparse and has a special structure. Although this

method obviously does not reduce the size of the Hamiltonian

matrix, it has two main advantages over the simple Lanczos

procedure: (a) the rovibrational energy levels and wave

functions are computed with symmetry labels of the corres-

ponding MS group; and (b) the spectral density of the

eigenvalues reduces, resulting in an improved convergence of

the Lanczos procedure.

In a second application of symmetry, a method based on the

VS procedure can be constructed, which applies to degenerate

groups, as well. The first step is to examine the product-type

fjRk rovibrational basis functions in the expansion of the Ci

rovibrational wave function (see eqn (28)). If the symmetry

properties of the fj pure vibrational states and Rk rigid rotor

states are known, one can deduce the irreducible representa-

tions spanned by the fjRk basis functions. The only remaining

step is to assign Ci with the irreducible representation spanned

by the fjRks which are present in the expansion of Ci. A

detailed derivation, for Abelian groups, can be found in

ref. 72, where this method has been succesfully employed to

the five-atomic ketene molecule (C2H2O, C2v(M) symmetry

group).

It would be preferable to employ symmetry to its full extent

in a general nuclear motion protocol, i.e., forming blocks of

the original Hamiltonian. However, the details how to do this

in the general case, to the best of our knowledge, have not been

worked out. It seems69 that exploitation of symmetry in a

universal code employing DVR is not as straightforward as it

is in an FBR.

4 Selected spectroscopic applications

At present the main field of application of the quantum theory

of nuclear motion described in the previous sections is the

computation and interpretation of high-resolution (rotational–

vibrational) spectra. Other principal applications include the

study of molecular dynamics and the quantum mechanical

evaluation of reaction rates. While the latter two are

challenging and especially important topics for chemistry

which have received considerable attention,51,188,252 they are

not even touched upon in this section.

4.1 Spectroscopic networks

Complete characterization of high-resolution spectra of a

considerable number of molecules, starting from the micro-

wave and extending to the ultraviolet, is a pre-requisite for

modeling and understanding many processes and phenomena

in physics, chemistry, and engineering. Modelers often need

detailed line-by-line information which only the joint

consideration of elaborate spectroscopic measurements or

sophisticated quantum chemical computations can provide.

Recent advances in molecular spectroscopy led to a consider-

able increase in the extent of experimental high-resolution

spectroscopic data, i.e., assigned rovibrational transitions, energy

levels, intensities, and line profiles. Some of these data have been

deposited, sometimes in a critically evaluated and annotated

form, in databases; see, for example, ref. 103, 104, 107,

253–256. Treatment of the rapidly increasing amount of informa-

tion and the desire to turn information into knowledge requires

sophisticated procedures for the generation, accumulation,

validation, handling, visualization, and distribution of spectro-

scopic data. Some of these tasks can be helped by recognizing

that for individual molecules spectra correspond to large-scale

deterministic, undirected, (weighted) graphs (networks), made

up of energy levels as vertices (nodes), allowed transitions

between the levels as edges (links), and weights related to

transition intensities. This way one defines spectroscopic

networks (SNs).105,108 The robust organizing principle of SNs is

provided by quantum mechanical selection rules; different transi-

tions and transition intensities characterize different spectroscopic

techniques. It is important to emphasize that even in the experi-

mentally most thoroughly studied cases the observable transitions

form just a tiny part of all the transitions allowed.103,104

The complete line list information about allowed transitions,

corresponding to a very large SN, can only be determined via

sophisticated variational rotational–vibrational computations.

The network-theoretical view of complex SNs detailed in

ref. 108 offers certain advantages toward completing the

characterization of high-resolution molecular spectra. The

approximately scale-free property of the overall network

structure108 leads to the concept of hubs and thus straight-

forwardly to the design of new spectroscopic experiments.

These experiments, with a minimum amount of effort, help

to determine a more accurate and more robust SN by pre-

ferentially measuring, with improved accuracy, transitions in

which less accurately known hubs are involved. Detailed

comparison of measured and first-principle hubs helps to

determine the ‘‘weakest nodes’’ among the energy levels in

an existing experimental SN which, in turn, leads to the

identification of transitions which should preferentially be

investigated in new experiments designed specifically for their

determination. The graph-theoretical view, through maximum

weight spanning trees, should also help to connect components

in the measured SN with a minimum amount of effort. Driven

by the need of scientific and engineering applications,

complex spectroscopic networks, perhaps as part of active

databases,103,104,109 are expected to become an intrinsic part of

the description of the high-resolution spectra of molecules.

4.1.1 MARVEL: SNs from experiment. Experiments yield

relatively small multiedge graphs, with a considerable number

of parallel edges, while first-principles computations result in

very large simple graphs. The existence of multiedge experi-

mental SNs calls for a protocol which can invert the experi-

mental transition information and yield experimental energy

levels with well-defined uncertainties. Development of such

inversion protocols has a long history in spectroscopy.257–263 It

must also be mentioned that similar inversion techniques have

helped tremendously other areas of physical chemistry,

including thermochemistry110,111 and reaction kinetics.264,265
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Our own inversion protocol is called MARVEL,109 standing

for Measured Active Rotational–Vibrational Energy Levels.

The principal steps of applying MARVEL to an arbitrary

molecule are as follows. (1) Collection, preliminary validation,

and compilation of those measured transitions into a database

which possess assignments and uncertainties. (2) Based on the

database built this way, determination of those energy levels of

the given species which belong to a component of a particular

spectroscopic network. (3) Within a given SN, setting up of a

vector containing all the experimentally measured transitions

selected, another one comprising the requested MARVEL

energy levels, and an extremely sparse matrix which describes

the relation between the transitions and the energy levels,

containing for each measured line only two non-zero entries,

+1 and �1 for the upper and lower energy levels, respectively.

(4) Solution of the set of linear equations corresponding to the

chosen pair of vectors and the inversion (design) matrix.

During solution of the set of linear equations uncertainties

in the measured transitions can be incorporated which results

in uncertainties of the energy levels determined.

The MARVEL technique has been used to handle and

validate measured transitions of the following isotopologues

of the water molecule: H2
17O,103,104 H2

18O,103,104 HD16O,104

HD17O,104 and HD18O.104 A summary of the characteristics of

the MARVEL analyses for these five water isotopologues is

presented in Table 2. It is clear that out of the millions of

transitions which could technically be detected, only very few

have been observed and assigned experimentally. The most

extensive set of data is available for HD16O but even in this

case only about 55 000 transitions and 9000 energy levels have

been scrutinized by experimentalists. Note that MARVEL

analysis of the parent isotopologue, H2
16O, is in progress.

Fig. 1 demonstrates one of the principal virtues of a

MARVEL-type analysis. It shows very vividly that even if

only a very limited number of MARVEL energy levels can be

deduced from the published experimental data, the transitions

predicted by these MARVEL energy levels provide a much

more substantial coverage of the spectrum. MARVEL has

also been used to determine calibration standards based on

the spectra of several water isotopologues.266 The measured

spectra of the parent isotopologue of ketene have also been

subjected to a MARVEL analysis.72

The number of molecules subjected to MARVEL-type

analyses is expected to grow substantially in the near future.

These efforts have special relevance as even the most sophis-

ticated quantum chemical techniques are not able to approach

the accuracy of experiments for polyatomic and polyelectronic

systems. The same can be said, though to a much lesser extent,

about effective Hamiltonian approaches. Clearly, the most

viable approach is to combine incomplete but highly accurate

experimental information with complete but inaccurate first-

principles results.

4.2 Determination of levels and lines

All the variational procedures discussed above are able to yield

rovibrational energy levels of molecules. Table 3 contains

selected rovibrational energy levels for the ground and n9
vibrational states of the parent isotopologue of the ketene

molecule. Results obtained with the line inversion MARVEL

process, by the first-principles DEWE-VS procedure, and by

an effective Hamiltonian approach whose results can be found

in ref. 268 are compared up to J = 30. Obtaining such

extended coverage of rovibrational energy levels and thus lines

can be done straightforwardly for a 5-atomic semirigid mole-

cule, and possibly for systems up to 7 atoms.

Similarly extensive computations can be performed for

molecules with more than one essential minima using the

GENIUSH protocol and code. Such results are reported in

ref. 71. A further advantage of GENIUSH, namely the ease

with which reduced-dimensional nuclear motion computations

can be performed for any molecule, including NH3, are

demonstrated by the 1D, 2D, 3D, and 6D results obtained

in the same study and summarized in Table 4. The 1D model

concentrates on the umbrella motion of ammonia, while all

other coordinates are constrained. The 2D and 3D models add

to the umbrella motion the symmetric stretching motion and

the other two bending-type coordinates, respectively. In the

Table 2 Summary of the characteristics of the MARVEL analysis of
five water isotopologues103,104

Characteristics H2
17O H2

18O HD16O HD17O HD18O

No. of expt. sourcesa 35 51 50 3 11
No. of expt. transitions 9036 31 748 54 740 485 8728
No. of validated transitions 9028 31 705 53 291 445 7186
No. of expt. energy levels 2723 5131 8819 162 1864

a No. of published articles with independent experimental line

information.

Fig. 1 Demonstration of the utility of accurate MARVEL energy

levels of HD18O determined from the limited amount of experimen-

tally observed and assigned transitions (first panel, ‘‘Measured’’) for

predicting new transitions without any new measurements (second

panel, ‘‘Measured + MARVEL’’). All line intensities correspond to

first-principles (‘‘Variational’’) computed intensities. The first-

principles variational results, yielding the complete spectrum, proved

essential in other parts of the MARVEL analysis, as well.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

B
ud

ap
es

t (
E

ot
vo

s 
L

or
an

d 
U

ni
ve

rs
ity

) 
on

 1
5 

D
ec

em
be

r 
20

11
Pu

bl
is

he
d 

on
 1

3 
O

ct
ob

er
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1C

P2
18

30
A

View Online

http://dx.doi.org/10.1039/c1cp21830a


1098 Phys. Chem. Chem. Phys., 2012, 14, 1085–1106 This journal is c the Owner Societies 2012

case of the 6D model all vibrational degrees of freedom are

active. Clearly, the simplest 1D model is successful in reprodu-

cing the splitting of the first few pairs of vibrational band

origins (VBOs), and those of the rotational levels they hold

(not shown but given in ref. 71), and it is rather hard to

substantially improve upon it.

Selected further applications of our codes to polyatomic

molecular systems are discussed in the next subsections.

4.2.1 Complete bound-state spectra. One of the most

important applications of variational nuclear-motion compu-

tations is the determination of all the states determining the

complete rovibrational spectrum of a molecule. The goal of

computing all bound vibrational states of triatomic molecules

has been achieved for H2
16O and H+

3 . The number of VBOs is

1150 and 1287 (counting the E symmetry states twice) for

H2
16O and H+

3 , respectively. Of course, depending on the PES

these numbers can change by one or two, very close to the

dissociation limit new states may arise or old ones disappear.

Due to the density of the rovibrational states and their

complex character, the computation of energy levels close to the

dissociation limit is problematic and requires the development

of specialized procedures and the use of large basis sets. These

technical difficulties can be overcome up to rather large J values

and thus extremely large line lists of molecules can be generated,

as pioneered by Tennyson and co-workers.241–243 The experi-

mentally needed part of these line lists depends also on the

temperature at which one is interested in the absorption or

emission spectrum. These line lists store not only the computed

(or to some extent experimental) energy levels and their assign-

ments and transitions with pointers to the energy levels, but also

the Einstein-A coefficients of the transitions so that the

temperature-dependent intensities can be computed. It is

expected that more or less complete line lists will appear in

the near future not only for triatomic but also for important

four- and five-atomic systems, such as NH3 and CH4.

The ability to compute highly excited rovibrational states

means that a peculiar feature of rovibrational spectra, the

clustering of highly-excited rovibrational states of molecules

can be studied. Fig. 2 shows interesting clustering effects for

the ground vibrational state of the parent isotopologue of

methane, where data are shown up to J = 50. The computa-

tions employed the PES of ref. 271 and the DEWE-VS code.

Table 3 Selected J0J rovibrational energy levels (in units of cm�1 ) of the parent ketene molecule, H2CQCQO, determined by the MARVEL line
inversion process (with uncertainties given in parentheses in units of 10�6 cm�1), by the DEWE-VS first-principles nuclear motion procedure, and
by an effective Hamiltonian approach as reported in the CDMS72 databasea

J Ka Kc

GS n9

MARVEL DEWE-VS CDMS MARVEL DEWE-VS

1 0 1 0.674106(0) 0.674 0.674107 440.061194(231) 440.062
2 0 2 2.022302(0) 2.022 2.022304 441.410911(216) 441.415
3 0 3 4.044557(0) 4.045 4.044562 443.438915(215) 443.444
4 0 4 6.740826(1) 6.741 6.740831 446.143029(137) 446.150
5 0 5 10.111046(1) 10.111 10.111050 449.522754(132) 449.531
10 0 10 37.067862(220) 37.069 37.068083 476.554409(364) 476.579
20 0 20 141.447550(576) 141.453 141.447591 581.196584(353) 581.290
30 0 30 312.900609(1398) 312.917 312.899634 752.995071(496) 753.227

a Variational results corresponding to a quartic force field expansion of the PES, see ref. 267 and 72. GS refers to the vibrational ground state. The

DEWE-VS rovibrational energies reported for n9 were adjusted so that the DEWE-VS vibrational band origin matches the MARVEL value

exactly.

Table 4 Full and reduced-dimensional zero-point vibrational
energies and vibrational band origins of 14NH3 relative to the vibra-
tional ground state energy, all in cm�1, determined using the
GENIUSH code and the ‘‘refined’’ PES of ref. 269

1D 2D 3D 6D Expt.a

0þðA01;GSÞ 521.43 2256.74 2158.70 7436.82 —

0�ðA002Þ 1.13 1.28 1.70 0.79 0.79

nþ2 ðA
0
1Þ 930.57 900.48 904.48 932.41 932.43

n�2 ðA002Þ 979.80 952.80 970.68 968.15 968.12

2nþ2 ðA
0
1Þ 1586.97 1537.6 1550.06 1597.26 1597.47

n+4 (E0) — — 1659.43 1625.62 1626.28

n�4 (E00) — — 1662.12 1626.73 1627.37

2n�2 ðA
00
2Þ 1918.86 1868.39 1917.98 1882.18 1882.18

a The molecular symmetry groupD3h(M) is used to label the rotational–

vibrational states. TheD3h(M) symmetry labels are given in parentheses.

GS = ground state. The 1D and 2D models do not exhibit the n+4 and

n�4 vibrations as the two bending vibrational coordinates are fixed in

these cases. Experimental results are taken from ref. 270 and have

considerably higher accuracy than indicated here.

Fig. 2 Rotational clustering effects for the (00)(01) F2 vibrational

state of the parent isotopologue of methane molecule. EJ � Emax
J

differences, in cm�1, plotted against the J rotational quantum number,

where EJ and Emax
J denote an arbitrary and the maximum energy level

for a given value of J, respectively. The computations are based on the

PES of ref. 271 and obtained with the DEWE-VS code.
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Similar clustering effects have been observed for higher

vibrational states, as well.

4.2.2 Resonance states. Resonance states, also known as

quasi-bound states, of a system are metastable states which

have sufficient energy to break up the system into its

subsystems. Though seldomly considered, they play an

important role in atomic and molecular physics,81,272–274 for

example, in unimolecular reactions, in photodissociation and

photoassociation studies, and in scattering phenomena.

Resonance wave functions can be associated with outgoing

eigenfunctions of the Hamiltonian, diverging exponentially at

infinity.114 Due to the outgoing boundary condition, the

eigenvalues corresponding to resonance states are complex,

which are usually written as E
ðresÞ
n ¼ en � i

2
Gn, where en is the

resonance position and Gn is the width (inverse lifetime) of the

resonance state. Due to their diverging asymptotic behaviour

resonance wave functions are not square integrable; thus, one

would think at first that the L2 methods discussed in this paper

are not suitable for describing them. There are, however,

several methods available which do make possible to compute

resonance eigenstates using L2 methods, usually based on

employing modified non-Hermitian Hamiltonians whose

eigenvalues with corresponding L2 eigenfunctions can be used

for evaluating or approximating resonance positions and

widths. The two most popular methods are the complex

coordinate method114,275 and the complex absorbing potential

(CAP) method,276–278 from which the latter seems to be

favored for calculating (ro)vibrational resonances of poly-

atomic molecules.207,279–282

In the CAP method, the Hermitian Hamiltonian is perturbed

with a complex absorbing potential which damps the outgoing

wave functions at the asymptotic region of the PES, making

them square integrable and suitable for an L2 basis expansion.

Along with other alternatives,277,279,281 resonance eigenvalues

in the CAP method can be evaluated277,279,282,283 by finding

cusps in eigenvalue trajectories obtained by diagonalizing the

complex symmetric Hamiltonian matrix with different CAP

parameters. In recent works279–282 it can be seen how being

able to use L2 methods for computing resonance eigenvalues

can be exploited through efficiency and numerical techniques

of the well developed L2 methods.

While experimentally observed, near-threshold resonance

structures of molecules have mostly defied detailed first-

principles analysis,284,285 it is clear that there are at least two

well-defined mechanisms that lead to the formation of long-

lived resonances. Rotational excitation of below-threshold

vibrational states leads to a centrifugal barrier behind which

high-energy rovibrational states can be trapped temporarily,

giving rise to so-called shape resonances. The width of shape

resonances is determined by the centrifugal barrier. Shape

resonances can extend to hundreds of wavenumbers above

the dissociation threshold and they result in narrow features

in the spectrum due to their tunneling character. These

resonances are responsible, for example, for part of the famous

Carrington bands, the multitude of still unassigned lines

observed in the near-dissociation spectrum of H+
3 .284 Vibrational

excitation into high-energy states which do not lead toward

dissociation gives Feshbach (sometimes called Fano–Feshbach)

resonances. Both types of resonances have been identified in the

near-threshold spectrum of the water vapor.286,287 A combination

of these two mechanisms has also been observed.280 It is

expected that as the method developments continue resonance

state computations will become widespread for 3–5-atomic

systems, extending considerably our knowledge81,207,248,287–290

about them.

4.3 Assignment of rovibrational states

Assigning the large number of computed (and measured)

rovibrational states of molecules below their first dissociation

limits is an extremely demanding task, as shown, for example,

for water in ref. 187. Without valid assignments, however,

there is no hope of extending the information systems char-

acterizing the spectroscopy of molecules beyond what is

available at present.103,104 The overall labeling of the rovibra-

tional states, including proper molecular symmetry and the

assignment of approximate quantum labels to the eigenstates

are important aspects of nuclear motion computations.

4.3.1 Normal-mode decomposition (NMD) tables. Let us

consider the nJth rovibrational wave function CJ
nJ
ðQ;f; y; wÞ

as a linear combination of rotational–vibrational basis functions:

CJ
nJ
ðQ;f; y; wÞ ¼

XN
i¼1

X2Jþ1
L¼1

cJnJ ;iLFiðQÞRJ
Lðf; y; wÞ; ð30Þ

where (f, y, w) is the usual set of Euler angles,Q= (Q1,Q2,. . .,

Q3M�6) denotes the normal coordinates of an M-atomic

molecule, J is the rotational quantum number, and RJ
L (f, y, w)

denotes the Wang-transformed symmetric-top rotational basis

functions218 indexed by L. The vibrational basis functions

Fi(Q) are assumed to be products of one-dimensional

functions in each vibrational degree of freedom, and N =

N1 N2. . .N3M�6 is the total size of the multidimensional

vibrational basis.

In the case of a DEWE-like protocol, cm(Q) pure vibra-

tional states (J = 0) are described as a linear combination of

product functions of harmonic oscillators:

cmðQÞ ¼
XN
i¼1

Cm;iFHO
i ðQÞ: ð31Þ

Due to the normalization of the wave function and the

orthonormality of the basis functions,
PN

i=1|Cm,i|
2 = 1, and

one can write

Cm,i = hFHO
i |cmiQ. (32)

The |Cm,i|
2 coefficients are referred to as the elements of the

normal-mode decomposition (NMD) table as they describe

the variational wave function in terms of the harmonic

oscillator basis functions. The labeling of ‘‘exact’’ vibrational

wave functions, cm(Q), with harmonic oscillator quantum

numbers can be accomplished by picking out the dominant

contributors in eqn (31), which can be read directly from an

NMD table. An NMD coefficient smaller than 0.5 does not

mean that no good approximate quantum numbers can be

found—it simply means that the HO approximation may not

provide a good separation.
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Obviously, it would be advantageous to be able to produce

NMDs from arbitrary wave functions represented with

arbitrary basis functions and coordinates. However, if the

variational wave functions are computed by programs built

upon the use of internal coordinates, the computation of

NMDs is hindered considerably as the internal coordinate

and the harmonic oscillator wave functions whose overlap

must be computed are based on different ranges and volume

elements.

The NMD analysis has been applied to H2
16O, whereby the

nuclear motion computations employed the PES of ref. 291

and 53, to NCCO,292 trans-HCOH and trans-HCOD, and

ketene. Here we present results only for the parent isotopolo-

gue of the 5-atomic ketene molecule, H2
12C12C16O.

The vibrational states of ketene up to 1050 cm�1 exhibit

little mixing and have dominant NMD coefficients Z 91%.

However, most of the states in the 1050–1550 cm�1 window

have much smaller leading NMD coefficients due to anhar-

monic resonances. The vibrational wave functions (c8, c9, c10,

c11) lying at (1071, 1113, 1169, 1211) cm�1 involve a compli-

cated (2o6, o5 + o6, o4, 2o5) Fermi resonance tetrad that

clouds the assignment of the CQC stretching fundamental (n4).
A striking manifestation is that the o5 + o6 basis state

contributes between 12% and 45% to all variational wave

functions in the set (c8–c11). The NMD results differ substan-

tially from the more approximate, non-variational coefficients

extracted in ref. 293, attesting to the intricacies of the deter-

mination of the extent of vibrational mixing. Nevertheless,

both studies concur in the assignment of the experimental

band294 at 1116.0 cm�1 to the n4 fundamental. The n3 (CH2

scissoring) fundamental is also strongly mixed, in this case due

to a resonance between (o4, o8 + o9) basis states, which

contribute (43%, 50%) and (50%, 45%) to (c13, c15), respec-

tively. In brief, the ketene molecule provides multiple examples

in which the assignment of even the vibrational fundamentals

is blurred. Such complications are expected to arise for other

molecules, as well.

4.3.2 Rigid-rotor decomposition (RRD) tables. For the

eigenstates of the field-free rovibrational Hamiltonian the J

rotational quantum number is exact, while the widely used Ka

and Kc labels are approximate and correspond to |K| for the

prolate and oblate symmetric-top limits of the asymmetric-

top rigid rotor,218 respectively. Recently we proposed295 a

two-step algorithm to match the computed rovibrational

states with pure vibrational states and generate the Ka and

Kc labels.

By rearranging eqn (30), one obtains

CJ
nJ
ðQ;f; y; wÞ ¼

X2Jþ1
L¼1

RJ
Lðf; y; wÞ

XN
i¼1

cJnJ ;iLFiðQÞ
 !

¼
X2Jþ1
L¼1

RJ
Lðf; y; wÞcJ

nJL
ðQÞ:

ð33Þ

From now on, cJ
nJL
ðQÞ will be referred to as the Lth

vibrational part of CJ
nJ
ðQ;f; y; wÞ. Let us introduce the

overlap of the Lth vibrational part of CJ
nJ
ðQ;f; y; wÞ and the

vibration-only cm(Q) =
PN

j=1cm,jFj(Q) as SJ
nJL;m

, and sum

the absolute squares of theSJ
nJL;m

quantities with respect to L:

PJ
nJ ;m
¼
X2Jþ1
L¼1
jSJ

nJL;m
j2 ¼

X2Jþ1
L¼1

XN
i¼1

cJnJ ;iLcm;i

�����
�����
2

: ð34Þ

After converging M J = 0 and NJ J a 0 eigenstates by

variational procedures, NJM square-overlap sums are com-

puted over all of the J = 0 and J a 0 pairs. The quantities

PJ
nJ ;m

(nJ = 1,2,. . .,NJ and m = 1,2,. . .,M) can be regarded as

elements of a rectangular matrix withNJ rows andM columns.

For a given J, those (2J+1) CJ
nJ
ðQ;f; y; wÞ rovibrational

states belong to a selected cm(Q) pure vibrational state which

give the 2J+1 largest PJ
nJ ;m

values. This means of identifi-

cation is valuable because the rovibrational levels belonging to

a given vibrational state appear neither consecutively nor in a

predictable manner in the overall eigenspectrum.

The quantities PJ
nJ ;m

depend on the embedding of the body-

fixed frame and on the rotational constants chosen for the

rigid-rotor basis functions. The use of the Eckart–Watson

Hamiltonian involves the Eckart frame,86 which is expected

to be a trenchant choice for the overlap calculations due to a

minimalized rovibrational coupling. This rotational labeling

scheme can be employed in other variational rovibrational

approaches employing arbitrary internal coordinates and

embeddings.

After assigning 2J+1 rovibrational levels to a pure vibra-

tional state, the next step is to generate the Ka and Kc or the

t= Ka � Kc labels. To achieve this, one should set up what we

call rigid-rotor decomposition (RRD) tables, by evaluating the

overlap integral

SJ
nJ ;m;mJ

¼ hCJ
nJ
ðQ;f; y; wÞjcmðQÞ � jJ

mJ
ðf; y; wÞiQ;f;y;w:

ð35Þ

We define the RRD coefficients as the absolute square of the

overlaps, jSJ
nJ ;m;mJ

j2, and arrange them in a rectangular table

whose rows are the exact states under consideration,

CJ
nJ
ðQ;f; y; wÞ, and whose columns are the ‘‘basis’’ states,

cmðQÞjJ
mJ
ðf; y; wÞ, products of vibrational and rigid-rotor

basis functions. The state with the largest RRD coefficient

provides the label of the level.

In the NMD+RRD scheme the complete rovibrational

label includes the irreducible representation (irrep) G of the

molecular symmetry (MS) group, the total rotational angular

momentum quantum number (J), Ka and Kc values corres-

ponding to the asymmetric rigid rotor, and perhaps the

normal-mode vibrational quantum numbers (v1, v2,. . .,

v3M�6). It is worth emphasizing that the first two labels, G
and J, are exact, as they are valid for the exact nonintegrable

Hamiltonian, while the last labels, Ka, Kc, and (v1, v2,. . .,

v3M�6), are inexact designations arising from an approximate

(RRHO) rovibrational Hamiltonian.

For lower-lying states, the PJ
nJ ;m

diagnostics [eqn (34)] are

frequently very close to their ideal, unmixed values of 1.00

and are almost always greater than 0.90, thus providing

unambiguous quantum labels. Nevertheless, prominent

exceptions sometimes occur due to resonances, which our
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protocol identifies very successfully. For example, there is

strong mixing between JKaKc
states belonging to different

combination levels of H2
16O: the rovibrational eigenstate at

10 177.6 cm�1 is 79%[330 (n1 + n2)] + 20%[322(n2 + n3)],
while that for 10 182.8 cm�1 is 20%[330 (n1 + n2)] +

80%[322(n2 + n3)]. This pronounced resonance causes a

switching in relative energy of the 330 and 331 levels of n1 + n2
relative to the expected rigid-rotor energy ordering [E (331) o
E (330)], although the difference is less than 0.5 cm�1. The

ketene molecule is very nearly a symmetric top, with

(A0,B0,C0) close to (9.410, 0.343, 0.331) cm�1, in order.293

Accordingly, a near double-degeneracy for all values of Ka Z

1 is seen in the rovibrational levels of ketene.

As a test to see the range of applicability of the RRD

labeling protocol, a massive amount of RRD coefficients were

determined for the H2
16O molecule. 30(2J+1) number of

rovibrational states were included in the labeling for each J

rotational quantum number ranging from 1 to 20. For the

RRD the vibrational labels were taken from ref. 187 by

matching energies, while the JKaKc
rotational labels were

generated during the RRD analysis. Variational rovibrational

computations were performed with the D2FOPI186 protocol

using the PES of ref. 296. In terms of rovibrational states being

the linear combination of the direct product functions

obtained from vibrational and rigid-rotor eigenfunctions,

rovibrational states become more ‘‘mixed’’ with increasing

energy and J rotational quantum number. This naturally leads

to less dominant overlaps (see eqn (35)). Fig. 3 shows the

percentage of clearly assignable states as a function of the J

rotational quantum number and the rovibrational energy.

RRD labels were considered ‘‘well defined’’ if for the given

rovibrational state the square of the largest SJ
nJ ;m;mJ

coefficient

(defined in eqn (35)) exceeded 0.5. As expected, less and less

RRD labels are ‘‘well defined’’ with increasing energy and J

quantum number. Nonetheless, for a wide range of both of

these parameters a large amount of ‘‘well defined’’ labels can

be assigned via the RRD protocol. Out of the total of 13 200

states included in Fig. 3, 5365 could be given a ‘‘well defined’’

status. It is noted that the choice of 0.5 as a lower limit for the

square of the largest SJ
nJ ;m;mJ

coefficients for considering an

RRD label ‘‘well defined’’ is a rather strict one. With a lower

threshold, one could extend the range of applicability of the

RRD scheme considerably.

4.4 Temperature-dependent effective molecular structures

One of the problems of structural research is that it is

impossible to measure the well-defined equilibrium molecular

structures experimentally,26,297,298 usually only (ro)vibrationally

averaged temperature-dependent parameters can be determined.

One can define either ‘‘distance’’ or ‘‘position’’ averages. These

averages can be converted into each other using different

assumptions. The simplest one, applicable to distances, is the

use of diatomic paradigms (like the Morse oscillator).154 For

semirigid molecules perturbation theory yields approximate

but rather accurate formulas for distance averages and

distance conversions. The third, and by far the most elaborate

and most accurate treatment involves variational computation

of the nuclear wave functions and uses these wave functions to

perform the rovibrational averaging. Only this approach is

discussed here briefly.

A distance average of central importance is rg,T, where ‘‘g’’

means ‘‘center of gravity of the probability distribution of the

interatomic distance’’ and T stands for the temperature. The

working definition to compute rg,T is

rg;T ¼
X
n;Jt

Wn;JtðTÞhriv;Jt ð36Þ

hrin,Jt = hCn,Jt |r|Cn,Jt i, (37)

where hrin,Jt is the expectation value of the distance corres-

ponding to rovibrational states labeled by vibrational

quantum numbers v and rotational quantum numbers Jt, the

effect of temperature is taken into account by simple

Boltzmann averaging, and W also contains degeneracy and

nuclear spin factors. Computation of the multi-dimensional

hri integral is especially simple in the DVR representation.

During rovibrational averaging one can take advantage of the

fact that the internal coordinates do not depend on the Euler

Fig. 3 Percentage of clearly identifiable rotational–vibrational states

of H2
16O based on RRD matrix elements larger than 0.5, given as a

function of energy (ground state is at 0.0 cm�1) and rotational

quantum number J.

Table 5 Effective structural parameters of two symmetric isotopo-
logues of the water molecule, taken from ref. 299

Distance typea H2
16O D2

16O

rade 0.95785 0.95783

rg (0 K) 0.97565 0.97077
rg (300 K) 0.97625 0.97136
rg (GED, 302 K) 0.9763(30) 0.9700(30)
ra (0 K) 0.97079 0.96724
ra (300 K) 0.97138 0.96783
ra (GED, 302 K) 0.9716(30) 0.9664(30)

a All results are given in Å. All computed results correspond to the

adiabatic, so-called CVRQD PES of ref. 53 and 291. The isotope-

dependent, adiabatic equilibrium structures, rade , of water are reported

in ref. 24 and they are only very slightly different from the isotope-

independent, Born–Oppenheimer equilibrium structure, rBOe , yielding

0.95782. For the nuclear masses employed in the nuclear-motion

computations see ref. 299. GED= gas electron diffraction, data taken

from ref. 300.
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angles describing the overall rotation of the molecule. Thus,

the rg-type distance basically means an hri average, and could

thus be called ‘‘mean’’ distance. Other distance averages of the

type hrni1/n can also be defined, most important among these is

the ra,T = hr�1i�1, the so-called ‘‘inverse’’ distance. It is also

important to note that the centrifugal distortion correction

can be treated through a classical mechanical espression

hdriTrot = sT, where only the linear factor needs to be

determined from a few simple rovibrational computations.

Temperature-dependent effective molecular structures have

been computed for the H2
16O and D2

16O isotopologues of the

water molecule.299 Selected results are presented in Table 5,

exemplifying the accuracy and extent of this procedure,

especially when compared to experimental data.300

5 Conclusions

Powerful variational and variational-like methods are increasingly

used for solving the nuclear-motion Schrödinger equation,

extending the traditional rigid-rotor-harmonic oscillator

(RRHO) and second-order vibrational perurbation theory

(VPT2) treatments. Variational studies can help to advance

our understanding and extend it in new directions in many

areas of physical chemistry and chemical physics. For example,

the nuclear-motion computations can be used to obtain

improved potential energy and even property surfaces by

adjusting ab initio computed surfaces to measurements. This

approach is based on the fact that when the nuclear-motion

Schrödinger equation with an exact kinetic energy operator is

solved variationally the only significant approximation

introduced is related to the surfaces. Variational nuclear-

motion techniques can be used for computing accurate

rovibronic states of polyatomic molecules. The more accurate

the surfaces (e.g., PES and DMS) employed, the better the

simulations are. In these spectroscopic applications standard,

automated procedures are needed for determining, assigning

and interpreting the large collections of eigenstates resulting

from variational computations, in order to solve chemical,

physical and engineering problems and to compile self-

consistent spectroscopic databases. Note in this respect that

without detailed assignments of the experimentally measured

lines the use of spectroscopic databases to model spectra

obtained under different conditions (different pressures,

foreign gases, and temperatures) is not possible. The seemingly

best quantum chemical procedure offered is what we call

GENIUSH, i.e., a fully numerical use of a general internal-

coordinate Hamiltonian. This holds not only for spectroscopic

applications but also for quantum dynamics and reaction rate

computations.

Variational nuclear motion computations complement and

far extend techniques built upon effective Hamiltonians to

build large-scale spectroscopic databases. The best use of

approximate but complete variational quantities is to employ

them as complementary information to accurate but incom-

plete measured results. The judicious use of all sets of results is

a prerequisite to the development of spectroscopic information

systems. The possible completeness of the computed rovibronic

information can greatly help to determine, for example,

molecular partition functions via direct summation, which

are the principal quantities of thermochemistry and most

thermodynamic quantities of practical interest can be derived

from them.

If the accuracy of the variational nuclear motion computa-

tions can be ensured via the use of accurate surfaces, they can

lead not only to the discovery of or confirmation of ‘‘effects’’

for molecular systems which otherwise would have remained

hidden but also to the design of new measurements to test the

limits of quantum theory. Cases in mind include clustering of

energy levels yielding higher apparent degeneracy than

allowed by the symmetry of the systems, quantummonodromy,

selection of almost strictly forbidden ortho–para transitions,

and parity violating transitions in chiral molecules.

An interesting question of molecular vibrations concerns the

range of validity of the harmonic oscillator approximation and

of normal modes. One of the conclusions of the numerical

results obtained from variational computations is that the

normal-mode picture of the vibrational bands commonly

breaks down even for some of the fundamentals of molecules.

Considerable mixing among some of the low-energy states

seems to be the rule rather than the exception for the cases

studied so far. This finding may also be important for

Eckart–Watson Hamiltonian-based vibrational self-consistent-

field (VSCF) spectroscopy (and treatments based on such

VSCF ansätze). Along with symmetry classification, the

approximate vibrational and rotational labels attached to

variationally computed rotational–vibrational eigenstates

provide information much needed by experimental spectro-

scopists. NMD and RRD tables appear to be useful also for

spectroscopic perturbation theory as they give a clear indica-

tion of extensive mixings among states which could be

important when setting up the effective Hamiltonians used

to interpret high-resolution spectroscopic experiments. Thus,

NMD and RRD tables, resulting in complete rovibrational

labels, should be routinely computed at least for semirigid

molecules.

Without discounting the considerable achievements of

nuclear motion theory, some of which were presented above,

it must also be stressed that there are several outstanding

challenges which should be met in the near future and require

further developments of the existing methodologies. The

so-called Carrington bands close to the first dissociation limit

of the molecular ion H+
3 still remain unassigned. In general,

efficient computation of resonance states still requires further

method developments. Treatment of highly excited states of

molecules ‘‘with no structure’’, like the case of CH+
5 , and of

weakly bound molecular systems, like those held together by

H-bonds or dispersive interactions, is far from being solved.

Computation of the hyperfine structure of measured spectra as

well as the efficient joint treatment of several surfaces await

further studies. Extending the applicability of nearly exact

nuclear-motion treatments to much larger, flexible molecules

requires further significant efforts. Computation of quantum

rate constants and advancing quantum control are two areas

where a lot of developments are expected in the near future. It

is clear that in the fourth age of quantum chemistry method

development and the application of the new techniques to

outstanding problems of chemistry continue and continue with

a hopefully increased speed.
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42 C. Fábri, G. Czakó, G. Tasi and A. G. Császár, J. Chem. Phys.,

2009, 130, 134314.
43 M. Karplus, R. N. Porter and R. D. Sharma, J. Chem. Phys.,

1964, 40, 2033.
44 W. L. Hase, in The Encyclopedia of Computational Chemistry,

ed. P. v. R. Schleyer, et al., Wiley, Chichester, 1998, pp. 399–407.
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256 H. S. P. Müller, F. Schlöder, J. Stutzki and G. Winnewisser,
J. Mol. Struct., 2005, 742, 215.

257 N. Aslund, Arkiv. Fys., 1965, 30, 377.
258 N. Aslund, J. Mol. Spectrosc., 1974, 50, 424.
259 D. L. Albritton, W. J. Harrop, A. L. Schmeltekopf, R. N. Zare

and E. L. Crow, J. Mol. Spectrosc., 1973, 46, 67.
260 J. Pliva and W. B. Telfair, J. Mol. Spectrosc., 1974, 53, 221–245.
261 J.-M. Flaud, C. Camy-Peyret and J. P. Maillard, Mol. Phys.,

1976, 32, 499.
262 G. Moruzzi, F. Strumia, R. M. Lees and I. Mukhopadhyay,

Infrared Phys., 1991, 32, 333.
263 J. K. G. Watson, J. Mol. Spectrosc., 1994, 165, 283–290.
264 R. Feeley, P. Seiler, A. Packard and M. Frenklach, J. Phys.

Chem. A, 2004, 108, 9573.
265 M. Frenklach, A. Packard, P. Seiler and R. Feeley, Int. J. Chem.

Kinet., 2004, 36, 57.
266 T. Furtenbacher and A. G. Császár, J. Quant. Spectrosc. Radiat.

Transfer, 2008, 109, 1234.
267 A. L. L. East, W. D. Allen and S. J. Klippenstein, J. Chem. Phys.,

1995, 102, 8506.
268 See the web site www.ph1.uni-koeln.de/cgi-bin/cdmsinfo?file=

e042501.cat.
269 S. N. Yurchenko, J. Zheng, H. Lin, P. Jensen and W. Thiel,

J. Chem. Phys., 2005, 123, 134308.
270 T. Rajamaki, A. Miani and L. Halonen, J. Chem. Phys., 2003,

118, 6358.

271 D. W. Schwenke and H. Partridge, Spectrochim. Acta, Part A,
2002, 58, 849.

272 J. R. Taylor, Scattering Theory, Wiley, New York, 1972.
273 R. E. Wyatt and J. Z. H. Zhang, Dynamics of Molecules and

Chemical Reactions, Marcel Dekker, New York, 1996.
274 V. I. Kukulin, V. M. Kasnopolsky and J. Horacek, Theory of

Resonances, Kluwer, Dordrecht, 1988.
275 W. P. Reinhardt, Annu. Rev. Phys. Chem., 1982, 33, 223.
276 G. Jolicard, C. Leforestier and E. Austin, J. Chem. Phys., 1988,

88, 1026.
277 U. V. Riss and H.-D. Meyer, J. Phys. B: At., Mol. Opt. Phys.,

1993, 26, 4503.
278 J. G. Muga, J. P. Palao, B. Navarro and I. L. Egusquiza, Phys.

Rep., 2004, 395, 357.
279 S. Skokov, J. M. Bowman and V. A. Mandelshtam, Phys. Chem.

Chem. Phys., 1999, 1, 1279–1282.
280 H. Y. Mussa and J. Tennyson, Chem. Phys. Lett., 2002, 366, 449.
281 J. C. Tremblay and T. Carrington Jr., J. Chem. Phys., 2005,

122, 244107.
282 B. C. Silva, P. Barletta, J. J. Munro and J. Tennyson, J. Chem.

Phys., 2008, 128, 244312.
283 N. Moiseyev, S. Friedland and P. R. Certain, J. Chem. Phys.,

1981, 74, 4739.
284 A. Carrington, I. R. McNab and Y. D. West, Chem. Phys., 1993,

98, 1073.
285 J. Miyawaki, K. Yamanouchi and S. Tsuchiya, Chem. Phys.,

1993, 99, 254.
286 M. Grechko, P. Maksyutenko, T. R. Rizzo and O. V. Boyarkin,

J. Chem. Phys., 2010, 133, 081103.
287 N. F. Zobov, S. V. Shirin, L. Lodi, B. C. Silva, J. Tennyson,

A. G. Császár and O. L. Polyansky, Chem. Phys. Lett., 2011, 507,
48–51.

288 T. P. Grozdanov, V. A. Mandelshtam and H. S. Taylor, J. Chem.
Phys., 1995, 103, 7990.

289 B. Poirier and J. C. Light, J. Chem. Phys., 2001, 114, 6562.
290 T. Slee and R. J. L. Roy, J. Chem. Phys., 1993, 99, 360.
291 P. Barletta, S. V. Shirin, N. F. Zobov, O. L. Polyansky,

J. Tennyson, E. F. Valeev and A. G. Császár, J. Chem. Phys.,
2006, 125, 204307.

292 P. R. Schreiner, H. P. Reisenauer, E. Mátyus, A. G. Császár,
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