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In memoriam, Nicholas C. Handy.
We report the implementation of a coupled-cluster linear response approach for the computation of molecular parity violation
(in the framework of the PSI3 code, in particular). The approach is applied first to molecules such as hydrogen peroxide
(HOOH), hydrogen disulfide (HSSH) and dichlorinedioxide (ClOOCl), which have been studied previously. The importance
of including correlation is demonstrated for these examples, also including selected variations of geometry providing
parity violation as a function of torsional angles. For the substituted allenes, 1,3 difluoroallene (CHF=C=CHF), 1,fluoro,3
chloroallene (CHF=C=CHCl) and 1,3 dichloroallene (CHCl=C=CHCl), we find that in particular the last molecule may
be a suitable candidate for the experimental study of molecular parity violation.
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1. Introduction

Space inversion symmetry (or ‘parity symmetry P’) is
among the important discrete symmetries in physics and
its violation accordingly among the most fundamental phe-
nomena [1]. Measurements of parity-violating effects in
heavy atoms have been used, following early proposals in
the 1970’s [2,3], as a test of the electroweak part of the stan-
dard model of particle physics (SMPP) [4–8] in the low-
energy regime [9]. Parity violation or ‘non-conservation’ in
atoms and molecules originates from the weak neutral cur-
rents associated with the exchange of the Z0 boson between
the atomic electron and nucleus. Soon after the discovery
of parity violation in nuclear physics [10–13], speculations
appeared concerning the possible consequences arising for
molecular physics and chemistry including biomolecular
homochirality [14–16]. Violation of parity symmetry by
the weak neutral current removes the energetic degeneracy
between the enantiomers, and correspondingly, induces a
small energy difference between R and S enantiomers of
a chiral molecule. For some prototypical and experimen-
tally accessible chiral molecules this difference is currently
estimated to be approximately 100 aeV(corresponding to
a reaction enthalpy for stereomutation, �pvH

�
0 = 10−11J

mol−1 in CHFClBr, for example [1,17,18]). There have
been several proposals to measure parity-violating effects
in molecules. However, none of the experimental attempts
to confirm the parity-violating effects in molecules have met
so far with success [1,17,19–34]. The extent of molecular
parity violation was initially estimated via theory, and ac-
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curate theoretical predictions of molecular parity violation
are crucial in a search of molecular systems most suitable
for the experiment. Early quantitative work appeared after
about 1980 [35–37], but the early results were later found
to be too small by about two orders of magnitude for the
prototype molecules HOOH and HSSH [38]. These theo-
retical results [38–40], later confirmed [41–44], provided
new impetus and hope for successful experiments. Over
the last decade, further progress has been made [1,45–48]
in the precise theoretical description of molecular-parity
violation, its role in the stereomutation dynamics of chi-
ral molecules and possible implications for the origin of
molecular chirality and biomolecular homochirality. Exper-
imentally, there are currently two different routes pursued
[1]. In the first one, originally proposed by Letokhov [19],
one attempts to carry out a high-resolution spectroscopic
measurement of enantiomerically pure substances and ob-
serve frequency differences, (νM − νP) in Figure 1, between
the corresponding spectral lines of two enantiomers. This
would provide a difference of the parity-violating energy
differences (�pvE − �pvE∗). In the second approach, pro-
posed in [24,25], one uses an intermediate excited state
of well-defined parity (the highest line marked + for posi-
tive parity in Figure 1), which can be connected by optical
transition to the ground state of R and S (or P and M) enan-
tiomers. One can then either observe a combination differ-
ence or the time-resolved transformation of an initial state
with well-defined parity to a state of opposite parity in a
pump-probe setup [1,49]. This second approach allows one
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Figure 1. Energy-level diagram for ‘left’ M and ‘right’ P
enantiomers of a chiral molecule. The dotted lines indicate the
electronic potential-energy minima including parity-violating po-
tentials, whereas the solid lines indicate vibrational (ground and
excited) state levels including zero-point energy (EZ) and parity-
violating corrections (not to scale). The transitions (vertical lines)
to the broken lines are forbidden, whereas transitions between
solid lines are observable spectroscopically(modified after [45]).

to determine the parity-violating energy difference �pvE
between enantiomers. Figure 1 illustrates the energy-level
scheme relevant to the two approaches. There have been fur-
ther proposals [16,22,23,26], but none of these seem to be
currently pursued. The two approaches that are actively pur-
sued in a few laboratories, as described above, require that
the parity-violating energy difference �pvE is much larger
than the tunneling splitting �E± in the hypothetical sym-
metric case [1]. This condition is frequently fulfilled, cer-
tainly so for all chiral molecules that exist as a stable enan-
tiomers for a time of days and more [1]. In practice, prepar-
ing for such experiments, one needs to have good prior
theoretical estimates of the expected effects for a particular
molecule. Since the planned experiments are expected to
be very difficult, a guidance to the most fitting molecular
prototypes and the ability to select a particularly suitable
molecule are desirable. In this context, we and others have
continued theoretical developments for reliably calculating
parity-violating potentials in polyatomic molecules. This
paper aims at providing a further progress along these lines
towards a more accurate computation of parity violation
and a coupled-cluster approach appeared promising.

Today, some of the most accurate results among
the electronic structure theories are achieved with the
coupled-cluster theory, which was originally presented [50]
by Čı́žek, being inspired by earlier work on the theory of
nuclear matter [51] and electron pairs correlation [52], and
initially applied [50,53,54] by Čı́žek and Paldus. Numer-
ous further developments (for details see several reviews
[55–59] and books [60–63]) have made this approach
one of the most frequently applied methods for precise

quantum chemical calculations of structure, energies and
properties [64–78] of molecules at configurations which
do not depart too much from the equilibrium geometry
towards the dissociation, but allowing for large amplitude
motions with conformational changes [79,80]. This method
is thus ideally suited to calculate accurate expectation
values for parity-violating potentials of polyatomic (chiral)
molecules and clusters for the ground state and lower
excited vibration–rotation–tunnelling states, needed for
planning experiment [1,49]. We thus decided to implement
the coupled-cluster theory for parity violation in the open
source program PSI3 [81].

We report here, the computation of molecular parity-
violation potentials Epv obtained as a static linear re-
sponse function of parity-violating and spin–orbit (SO)
coupling operators. We examine the importance of electron
correlation for the parity-violating potentials. We present
results for HOOH and HSSH, often studied prototype
molecules in this context, and compare them with previ-
ous results obtained without inclusion of electron correla-
tion or based on relativistic wavefunctions. Furthermore,
we report new results for more complex systems, ClOOCl
and the fluoro, chloro-substituted allenes(CHF=C=CHF,
CHF=C=CHCl, CHCl=C=CHCl). We might note here
that HOOH does not satisfy the condition �pvE � �E±
(one rather has �pvE��E±∼= hc 10 cm−1). However,
HOOH has been frequently used as prototype for both cal-
culating the tunnelling [82–86] and parity violation. A pre-
liminary account of our work was reported in [87].

2. Methods

The parity-violating electron–nucleus interaction operator
Ĥpv of a molecular system with N nuclei and n electrons
can be within the non-relativistic framework expressed
[1–3,35,39–41,88] (here in SI units):

Ĥ (e−nucl)
pv = Ĥ

(e−nucl)
pv,1 + Ĥ

(e−nucl)
pv,2 + Ĥ

(e−nucl)
pv,3

=
n∑

i=1

(
ĥ

(i)
pv,1 + ĥ

(i)
pv,2 + ĥ

(i)
pv,3

)

= πGF

mehc
√

2

n∑
i=1

[
N∑

A=1

Qw(A)
{

	̂pi · 	̂si , δ
3 (	ri − 	rA)

}

+
N∑

A=1

(−λA)
(
1 − 4 sin2 θw

){ 	̂pi · 	̂IA, δ3 (	ri − 	rA)
}

+
N∑

A=1

2iλA

(
1 − 4 sin2 θw

) (
	̂si × 	̂IA

)

·
[
	̂pi, δ

3 (	ri − 	rA)
]

−

]
, (1)

where GF = 1.438586 × 10−62Jm3 is the ‘Fermi’ constant
[89], me is the mass of electron, h is the Planck constant, c
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1770 Ľ. Horný and M. Quack

is the speed of light, i = √−1, 	̂pi and 	̂si are the momentum

and spin operators of electron i, 	̂IA is the reduced nuclear
spin operator of nucleus A, δ3 (	ri − 	rA) is the Dirac delta
distribution, 	ri and 	rA are position vectors of electrons and
nuclei, coefficient λA ≈ 1 is a nuclear state-dependent factor
close to unity. The electroweak charge Qw(A) of nucleus A
containing ZA protons and NA neutrons is

Qw(A) ≈ (1 − 4 sin2 θw)ZA − NA, (2)

with θw the Weinberg angle and sin 2θw ≈ 0.2319. In
Equation (1), the small contributions arising from the
electron–electron weak interaction [39] are neglected. The
first, nuclear spin-independent term Ĥ

(e−nucl)
pv,1 is dominant

for the calculation of parity-violating potentials of chiral
molecules because of the usually large value of Qw(A) for
the relevant atoms in the molecules under consideration and
because of the small prefactor 1 − 4sin 2θw = 0.0724 of the
nuclear spin-dependent terms Ĥ

(i)
pv,2 and Ĥ

(i)
pv,3, which are

not further considered here. These are, however, important
for the calculation of parity-violating effects in nuclear
magnetic resonance (NMR) spectra of chiral molecules
[88,90–94]. Since Ĥ

(e−nucl)
pv is a purely imaginary operator,

its expectation values for the closed shell singlet states are
zero. Considering the SO coupling, which is expected to ac-
count for the largest first-order correction to the molecular
wavefunction, a non-vanishing parity-violating potential
can be expressed [35,39,41,95] via perturbation theory as

Epv = 2Re

⎧⎨
⎩

∞∑
n�=0

〈�0|Ĥpv|�n〉〈�n|ĤSO|�0〉
E0 − En

⎫⎬
⎭ , (3)

where |�0〉 is the reference state of interest (usually the
singlet ground state) with the corresponding energy E0,
and |�n〉 is the nth excited triplet state with energy En. The
SO interaction operator in the Breit–Pauli form [41,96–99]
can be written as

ĤSO = e2
�

2μ0

8πm2
e

[
n∑

i=1

N∑
A=1

ZA

	̂li,A · 	̂si

|	rA − 	ri |3

−
n∑

i=1

n∑
i �=j

	̂li,j
(
	̂si + 2	̂sj

)
|	ri − 	rj |3

]
, (4)

where 	̂li,A = (	ri − 	rA) 	̂pi is the orbital angular momentum
operator of the electron i. In the following, we do consider
only the one-electron part of the SO coupling operator
with effective nuclear charges Zeff [100,101] as proposed
earlier [39,40], an extension including the two-electron
part being possible [41,102]. Having an SO coupling as the
static perturbation, the parity-violating potential Epv can
be treated as a second-order property, and computed as a

linear response function. We employ the coupled perturbed
Hartree–Fock (CPHF) method [79,80] for the Hartree–
Fock wavefunction, and the coupled-cluster linear response
(CC-LR) method for the correlated, coupled-cluster
wavefunctions. The CPHF method is equivalent to a static
(zero frequency) limit of random phase approximation.
The parity-violating potential Epv is

Epv = 〈〈Ĥpv; Ĥso〉〉ω=0 = −→
Hpv �−1 −→

Hso, (5)

where
−→
Hpv,

−→
Hso denote corresponding vectors, and the

matrix 
 is

� =
(

A B

B A

)
. (6)

The submatrices A,B have elements

Aiajb = (εa − εi)δij δab − 〈aj || ib〉 (7)

Biajb = 〈ab || ij 〉, (8)

where i, j denote occupied, and a, b denote virtual orbitals.
Within a CC-LR approach [78] we have

Epv = 〈〈Ĥpv; Ĥso〉〉ω=0. (9)

The coupled-cluster wavefunction is constructed as an ex-
ponential expansion of Slater determinants:

|�CC〉 = eT̂ |0〉, (10)

|0〉 is the ground-state reference (Hartree–Fock) wavefunc-
tion. T̂ denotes the standard excitation operators within the
single reference coupled-cluster theory:

T̂ = 1

(n!)2

∑
ijk...abc...

t abc...
ijk... a†ib†jc†k . . . , (11)

which we limit to include only the singly and doubly excited
determinants (CCSD). We solve the ground-state coupled-
cluster equations

〈0|e−T̂ Ĥ eT̂ |0〉 = ECC (12)

and

〈
�a

i |e−T̂ Ĥ eT̂ |0〉 = 0, (13)

〈
�ab

ij |e−T̂ Ĥ eT̂ |0〉 = 0, (14)

where Ĥ is the usual electronic Hamiltonian, and �a
i ,�

ab
ij

denote the excited determinants. Since the coupled-cluster
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Molecular Physics 1771

energy is non-variational, proper left-hand wavefunction

〈�CC| = 〈0|(1 + ̂)e−T (15)

is obtained from solving the so-called -equations (as also
required for analytic energy gradients). ̂ is de-excitation
operator similar to T̂ . The next step to form 〈〈Ĥpv; Ĥso〉〉ω=0

is the solution for the perturbed wavefunction and perturbed
T̂ and ̂ cluster operators due to SO coupling which we
denote as X̂ω

so and Ŷ ω
so. These are obtained by solving the

system of equations with ω being the eigenvalues of the
coupled-cluster Jacobian matrix (response matrix)

∑
j

〈�i |H̄N − ω|�j 〉
〈
�j

∣∣X̂ω
so

∣∣0〉 = −〈�i |H̄so|0〉 (16)

and

∑
j

〈
0
∣∣Ŷ ω

so

∣∣�j

〉〈�j |H̄N + ω|�i〉 = −〈0|̂[H̄so, τi]|0〉

− 〈
0
∣∣̂[[

H̄N , X̂ω
so

]
, τi

]]∣∣0〉
. (17)

H̄pv, H̄so, H̄ are the similarity transformed one- and two-
electron operators

H̄pv = e−T Ĥpve
T , (18)

H̄so = e−T Ĥsoe
T , (19)

H̄ = e−T Ĥ eT . (20)

Then finally, we can form the linear-response function and
compute the contributions to parity-violating potential Epv

Epv = 〈〈Ĥpv; Ĥso〉〉ω=0 = 1

2
C(±ω)

{〈
0
∣∣̂[H̄pv, X̂

ω
so

]∣∣0〉
+ 〈

0
∣∣[Ŷ ω

so, H̄pv
]∣∣0〉}

. (21)

For a closed-shell reference determinant, the states deter-
mined by the coupled-cluster response theory are pure spin
states, and consequently, the singlet and triplet states are
also pure spin states not affected by spin contamination.

The one electron parity-violation [41] and SO integrals
were implemented within PSI3 suite of quantum chemical
programs [81]. Coupled-cluster response code for parity vi-
olation with a number of modules within PSI3 –‘ccenergy’,
‘cclambda’, ‘ccsort’, ‘cchbar’ – and a direct product de-
composition library provide

• one- and two-electron matrix elements Fpq, Wpqrs of
the coupled-cluster effective Hamiltonian;

• intermediates used in unperturbed/perturbed CCSD
equations;

• intermediates used in unperturbed/perturbed
-equations;

• proper parametrisation of bra- and ket-vectors, and
correct factorisation of intermediates contributing in
the -equations.

An extension of this work towards the PSI4 code [103] is
in progress. We have used an uncontracted cc-pVXZ + np
basis sets (X = D, T, Q) augmented by sets of steep s-
and p-functions. We correlate all electrons in our computa-
tions. The parity-violating potentials Epv given by Equation
(21) should be understood as a potential hypersurface (thus,
Epv(q1, q2, q3, . . . , q3N − 6) depending upon all 3N-6 inter-
nal coordinates of the molecules [1,42]). We shall discuss
here explicitly only the variation of a few coordinates, such
as torsional angles. The signed electronic parity-violating
energy difference �pvEel between the two enantiomers is
defined as the difference

�pvEel(q) = Epv(q, P)el − Epv(q, M)el. (22)

All values for parity-violating potentials for torsional an-
gles τ = 0◦–180◦ correspond to the P-enantiomer for the
examples discussed below, q in Equation (22) stands for
the collective set (q1, q2, . . . , q3N − 6) and q to the corre-
sponding space inverted, enantiomeric set. Because of the
isotope dependence of the weak nuclear charge Qw, we also
note here the isotopes used consistently in all calculations
reported below: H = 1H, C = 12C, O = 16O, F = 19F, S =
32S, Cl = 35Cl.

3. Results and discussion

As basic test case molecules for our new approach we shall
first study HOOH, HSSH and ClOOCl, which have been
studied before [37–43,104–107]. Figure 2 illustrates the
basic structures and definition of coordinates.

The optimised geometries of HOOH, HSSH, ClOOCl
are listed in Table 1. The coupled-cluster method with per-
turbative estimation of triples excitations CCSD(T) with
correlation-consistent cc-pVXZ basis sets (X = T, D, 5) was
used. Bond lengths re and angles αe were kept frozen dur-
ing the computation of torsional parity-violating potentials
Epv(τ ). In Figure 3, we compare the parity-violating poten-
tials Epv(τ ) as a function of torsional angle τ for HOOH
computed with the Hartree–Fock (HF), and the coupled-
cluster wavefunctions using the basis set of cc-pVQZ qual-
ity. As known from previous work, the parity-violating
Epv(τ ) has a shape of sinus-like functions which, apart from
achiral cis- and trans-geometries, exhibits usually an overall
non-zero contribution to Epv for chiral geometries, although
Epv can vanish for certain chiral geometries [38–42].

The shape of these functions has been discussed before
extensively [38–42], where also a qualitative explanation of
the shape and the origin of zero values at chiral geometries
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1772 Ľ. Horný and M. Quack

Table 1. The optimised molecular structures (bond lengths in pm, angles in degrees) of the ground states X̃ 1A structures of HOOH,
HSSH and ClOOCl. Y stands for the two central atoms and X for the end position atoms (in X-Y-Y-X molecules). α is the X-Y-Y angle,
τ is the dihedral angle as shown in Figure 2.

Molecule Level Basis set re(XY) re(YY) αe τ e

HOOH
CCSD(T) cc-pVQZ 96.38 145.32 100.05 112.31
CCSD(T) cc-pV5Z 96.33 145.13 100.09 112.60

HSSH
CCSD(T) cc-pVQZ 134.30 206.68 98.00 90.68
CCSD(T) cc-pV5Z 134.32 206.65 98.00 90.72

ClOOCl
CCSD(T) cc-pVQZ 172.35 141.09 109.4 83.0
CCSD(T) cc-pV5Z 171.47 140.54 109.4 82.6

was given. One could mention in this context somewhat
similar shapes observed in calculations of optical activity
of such disulfides and dioxides (see [108] and later work
also in [109,110]). Nevertheless, the analogy is not too
close, as the underlying physics and the resulting operators
are really quite different.

The electron correlation contributions are positive for
all angles. Thus, for τ = 45◦ there is about 20% decrease
(qualitatively, the difference is ∼12.00 × 10−20 Eh) be-
tween Epv at the CCSD level of theory and the CPHF re-
sults. Similarly, we observe almost 20% increase for τ =
140◦. Thus, while the absolute values of Epv at the minima
(τ = 45◦) and the maxima τ = 135◦ are almost identical
(−64.0 × 10−20 Eh vs. 60.8 × 10−20 Eh) with Hartree–
Fock wavefunctions, the difference between them increases
with CCSD wavefunctions. Namely, Epv =−51.69 × 10−20

Figure 2. Equilibrium structure of H2S2 (P-enantiomer) as ob-
tained with the CCSD(T) method and cc-pV5Z basis set shown
in the so-called electrostatic reference frame with axes (grey) la-
belled x, y and z together with the so-called molecular main chiral
axes [40] a, b and c (black). The equilibrium structural parameters
are re(SS) = 207.64 pm, re(SH) = 134.32 pm, αe(SSH) = 98.0◦,
τ e = 90.72◦ (modified after [42]).

Eh for τ = 45◦, and 76.35 × 10−20 Eh for τ = 135◦. In-
terestingly, the inclusion of electron correlation shifts the
point for which the Epv(τ ) of a chiral structure is zero. While
Epv = 0 with the Hartree–Fock wavefunction at τ ∼ 87◦,
Epv = 0 at τ ∼ 82◦ with the coupled-cluster wavefunction,

Figure 3. Parity-violating potentials Epv as a function of τ of
HOOH computed with the CPHF and CCSD-LR methods and
cc-pVQZ basis set, together with the parity-conserving potential
Vel computed at the CCSD(T)/cc-pV5Z level of theory.

Figure 4. Parity-violating potentials Epv as a function of τ of
HOOH computed with the CCSD-LR method and various basis
sets, together with the parity-conserving potential Vel computed
at the CCSD(T)/cc-pV5Z level of theory.
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Molecular Physics 1773

or, expressed differently, with the Hartree–Fock wavefunc-
tion, a P-enantiomer is predicted to be more stable than
the M-enantiomer for HOOH geometries up to τ ∼ 87◦;
while, due to the correlation corrections, a P-enantiomer
is predicted to be more stable only for geometries up to
τ = 82◦. This is of no practical relevance for the experi-
mental detection of parity violation in HOOH, but rather
(HOOH being a theoretically most investigated system for
molecular parity violation) a useful example that in other
molecular systems electron correlation corrections may de-
termine which of the enantiomers should be the more stable
one. The convergence of parity-violating potentials with the
increase of basis sets - from double-zeta to quadruple-zeta
quality, and inclusion of electron correlation at the CCSD
level is demonstrated in Figure 4. The increase of basis set
from double-zeta to triple-zeta-quality changes the Epv val-
ues by about 10% for the extrema, but further increase to
quadruple-zeta basis set changes the Epv values by 5% at
most, and usually not more than 3%. Overall, we can see
approximate convergence being established with respect to
the basis set size and the correlation treatment. Also, ex-
tensions to even larger basis sets and particularly further
inclusion of electron correlation via the triple excitations
(CC3 and CCSDT wavefunctions for the linear response
treatment) are still feasible, but we would not expect cor-
rections larger than a few percent. The results of various
computational approaches for a prototypical system like
HOOH are compared in Table 2 for τ = 45◦ and �pvE

Table 2. Comparison of Epv (in 10−20 Eh, geometry at τ = 45◦)
and �pvE (in 10−14hc cm−1, at τ = 90◦) for HOOH molecule
computed with various methods.

Methoda Epv �pvEe, l

SDE-RHFb −1.2 0.03
CIS-RHFc −39.7 3.9
CIS-LRd −39.7 3.2
TDAd −55.9 7.0
CPHFe −61.38 2.9
RPAf,g −60.88 2.8
CASSCFg −45.00 3.4
DFT-B3LYPh −53.56 6.5
CCSDe −51.69 6.4
ZORA-HFi −79.30 3.9
ZORA-B3LYPj −65.40 8.3
ZORA-BLYPj −69.30 9.9
DC-HFk −70.60 4.0
DC-MP2l −57.88 7.3
DC-CCSD(T)m −61.20 8.8

aNote the equivalence, in principle, of the methods as given in the paren-
theses (CIS-RHF, CIS-LR, TDA) and (CPHF, RPA), differences arising
only because of slight differences in numerical methods applied in the
independent calculations by different authors.
bRef. [37] f Ref. [111] j Ref. [112]
cRef. [38–40,42] g Ref. [41] k Ref. [104]
dRef. [43]h Ref. [105] l Ref. [106]
ethis work i Ref. [113] m Ref. [114]

Figure 5. Parity-violating potentials Epv as function of τ of
HSSH computed with the CPHF and CCSD-LR methods and
cc-pVQZ basis set, together with the parity-conserving potential
Vel computed at the CCSD(T)/cc-pV5Z level of theory.

for the equilibrium geometry. The non-relativistic methods
are listed together with the 2- and 4-component relativistic
methods. There is agreement at all levels about the posi-
tive correction to the non-relativistic HF, the 2-component
zeroth-order regular approximation (ZORA)–HF, and the
4-component Dirac–Coulomb HF values by higher level
methods. The extent of electron correlation corrections are
also comparable. This also highlights the fact that for the
light molecular systems there is no reason to consider the
relativistic approaches superior to the non-relativistic ones.
We note rather good agreement for Epv values computed
with the DC-MP2 method as an analytical first-order molec-
ular property and our Epv value computed with the CCSD-
LR method of −57.88 × 10−20 Eh vs. −51.69 × 10−20 Eh.
These should be probably considered superior to any values
calculated as a property via methods of finite differences.

Figure 6. Parity-violating potentials Epv as function of τ of
HSSH computed with the CCSD-LR method and various basis
sets, together with the parity-conserving potential Vel computed
at the CCSD(T)/cc-pV5Z level of theory.
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1774 Ľ. Horný and M. Quack

Table 3. Comparison of Epv (in 10−20 Eh, geometry at τ = 45◦)
and �pvE (in 10−14hc cm−1, at τ = 90◦) for HSSH molecule
computed with various methods.

Method Epv �pvEel

SDE-RHFa −135.0 2.0
CIS-RHFb −1654.0 188.1
TDAc −1487.7 161.5
CPHFd −1865.6 242.0
RPAe −1913.0 185.0
CCSDd −2248.6 238.3
ZORA-HFf −2350.0 294.5
ZORA-B3LYPg −2690.0 290.0
ZORA-BLYPg −2750.0 278.3
DC-HFh −2077.0 280.0
DC-MP2i −2112.0 224.3
DC-CCSD(T)j −2110.0 215.1

aRef. [37] eRef. [111] iRef. [106]
bRef. [38–40,42] fRef. [113] jRef. [114]
cRef. [43] gRef. [112]
d This work hRef. [104]

The parity-violating Epv torsional potentials for hydro-
gen disulphide HSSH computed with the Hartree–Fock, and
the coupled-cluster wavefunction, and cc-pVQZ quality ba-
sis set are compared in Figure 5. Different from HOOH, the
correlation contributions are negative up to around τ = 80◦

and positive for larger angles. For the equilibrium geometry
of HSSH near τ = 90◦, the correlation correction to Epv

is computed to be only + 8.5 × 10−20 Eh (CCSD) to the
value −551.5 × 10−20 Eh at the CPHF level. At the extreme
points of the parity-violating potential near τ = 45◦ (HF
value of −1866 × 10−20 Eh) and τ = 135◦ (CPHF value of
1036 × 10−20 Eh), the correlation corrections are −380 ×
10−20 Eh (20 %) at τ = 45◦, and +315 × 10−20 Eh (30 %) at
τ = 135◦. The extent of these corrections appears to agree
more with the relativistic 2-component ZORA-based meth-
ods (see also Table 3). The convergence of parity-violating
potentials as a function of τ with the increase of basis sets
is demonstrated in Figure 6. As in the case of HOOH, the
results obtained with the triple-zeta quality basis sets are
within 5% from the quadruple-zeta quality basis set results
(for large values of Epv). A chiral geometry with zero con-
tribution to Epv is at a region around τ = 100◦ for all basis
sets, and thus, the P-enantiomer of HSSH is predicted to
be more stable than M-enantiomer. Various computational
approaches for HSSH are compared and summarised in
Table 3. Our value for �pvE = (hc) 238.3 × 10−14cm−1

at τ = 90◦, compares well with DC-MP2 value of �pvE =
(hc) 224.3 × 10−14cm−1. Leaving the extensively studied
HXXH family of molecules, we report the parity-violating
Epv for 35ClOO35Cl and 1,3-fluoro,chloro-substituted al-
lenes. Given the extremely small tunnelling splittings in the
ground state, ClOOCl and 1,3 difluoroallene were identi-
fied earlier [107,115] as potential candidates for the exper-
imental detection of the parity-violating energy difference

Figure 7. Parity-violating potentials Epv as function of τ of
ClOOCl computed with the CPHF and CCSD-LR methods, and
cc-pVQZ basis set, together with the parity-conserving potential
Vel computed at the CCSD(T)/cc-pVQZ level of theory.

between the enantiomers. Parity-violating potentials Epv(τ )
for ClOOCl [107] have been previously computed with the
random phase approximation (RPA) method (qualitatively
equal to the CPHF method), and multiconfigurational self
consistent field (MCSCF-LR) approach was used to charac-
terise 1,3 difluoroallene [115]. The parity-violating poten-
tials Epv(τ ) of ClOOCl computed with the Hartree–Fock,
and coupled-cluster wavefunctions and cc-pVQZ basis set
are compared in Figure 7. Different from the the previ-
ous cases, there is no chiral geometry of ClOOCl at which
one finds Epv = 0. The M-enantiomer is thus predicted to
be more stable than the P-enantiomer for all torsional an-
gles. Curiously, the correlation correction is positive for all
angles apart from the region with τ from 100◦ to 120◦. Fur-
thermore, it never exceeds more than 10% apart from the
region τ from 40◦ to 80◦, where the correlation correction
increases towards 20%. The convergence of parity-violating
potentials with the increase of basis sets is documented by
Figure 8. Though the increase of basis set from double-zeta

Figure 8. Parity-violating potentials Epv as function of τ of
ClOOCl computed with the CCSD-LR method and various basis
sets, together with the parity-conserving potential Vel computed
at the CCSD(T)/cc-pVQZ level of theory.
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Table 4. The optimised molecular structures (bond lengths in
pm, angles in degrees) of the ground state of 1,3 difluoroallene
and 1,3 dichloroallene.

MP2/ CCSD(T)/
Molecule Parameter cc-pVQZ cc-pVTZ

1,3 difluoroallene
re(CC) 130.25 130.98
re(CF) 134.12 134.30
re(CH) 107.94 108.16
∠(CCC) 176.88 177.26
∠(FCC) 122.52 122.50
∠(HCC) 124.98 124.75

1,3 dichloroallene
re(CC) 130.35 130.95
re(CCl) 172.78 174.32
re(CH) 107.93 108.06
∠(CCC) 180.00 180.00
∠(ClCC) 122.54 122.67
∠(HCC) 123.26 123.26

Table 5. The optimised molecular structures (bond lengths
in pm, angles in degrees) of the ground state of 1,fluoro,3
chloroallene.

Parameter MP2/cc-pVQZ CCSD(T)/cc-pVTZ

re(CC) 130.33 130.99
re(CF) 134.11 134.29
re(CCl) 172.95 174.49
re(CH) 107.94 108.11
∠(CCC) 177.05 177.36
∠(FCC) 122.69 122.63
∠(ClCC) 122.59 122.72
∠(HCC) 124.05 123.96

to triple-zeta quality at given level of theory results in about
10% change, further increase of basis set to quadruple-zeta
quality leads to changes of only 2% beyond this. CCSD/cc-
pVQZ level of theory calculations with the unfrozen core of
ClOOCl are also together with 1,3 dichloroallene among the
most extensive computations we report here. At this level,
we predict the M-enantiomer to be stabilised compared with
the P-enantiomer by �pvE = (hc) 91 × 10−14cm−1, which
can be compared with previously reported �pvE = (hc) 60
× 10−14cm−1 obtained with the RPA method.

Table 4 and 5 list the optimised geometries of 1,3 diflu-
oroallene, 1,3 dichloroallene and 1,fluoro,3 chloroallene.
The parity-violating potentials Epv(τ ) computed for 1,3 di-
fluoroallene at the CPHF and CCSD-LR levels of theory
with double-zeta quality basis set are shown in Figure 9.
Apart from two pronounced maxima at τ = 20◦ and τ =
160◦, the correlation contributions do not exceed 10%, they
are negative for the geometries up to τ = 60◦, and positive
for larger angles. The parity-violating potentials Epv(τ ) for
1,fluoro,3 chloro-allene are shown in Figure 10, and for
1,3 dichloroallene in Figure 11. The correlation corrections
are relatively small for these examples, similar among all

Figure 9. Parity-violating potentials Epv as function of τ for 1,3
difluoroallene computed with the CPHF and CCSD-LR methods,
and cc-pVDZ basis set, together with the parity-conserving po-
tential Vel computed at the CCSD(T)/cc-pVTZ level of theory.

allenes we studied. The comparison of results for the sub-
stituted allenes and series of basis sets are presented in
Figures 12–14. Very little dependence of parity-violating
torsional potentials with respect to basis set size is ob-
served. Thus, the fluoro,chloro-substituted allenes can be
seen as special examples of molecules where the parity vi-
olation is strongly determined by geometry (τ ), and very
little dependent on the level of theory used when computed
as a response property. Finally, the parity-violating poten-
tials Epv(τ ) for all three allenes are compared in Figure 15.
The M-enantiomer is computed to be stabilised with respect
to the P-enantiomer by �pvE = (hc) 14 × 10−14cm−1 for
1,3 difluoroallene, which can be compared with previously
reported �pvE = (hc) 12.9 × 10−14cm−1 [115]. The M-
enantiomer of 1,fluoro,3 chloroallene is predicted to be
more stable than the P-enantiomer by �pvE = (hc) 7.1 ×
10−13cm−1, and the M-enantiomer of 1,3 dichloroallene
is predicted to be more stable than the P-enantiomer by

Figure 10. Parity-violating potentials Epv as function of τ of
1,3 difluoroallene computed with the CCSD-LR method and var-
ious basis sets, together with the parity-conserving potential Vel

computed at the CCSD(T)/cc-pVTZ level of theory.
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1776 Ľ. Horný and M. Quack

Figure 11. Parity-violating potentials Epv as function of τ for
1,fluoro,3 chloroallene computed with the CPHF, and CCSD-
LR methods and cc-pVDZ basis set, together with the parity-
conserving potential Vel computed at the CCSD(T)/cc-pVTZ level
of theory.

Figure 12. Parity-violating potentials Epv as function of τ for
1,fluoro,3 chloroallene computed with the CPHF and CCSD-
LR methods, and cc-pVDZ basis set, together with the parity-
conserving potential Vel computed at the CCSD(T)/cc-pVTZ level
of theory.

Figure 13. Parity-violating potentials Epv as function of τ for 1,3
dichloroallene computed with the CPHF and CCSD-LR methods,
and cc-pVDZ basis set, together with the parity-conserving po-
tential Vel computed at the CCSD(T)/cc-pVTZ level of theory.

Figure 14. Parity-violating potentials Epv as function of τ of 1,3
dichloroallene computed with the CCSD-LR method and vari-
ous basis sets, together with the parity-conserving potential Vel

computed at the CCSD(T)/cc-pVTZ level of theory.

Figure 15. Comparison of parity-violating potentials Epv as
function of τ of 1,3 difluoroallene, 1,fluoro,3 chloroallene, and
1,3 dichloroallene computed with the CCSD-LR method and cc-
pVQZ basis set.

�pvE = (hc) 1.1 × 10−12cm−1 at the respective equilib-
rium geometries. The latter allene is thus a quite suitable
candidate for an approach to measure �pvE using the ex-
cited electronic state as intermediate in the approach of
[24,25], provided that the high-resolution electronic spec-
tra show sufficiently resolved rovibronic lines structure.
Obviously, the relatively heavy chlorine substituent with
nuclear quadrupole moments and resulting complex hy-
perfine structures will lead to complex spectra, which are,
however, in principle, resolvable [49].

4. Conclusions

The effects arising from parity violation in chiral molecules
and, in particular, the parity-violating energy difference
�pvE between the enantiomers can be considered among
the most fundamental new aspects and in part unsolved
questions in stereochemistry and even biomolecular evolu-
tion, even in a broad historical perspective [116,117]. We
can summarise the approach towards solving this problem
in the following steps.

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
2:

43
 2

1 
Ju

ly
 2

01
5 



Molecular Physics 1777

(1) Obtain approximate results for �pvE from realis-
tic theoretical calculations on selected molecules,
which may serve as candidates for spectroscopic ex-
periments towards molecular parity violation (test-
ing also theoretically for possible effects due to
tunnelling).

(2) Carry out the necessary spectroscopic experi-
ments and rovibrational analyses [118,119] on these
molecules in order to identify and assign (with
respect to rovibrational symmetry and parity) ap-
propriate spectral lines for the relevant experiment
(as schematically summarised in Figure 1).

(3) Carry out the experiments along one or several of
the lines outlined schematically in Figure 1 to ob-
tain an experimental value of �pvE. This will pro-
vide a test of the validity of the theory.

(4) Analyse the experimental results for �pvE by means
of highly accurate theoretical calculation to ex-
tract fundamental parameters of the standard model
(SMPP), for instance in view of a possible energy
dependence of the Weinberg angle [1] (this also
needs the inclusion of rovibrational effects on �pvE
[18]).

(5) Use accurate calculations by means of the theoret-
ically well established and experimentally checked
methods to predict relevant quantities arising
from parity violation in possible mechanisms of
biomolecular evolution in order to establish (or re-
fute) the influence of molecular parity violation
[1,16,117].

This work contributes to the first and last two steps of such
a project. The coupled-cluster techniques developed here
allow for further refinement towards much higher accuracy.
At present, the specific results presented here provide suffi-
ciently reliable estimates on the molecules studied to decide
upon their possible use in experiments. While, in principle,
calculations of tunnelling splittings �E± in the ground state
would be necessary in addition, these can be omitted for
the molecules studied here, as they fall clearly into the two
limiting cases �pvE � �E± (H2O2, H2S2, unsuitable for
experiments on �pvE) and �pvE � �E± (ClOOCl [107]
and substituted allenes, in principle, all suitable for experi-
ments on �pvE). From the numerical results, in particular,
1,3 dichloroallene is a good candidate for such experiments
if the spectroscopic difficulties can be resolved. As already
pointed out [115], �pvE of 1,3 difluoroallene is excep-
tionally small, making this a difficult case, and 1,fluoro,3
chloroallene is intermediate and thus a borderline candidate
molecule.

From this work, it is also seen that correlation contribu-
tions can be substantial and have to be taken into account in
realistic calculations of �pvE. The implementation of effi-
cient coupled-cluster methods in this work will prove useful
for many future applications and further work on suitable

candidate molecules is in progress as is also the work on
further improvement of the theory towards highly accurate
results in view of step 4 of the overall approach.
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[53] J. Paldus, J. Čı́žek, and I. Shavitt, Phys. Rev. A 5, 50 (1972).
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