
Advanced Kinetics Prof. Martin Quack Spring Semester 2013

Exercise 2

Responsible: 1. Eduard Miloglyadov, 2. Robert Prentner,
3. Luboš Horný

Distribution on: Friday 12 April 2013
Return solution: to secretary Ruth Schüpbach

in E 237 by 24 May 2013
Discussion of solution: To be announced

2.1. Read chapter 2 of the script Advanced Kinetics until the end of the chapter and ask
questions (in writing) as necessary.

2.2. Read the article “Multiphoton Excitation” as distributed and ask questions as nec-
essary. Check the equations (1) - (109) and correct where necessary.

2.3. Read chapter 1 of the Handbook of High Resolution Spectroscopy and ask questions
and report possible corrections as necessary.

2.4. Try to derive the matrix elements of the evolution operatorU in the basis {a} for the
two-level system (equations (83) to (89) in the article “Multiphoton Excitation”).
Use the following effective hamiltonian:
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2.5. Show that the solution of the Rabi-two-level problem for the upper state p2(t) can

be described by

p2(t) = |a2(t)|2 =
V 2

V 2 +D2
sin2

(
t

2

√
V 2 +D2

)
if one uses the matrix elements given by the equations (83) to (89) and the initial
conditions p1(0) = 1 (a1(0) = 1) and p2(0) = 0 (a2(0) = 0).

Chart a plot of p2(t) for several values of V and D.

2.6. Calculate the Einstein coefficient Afi as well as the natural linewidth for a strong
electric dipole-transition at 1100 cm−1 with a dipole moment of 0.5 Debye. Calculate
the Doppler broadening for m = 228Da and T = 250K and the power broadening
for a laser intensity of 100 MW cm−2 and 1 Wcm−2. All results should be given in
cm−1 and Hz.

2.7. This exercise demonstrates the order of magnitude of the interaction energies.
Solve the following exercise for the radiation of a NIR-diode laser at 104 cm−1 and
of a microwave-maser at 1 cm−1 both having an intensity of 1 Wcm−2.
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a) Calculate the wavelength λ and compare it to the dimension of a typical
molecule.

b) Calculate the electric and magnetic field strengths E0 and B0 in the plane wave
approximation.

c) Calculate the dipole interaction energies for

• 15NO with a electric dipole of 0.16 Debye

• a free unpaired electron with a magnetic dipole of 9.28482 · 10−34 Am2

• a free 15N nucleus with a magnetic dipole of −1.430326 · 10−27 Am2

2.8. Solve the problem at the end of chapter 2.7.1 in the Script (exact solution of the
degenerate two level ”quasi-Rabi” problem).

2.9. Analysis of the perturbational treatment for transition probabilities
Read at first chapter 2.4.3 of the Script and follow through every step of the deriva-
tion. Ask questions (in writing) where you see problems to follow the derivation.
Instead of integrating (2.129) one can in principle evaluate (2.109) and (2.121) nu-
merically for a real spectrum with corresponding couplings. We will use the following
model assumptions for a general coupling scheme:

Calculate the expressions given by (2.109) as well as the sum in (2.121). Use the
following assumptions on the spectral distribution and the coupling scheme and
compare your results with the analytic expression gained from integration of (2.129):

a) The spectrum is equidistant with ρ̃ = 104 cm and a constant coupling matrix el-
ement Vjn = 10−2 cm−1. The state n with energy En lies in the middle between
the next adjacent states j. Sum up a sufficiently high number of states until you
reach convergence and plot your results for selected Pjn(t) as well as 1− pn(t).
Hint: You may want to sum up states with j ranging from 1 to N
(and −1 to −N respectively). The state n then lies symmetrically in the
middle between states j = −1 and j = +1. This results in reducing the
summations needed to evaluate (2.121) by a factor of 2!
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b) The spectrum is the same as in a) with ρ̃ = 104 cm, but the coupling ma-

trix elements are distributed statistically with a density ρ(Ṽ ) = const for

−Ṽm ≤ Ṽ ≤ +Ṽm and zero elsewhere. The distribution should follow the con-
straint that ⟨|Ṽ |2⟩ 1

2 = 10−2 cm−1.
Note: You can use a random number generator to generate the matrix elements

Ṽjn. In principle one could use complex numbers of the form Ṽjn =
∣∣∣Ṽjn

∣∣∣ eiα
with an arbitrary angle 0 ≤ α ≤ 2π. However the phase factor cancels out
when taking |Ṽjn|2.

c) In a different coupling model one can make the same assumptions as in b)

with ρ̃ = 104 cm, but this time Ṽjn follows a Gaussian distribution with

⟨|Ṽ |2⟩ 1
2 = 10−2 cm−1.

d) Eventually one can combine the assumptions for Ṽjn made in b) and c) with a
statistically distributed spectrum with an average density of states of
⟨ρ̃⟩ = 104 cm. To get such a spectrum several assumptions are possible. In
the easiest case, one would use a fixed interval for possible values of ωjk,

e.g. −5 · 104⟨|Ṽ |2⟩ 1
2 ≤ ωjn

2πc
≤ 5 · 104⟨|Ṽ |2⟩ 1

2 and choose random values for

ωjn. This must be done for every term of the sum until the total number
of states N in the defined interval equals the average density of states, i.e.

N = 105⟨ρ̃⟩⟨|Ṽ |2⟩ 1
2 and ⟨ρ̃⟩ = N/

(
105⟨|Ṽ |2⟩ 1

2

)
respectively.

2.10. (optional)
Instead of using perturbation theory and evaluating the expressions (2.109) and
(2.121) one can solve the matrix representation of the Schrödinger equation directly.
To do this, plug in the corresponding couplings and energies into the Hamiltonian
matrix H(t) (eq. (2.93)) or better H(a) (eq.(2.98)). Discuss this treatment and per-
form an examplary calculation. What do you notice and which numerical problems
occur?
Hint: To get a solution in a reasonable time you will have to reduce the total
number of states used in the diagonalization of the Hamiltonian matrix. One way
would be to scale the values of ρ̃ and |Ṽ | such that the product ρ̃⟨|Ṽ |2⟩ remains
constant (i.e. k = const).

2.11. Write equation (2.144) for the transmission coefficient γ in the form γ(x) = 4x/(1 + x)2

with x = πΓρ/2. Show that γ(x) has a maximum γmax(x) = 1 for x = 1 and make
a graph of the function γ(x). Discuss the limits for k with γ = γmax, Γρ ≫ 1 and
Γρ ≪ 1.

2.12. Power broadening.
Draw a suitable graph of the average excitation ⟨p2(ω)⟩t in Eq. 2.177 and discuss
the full width at half maximum in terms of power broadening. Write the equation
in terms of a Lorentzian distribution explicitly. Discuss at which laser intensities
with a typical transition dipole moment µ = 9.85 · 10−2D for HF and a wavenumber
ν̃ = 3961cm−1 becomes the power broadening equal to the Doppler broadening at
10 K and at 300 K for HF. Make the same estimates for the rotational transition
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(J = 0 → 1) in the far infrared. So called ”permanent” dipole moment of HF in the
ground state is about 1.826 D. The rotational constant is B0 = 20.546 cm−1.

2.13. Discuss the power series mentioned in ”1. Anmerkung” at the end of chapter 2.6.
in detail, add some more terms and look for their behavior.

2.14. Try to solve the problem at the end of section 2.7.1.
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