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1 Introduction

The Born�Oppenheimer (BO) approximation [1, 2], being central to the de�nition of many

concepts of chemistry, separates adiabatically the motion of electrons and nuclei and thus

de�nes two important �elds for computational quantum chemistry: electronic structure

theory and nuclear motion theory. This thesis is dedicated to the �eld of nuclear motion

theory and introduces methods for the e�ective variational solution of the time-independent

nuclear-motion Schrödinger equation.

Similarly to the �eld of electronic structure theory, the nuclear Hamiltonian is the sum

of the nuclear kinetic and potential energy operators. The potential energy operator, also

known as the potential energy surface (PES), contrary to electronic structure computations,

is never known in an exact and analytical form. The value of the PES at distinct nuclear

geometries can be obtained by the tools of electronic structure theory.

Also in contrast to electronic structure computations, the nuclear kinetic energy opera-

tor is not expressed in terms of Cartesian coordinates. Instead of the Cartesian formulation

it is common to utilize more speci�c coordinates which allow the introduction of di�erent

types of motions, namely translations, rotations and vibrations. The three translational

degrees of freedom are described by three center-of-mass coordinates [3], while the three

rotational degrees of freedom are usually characterized by the widely employed Euler an-

gles [3]. For the vibrational motions there are many possible coordinate sets and the actual

choice of the vibrational coordinates often depends on the semirigid or �exible nature and

on the bonding arrangement of the molecule under examination.

There are three main categories of the nuclear kinetic energy operators. The �rst one

is the so-called tailor-made nuclear kinetic energy operator [4, 5, 6]. These operators have

been successfully applied, also in our group [7, 8, 9, 10], to molecules containing 3, 4, and

even 5 atoms [11, 12, 13, 14, 15, 16, 17]. An important drawback of the tailor-made Hamil-

tonians is their speci�city: separate programs need to be developed for molecules with

di�erent atom count and bonding arrangement. Within the second category this problem

is circumvented by employing the exact and general N -atomic Eckart�Watson [18, 19] nu-

clear kinetic energy operator expressed in rectilinear internal coordinates. Several programs

were implemented either in our laboratory, where it is called DEWE [20, 21, 22], or by other

research groups [23, 24, 25, 26, 27, 28, 29, 30, 31]. Though these programs do apply to

N -atomic molecules, it is important to note that they are limited to semirigid molecules ex-

hibiting a well-de�ned single minimum on their PES. The third and most general approach
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allows nuclear motion computations employing arbitrarily chosen internal coordinates and

body-�xed frame embeddings for N -atomic molecules. Besides the GENIUSH program

[32, 33] developed in our group, notable examples of this black-box-like approach can be

found in Refs. [34, 35, 36, 37, 38, 39, 40].

During my doctoral research I extended the original vibrational-only DEWE and GE-

NIUSH programs, developed principally by Dr. Edit Mátyus, with the capability of varia-

tional computation of rotational-vibrational energy levels and wave functions, as described

in Sections 2.1 and 2.2, respectively. Section 2.3 summarizes the symmetry-adapted Lanc-

zos method (SAL) allowing the assignment of molecular symmetry (MS) group symmetry

labels to the computed rovibrational energy levels and wave functions. After a general in-

troduction to SAL I give the details of my SAL implementation [22] within DEWE. Section

2.4 introduces how the rotational Eckart condition [41], leading to an optimal separation

of vibrations and rotations, can be maintained for the case of general N -atomic rovibra-

tional Hamiltonians expressed in arbitrary curvilinear internal coordinates. The practical

implementation of the Eckart frame within GENIUSH is also described. Section 2.5 is ded-

icated to the labelling of the computed rovibrational energy levels and wave functions with

zeroth-order harmonic oscillator and rigid rotor quantum numbers by the normal mode

decomposition (NMD) and rigid rotor decomposition (RRD) procedures [42], helping the

interpretation of the computed rovibrational states. Section 2.6 gives an insight into the

vibrational subspace (VS) method [22] allowing the computation of rovibrational states for

high values of the J rotational quantum number. Labelling of the computed rovibrational

states with symmetry labels, and zeroth-order harmonic oscillator and rigid rotor quantum

numbers within the framework of VS is also discussed.

My application-oriented results are summarized in Section 3. Section 3.1 focuses on the

rovibrational results for the four-atomic NH3 obtained by GENIUSH. Special emphasis is

put on the comparison of the full-dimensional and di�erent reduced-dimensional rovibra-

tional models. In Section 3.2 the rovibrational spectroscopy of the �ve-atomic C2H2O

(ketene) molecule is examined. Variational computations (employing the DEWE, VS,

NMD, RRD and SAL methods) and the Measured Active Rotational-Vibrational Energy

Levels (MARVEL) [43] procedure were applied to propose new assignments in the experi-

mental spectrum of C2H2O. In Section 3.3 labels of the MARVEL energy levels of H2
16O

up to J = 25 are validated. The validation process has employed the VS procedure imple-

mented within GENIUSH.
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Finally, in Section 4 I introduce my future plans concerning the CH4 and NH3 molecules.

In case of CH4, rovibrational clustering of the energy levels corresponding to high J values

is examined. For NH3, rovibrational computations employing the Eckart frame have been

executed and the results with di�erent choices of the Eckart reference structure are analysed

brie�y.
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2 Variational rotational-vibrational computations for N-

atomic molecules

2.1 DEWE

This section is dedicated to the DEWE (Discrete variable representation of the Eckart�

Watson Hamiltonian with a numerically Exact inclusion of arbitrary potential energy sur-

faces) program developed by our research group. DEWE employs the universal and exact

Eckart�Watson (EW) Hamiltonian [18, 19] and the iterative Lanczos [44] eigensolver for

obtaining the eigenvalues and eigenvectors of the Hamiltonian matrix. Though DEWE can

be applied for N -atomic systems, it is limited to the case of semirigid molecules with a

single well-de�ned minimum structure. My contribution to DEWE was to add the capa-

bility of computing rotational-vibrational energy levels and wave functions to the original

vibrational-only code [20, 21]. After introducing the EW Hamiltonian and summarizing

the vibrational-only implementation I give a detailed description on the variational solution

of the rotational-vibrational problem [22] within the framework of DEWE.

2.1.1 The Eckart�Watson (EW) Hamiltonian for semirigid molecules

The formalism given in this section is restricted to molecules having nonlinear reference con-

�gurations. Details concerning the special case of molecules with linear reference structure

are discussed in the literature [19].

Let us denote the position vectors of the nuclei of an N -atomic nonlinear molecule by

xi (i = 1, · · · , N), expressed in the laboratory-�xed frame. In practice, it is preferable to

work with the body-�xed nuclear position vectors zi, de�ned as

zi = CT(xi −X). (1)

In Eq. (1) X refers to the nuclear center of mass and C stands for the orthogonal direction

cosine matrix [3], which gives the orientation of the body-�xed frame with respect to the

laboratory-�xed one. It is important to note that only 3N −6 coordinates are independent

out of the 3N body-�xed Cartesian coordinates.
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The translational motion of the molecule can be separated by employing the

N∑
i=1

mizi = 0 (2)

translational Eckart condition [41], where mi is the mass of the ith nucleus. The ρi dis-

placement vectors are de�ned as

ρi = zi − ci, (3)

where the ci (i = 1, · · · , N) vectors belong to the reference structure of the molecule. In

most of the applications the reference structure corresponds to a minimum of the potential

energy surface (PES). In terms of the ci and ρi vectors the rotational Eckart condition [41]

reads as
N∑
i=1

mici × ρi = 0, (4)

de�ning the coordinate axes of the body-�xed frame.

Out of the many coordinate systems developed to describe the vibrational motion of

the nuclei, the present formalism employs the

Qk =
N∑
i=1

∑
α

bαikραi =
N∑
i=1

bT
ikρi,

Qk ∈ (−∞,+∞), k = 1, 2, . . . , 3N − 6, α = x, y, z (5)

rectilinear vibrational coordinates constructed as the linear combinations of the ρi displace-

ment vectors. In Eq. (5) b ∈ < 3N×(3N−6) is a constant matrix whose elements were chosen

as

bik =
√
mi lik (6)

by Watson [18]. The rows and columns of the l matrix satisfy the

N∑
i=1

lTiklil = δkl and
N∑
k=1

lTikljk = δij (7)

orthogonality relations. In view of Eq. (6), the Qk rectilinear vibrational coordinates are
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given by

Qk =
N∑
i=1

√
mi l

T
ikρi, k = 1, 2, . . . , 3N − 6 (8)

with regard to the elements of the l matrix.

If Eq. (8) is inverted, the ρi displacement vectors can be expressed in terms of the Qk

vibrational coordinates:

ρi =
1
√
mi

3N−6∑
k=1

likQk, i = 1, . . . , N. (9)

In practical applications of DEWE, the reference con�gurations are usually chosen to be an

equilibrium (minimum) structure of the PES and the Qk rectilinear vibrational coordinates

de�ned in Eq. (8) are chosen to be the 3N − 6 normal coordinates of the molecule under

examination.

The exact rotational-vibrational kinetic energy operator for an N -atomic nonlinear

molecule employing the Eckart embedding and rectilinear vibrational coordinates of Eq.

(8) was simpli�ed by Watson in 1968 [18] and has the form

Ĥ =
1

2

3N−6∑
k=1

P̂ 2
k +

1

2

∑
α,β

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)− ~2

8

∑
α

µαα + V̂ , (10)

where α,β = x, y, z. In Eq. (10), P̂k = −i~ ∂
∂Qk

, the Ĵx, Ĵy, and Ĵz operators correspond to

the body-�xed components of the total angular momentum, and V̂ is the potential energy

surface determining the motion of the nuclei. De�nitions of the π̂α vibrational angular

momentum and µαβ generalized inverse inertia tensor operators are given by the

π̂α =
3N−6∑
k,l=1

ζαklQkP̂l, (11)

µαβ =
(
I′−1
)
αβ
, (12)

I ′αβ = Iαβ −
3N−6∑
k,l,m=1

ζαkmζ
β
lmQkQl, (13)
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and

ζαkl =
∑
βγ

εαβγ

N∑
i=1

lβiklγil (14)

relations. In the previous expressions εαβγ stands for the Levi-Cività symbol and I refers

to the inertia tensor.

The µ matrix can be decomposed as

µαβ =
∑
γδ

(I
′′−1)αγI

0
γδ(I

′′−1)δβ, (15)

where

I
′′

αβ = I0αβ +
1

2

3N−6∑
k=1

aαβk Qk, (16)

and

aαβk = 2
∑
γδν

εαγνεβδν

N∑
k=1

√
micγilδik, (17)

with I0 being the inertia tensor corresponding to the reference structure. In order to

compute matrix elements corresponding to the Eckart�Watson Hamiltonian the integral

volume element is needed, which has the simple form

dV = sin θdφdθdχdQ1 · · · dQ3N−6, (18)

where φ, θ, and χ denote the well-known Euler angles [3].

2.1.2 Summary of the vibration-only algorithm

The description of the vibrational DEWE algorithm given in this section follows closely the

work of Mátyus and coworkers [20, 21]. For the J = 0 value of the J rotational quantum

number, the Eckart�Watson Hamiltonian takes the form

Ĥv =
1

2

3N−6∑
k=1

P̂ 2
k +

1

2

∑
α,β

π̂αµαβπ̂β −
~2

8

∑
α

µαα + V̂ . (19)

The Ĥv pure vibrational operator can be regarded as an e�ective nuclear-motion Hamilto-

nian yielding the J = 0 energy levels and wave functions of the molecule under examination.

In order to apply the linear variational method to the eigenproblem of Ĥv a suitable
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basis has to be found. As molecular vibrations are examined, a plausible choice is the set

of one-dimensional harmonic oscillator eigenfunctions [45],

fik(Qk) = Hik−1(γ
1
4
k Qk)e

−
γ
1
2
k
Q2
k

2 . (20)

In Eq. (20) Qk is the kth rectilinear vibrational coordinate, γk is the quadratic force

constant corresponding to Qk and the Hik−1(γ
1
4
k Qk)s denote the well-known normalized

Hermite polynomials. As a �rst attempt, one can de�ne the 3N−6-dimensional vibrational

basis as the direct product of the fik(Qk) one-dimensional functions,

{
3N−6∏
k=1

fik(Qk)}n1,n2,...,n3N−6

i1=1,i2=1,··· ,i3N−6=1. (21)

As a result, 3N−6-dimensional integrals arise during the evaluation of the potential energy

matrix elements which can highly increase the computational cost. Our strategy to circum-

vent this problem employs the discrete variable representation (DVR) [14, 46, 47, 48, 49, 50],

which greatly reduces the numerical work needed for the evaluation of the potential energy

matrix elements. The DVR technique has proven to be a powerful tool for solving prob-

lems in the �elds of computational molecular spectroscopy and molecular dynamics since

its introduction in these �elds in 1965 [46].

The Hermite-DVR [51] applied by DEWE necessitates the matrix representation of the

Qk coordinate operators for k = 1, . . . , 3N − 6. These matrix elements are de�ned by the

〈fik(Qk)|Qk|fjk(Qk)〉 =

+∞∫
−∞

Hik−1(γ
1
4
k Qk)QkHjk−1(γ

1
4
k Qk)e

−γ
1
2
k Q

2
kdQk (22)

integrals, where the matrix representation of Qk is of dimension nk. The only nonzero

values of Eq. (22) are given by

〈fik(Qk)|Qk|fjk(Qk)〉 =

√
ik

2γk
, if jk = ik + 1, (23)

and

〈fik(Qk)|Qk|fjk(Qk)〉 =

√
ik − 1

2γk
, if jk = ik − 1. (24)
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The qk,ik quadrature points for the Qk coordinate correspond to the eigenvalues of Qk,

while the DVR basis can be built according to the expression

Fik(Qk) =

nk∑
jk=1

(Tk)ik,jkfjk(Qk), (25)

where the columns of Tk contain the eigenvectors of Qk. These one-dimensional DVR basis

functions are combined into the direct product basis according to the equation

{
3N−6∏
k=1

Fik(Qk)}n1,n2,...,n3N−6

i1=1,i2=1,··· ,i3N−6=1. (26)

The Qk matrices become diagonal as a result of applying the DVR basis. Moreover,

the matrix representation of an arbitrary Â operator depending only on the vibrational

coordinates can be approximated by a diagonal matrix and the diagonal elements equal to

the values of Â at the DVR grid points. This statement applies to the V̂ potential energy

surface whose matrix elements are simply

〈Fi|V̂ (Q)|Fj〉 = V (q1,i1 , q2,i2 , . . . , q3N−6,n3N−6
)δi1,j1δi2,j2 · · · δi3N−6,j3N−6

, (27)

where Fi = Fi1(Q1)Fi2(Q2) · · ·Fi3N−6
(Q3N−6), and the i and j direct product indices can

be uniquely expressed in terms of the i1, i2, . . . , i3N−6 and j1, j2, . . . , j3N−6 indices:

i = n2 . . . n3N−6(i1 − 1) + n3 . . . n3N−6(i2 − 1) + · · ·+ n3N−6(i3N−7 − 1) + i3N−6, (28)

and

j = n2 . . . n3N−6(j1 − 1) + n3 . . . n3N−6(j2 − 1) + · · ·+ n3N−6(j3N−7 − 1) + j3N−6.

Matrix elements of the µαβ operators take the form

〈Fi|µαβ(Q)|Fj〉 = µαβ(q1,i1 , q2,i2 , . . . , q3N−6,i3N−6
)δi1,j1δi2,j2 · · · δi3N−6,j3N−6

, (29)

where µαβ(q1,i1 , q2,i2 , . . . , q3N−6,i3N−6
) is evaluated according to Eq. (15). Once the matrix

elements corresponding to the µαβ operators are known it is easy to set up the matrix

representation of −~2
8

∑
α µαα, the so-called extrapotential term of the EW Hamiltonian.
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DVRmatrix elements of the ∂
∂Qk

and ∂2

∂Q2
k
di�erential operators needed for the 1

2

∑3N−6
k=1 P̂ 2

k

and 1
2

∑
α,β π̂αµαβπ̂β terms can be given by simple analytic expressions [51].

The last step in solving the vibrational problem is the construction of the matrix rep-

resentation of the
1

2

∑
α,β

π̂αµαβπ̂β

Coriolis coupling operator. To move forward, two resolution of identities are to be inserted

amongst π̂α and µαβ, and µαβ and π̂β. This step results in the matrix element expression

〈Fi|
1

2

∑
α,β

π̂αµαβπ̂β|Fj〉 =
1

2

∑
α,β

n∑
k=1

(πα)ik(µαβ)kk(πβ)kj, (30)

where n = n1n2 · · ·n3N−6 is the size of the direct-product basis.

2.1.3 Solution of the rotational-vibrational problem

In order to derive formulae suitable for practical implementations, it is advantageous to

rewrite the Eckart�Watson Hamiltonian de�ned by Eq. (10) as

Ĥ = T̂ v + T̂ r + T̂ rv + V̂ , (31)

where

T̂ v =
1

2

3N−6∑
k=1

P̂ 2
k +

1

2

∑
α,β

π̂αµαβπ̂β −
~2

8

∑
α

µαα, (32)

T̂ r =
1

2

∑
α,β

µαβĴαĴβ =
1

2

∑
α

µααĴ
2
α +

1

2

∑
α

∑
β>α

µαβ[Ĵα, Ĵβ]+, (33)

where

[Ĵα, Ĵβ]+ = ĴαĴβ + ĴβĴα,

and

T̂ rv = −1

2

∑
α,β

µαβπ̂βĴα −
1

2

∑
α,β

µαβπ̂αĴβ = −
∑
α,β

µαβπ̂βĴα, (34)

where the µαβ = µβα relation is utilized. In the previous equations the T̂ v, T̂ r, and T̂ rv

operators denote the vibrational, rotational, and rotational-vibrational coupling parts of

the kinetic energy operator, respectively.
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In order to set up the matrix representation of the rovibrational Hamiltonian of Eq.

(31) a suitable rotational basis has to be chosen. The simplest choice is the orthonormal set

of the |JKM〉 eigenfunctions of the symmetric-top rigid rotor [52], where K = −J, . . . , J
is the body-�xed andM = −J, . . . , J is the space-�xed projection quantum number. Prop-

erties of the |JKM〉 functions and elements of the angular momentum algebra are brie�y

summarized in Appendix A.1. The nonzero matrix elements of the Ĵα operators can be

given by the following simple analytic formulae [52]:

〈JKM |Ĵx|J(K ± 1)M〉 =
1

2

√
J(J + 1)−K(K ± 1)

〈JKM |Ĵy|J(K ± 1)M〉 = ∓ i
2

√
J(J + 1)−K(K ± 1) (35)

〈JKM |Ĵz|JKM〉 = K,

where i is the imaginary unit.

Matrix elements of the Ĵ2
α and [Ĵα, Ĵβ]+ operators present in Eqs. (33) and (34) can be

constructed by simple matrix multiplication, by inserting the resolution of identity between

Ĵα and Ĵβ, thus,

〈JKM |ĴαĴβ|JK ′M〉 =
∑
J ′

J ′∑
K′′=−J ′

〈JKM |Ĵα|J ′K ′′M〉〈J ′K ′′M |Ĵβ|JK ′M〉 =

=
J∑

K′′=−J

〈JKM |Ĵα|JK ′′M〉〈JK ′′M |Ĵβ|JK ′M〉. (36)

It is important to emphasize that Eq. (36) does not utilize any approximations, as

〈JKM |Ĵα|J ′K ′′M〉 = δJJ ′〈JKM |Ĵα|JK ′′M〉. (37)

To facilitate symmetry considerations (see Sections 2.3 and 2.6.4) and to avoid complex

rovibrational matrix elements present in Eq. (35), it is worth combining the simple |JKM〉
functions into the so-called Wang functions [52],

1.
1√
2

(|JKM〉+ |J −KM〉) , where K is even
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2.
1√
2

(|JKM〉 − |J −KM〉) , where K is odd (38)

3.
i√
2

(|JKM〉 − |J −KM〉) , where K is even

4.
i√
2

(|JKM〉+ |J −KM〉) , where K is odd.

The four sets resulting from the use of the Wang functions correspond to the four irreducible

representations of the D2 rotational group.

One can construct a rovibrational basis of dimension n(2J + 1) as a direct product of

the 2J + 1 Wang functions for a given J and the n vibrational basis functions de�ned in

Eq. (26). Thus, the rovibrational Hamiltonian can be represented by the

H = Tv + Tr + Trv + V (39)

rovibrational Hamiltonian matrix of dimension n(2J + 1), where

Tv = E2J+1 ⊗

(
1

2

3N−6∑
k=1

P2
k +

1

2

∑
α,β

παµαβπβ −
~2

8

∑
α

µαα

)
,

Tr =
1

2

∑
α

J2
α ⊗ µαα +

1

2

∑
α

∑
β>α

[Jα,Jβ]+ ⊗ µαβ, (40)

and

Trv = −
∑
α,β

Jα ⊗
(
µαβπβ

)
.

In Eq. (40) E2J+1 refers to the 2J + 1-dimensional identity matrix and ⊗ denotes the

direct product operation. Matrix elements of the potential energy V̂ can be computed by

the equation

(V)n·(K+J)+i,n·(K′+J)+j = V (q1,i1 , q2,i2 , . . . , q3N−6,i3N−6
)δi1,j1δi2,j2 · · · δi3N−6,j3N−6

δK,K′ , (41)

where qk,nks are grid points of the kth vibrational degree of freedom and n is the size of

the vibrational basis.

According to the de�nitions of the π̂α vibrational angular momentum operators and

vibrational basis functions, elements of the πα matrices are purely imaginary. In order to

eliminate complex arithmetics, it is favorable to construct real Hamiltonian matrix elements
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by employing imaginary Jα matrices. Thus, all the J2
α, [Jα,Jβ]+, and Jα⊗

(
µαβπβ

)
matrices

become real. The fact, that matrices of the Ĵα operators expressed in the Wang basis have

imaginary matrix elements, can be simply proven.
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2.2 GENIUSH

In this section the theory of the GENIUSH (General rovibrational code with Numerical,

Internal coordinate, User-Speci�ed Hamiltonians) approach [32, 33] is described. The GE-

NIUSH approach successfully circumvents the main drawbacks of DEWE and thus can

be applied to N -atomic molecules exhibiting multiple accessible PES minima and large

amplitude motions. The main idea behind GENIUSH is the numerical representation of

the rovibrational kinetic energy operator which allows us to employ arbitrary sets of inter-

nal coordinates and body-�xed frame embeddings during the rovibrational computations.

Another important characteristics of GENIUSH is the possibility to introduce reduced-

dimensional vibrational models in a straightforward manner. My task was to formulate and

add the rotational functionality to the original vibrational-only GENIUSH code. Before

the detailed description of the variational solution of the rovibrational problem is given,

formulation of the general N -atomic rovibrational Hamiltonian and the vibrational-only

implementation are discussed.

2.2.1 Formulation of the classical Hamiltonian in generalized internal coordi-

nates

The nonrelativistic Lagrangian of an isolated N -particle system with masses mi, i =

1, ..., N , can be written as

L =
1

2

D+6∑
k=1

D+6∑
l=1

gklq̇kq̇l − V, (42)

where D < 3N − 6 for reduced-dimensional models (D = 3N − 6 for the full problem), V

is the potential energy depending on the generalized coordinates qk, and

gkl =
N∑
i=1

mi
∂XT

i

∂qk

∂Xi

∂ql
=

N∑
i=1

mit
T
iktil, k, l = 1, . . . , D + 6. (43)

In Eq. (43), Xi is the position vector of the ith atom in the space-�xed reference frame

(X, Y, Z), and tik is the t vector [53] of the qk generalized coordinate on the ith atom.

After introducing the pk = ∂L
∂q̇k

(k = 1, . . . , D + 6) generalized momenta conjugate to qk,
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the classical Hamiltonian takes the following simple form:

H full =
1

2

D+6∑
k=1

D+6∑
l=1

Gklpkpl + V, (44)

where

Gkl =
(
g−1
)
kl
, (45)

if g ∈ R(D+6)×(D+6) is not singular.

To construct the g andGmatrices, let us describe the con�guration of the system by the

qk = qk active (k = 1, . . . , D) and constrained (k = D+1, . . . , 3N−6) internal coordinates,

the three rotational qD+1 = α1, qD+2 = α2, qD+3 = α3, and the three center-of-mass

(qD+4 = X1, qD+5 = X2, qD+6 = X3) coordinates. Then,

Xi = X + Cxi, i = 1, . . . , N, (46)

where C is an orthogonal rotation matrix depending on the three rotational coordinates,

and the xi body-�xed position vectors in the body-�xed frame (x, y, z) are functions of the

qk internal coordinates. Derivation of the gkl matrix elements is equivalent, see Eq. (43),

to giving the tik vectors in terms of the generalized coordinates.

The translational ti,k+D+3 (k = 1, 2, 3) vectors are simply

tai,k+D+3 =
∂Xia

∂Xk

= δak, a = 1, 2, 3, (47)

where a refers to the three components of the vector t.

By making use of Eq. (43), the translational g matrix elements can be expressed as

gk+D+3,l+D+3 = M · δkl, k, l = 1, 2, 3, (48)

where M is the total mass of the system; thus, these are constants.

For isolated systems, the rotational-translational and the vibrational-translational cou-

pling matrix elements of g are all equal to zero. Therefore, the motion of the center of mass

can be separated exactly from the rest of the coordinates. This allows the introduction of

the

H = T + V =
1

2

D+3∑
k=1

D+3∑
l=1

Gklpkpl + V (49)
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rovibrational Hamiltonian.

The rotational ti,k+D (k = 1, 2, 3) vectors take the form

tai,k+D =
∂Xia

∂αk
=

3∑
b=1

∂Cab
∂αk

xib. (50)

Thus, the rotational g matrix elements are equal to

gk+D,l+D =
N∑
i=1

mi(ek × xi)
T(el × xi), (51)

where the direction of the unit vector ek coincides with the axis of rotation assigned to the

αk rotational coordinate [see Appendix A.2 for the derivation of Eq. (51)].

The vibrational tik (k = 1, . . . , D) vectors are

taik =
∂Xia

∂qk
=

3∑
b=1

Cab
∂xib
∂qk

. (52)

Thus, the corresponding vibrational g matrix elements are given as

gkl =
N∑
i=1

mi
∂xTi
∂qk

∂xi
∂ql

, (53)

where k, l = 1, . . . , D [see Appendix A.2 for the derivation of Eq. (53)]. To determine gkl,

choice of the embedding of the molecule-�xed frame has to be established, which gives the

dependence of the xi body-�xed nuclear position vectors on the qk internal coordinates.

According to previous expressions, the g matrix elements of the rotational-vibrational

coupling block have the form

gk,l+D =
N∑
i=1

mi
∂xTi
∂qk

(el × xi), (54)

where k = 1, . . . , D, l = 1, 2, 3, and g is a symmetric matrix [see Appendix A.2 for the

derivation of Eq. (54)].

The elements of G can be expressed in two di�erent ways: (a) by inversion of g; and

(b) by introduction of the so-called ski vectors [40, 53, 54], ski =
∂qk
∂Xi

, k = 1, . . . , D + 6

and i = 1, . . . , N. In the present implementation of GENIUSH only the �rst approach is
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utilized to construct G.

2.2.2 Formulation of the quantum mechanical Hamiltonian in generalized co-

ordinates

In this subsection the rovibrational quantum Hamiltonian Ĥ is introduced in analogy with

the rovibrational classical Hamiltonian H. Within the Born�Oppenheimer approximation,

the potential energy acting on the nuclei, V̂ , can be obtained by electronic structure com-

putations. Thus, we will focus on constructing the T̂ rovibrational kinetic energy operator

in terms of the qk (k = 1, . . . , D) vibrational and the αk (k = 1, 2, 3) rotational coordinates.

According to di�erential geometry [55, 56, 57], T̂ becomes

T̂ =
1

2

D+3∑
k=1

D+3∑
l=1

g̃−1/4p̂†kGklg̃
1/2p̂lg̃

−1/4, (55)

where g̃ = det(g), g is either the full or the rotational-vibrational g matrix, p̂k are the

quasi-momenta [35], and the volume element contains no extra factors.

In units of ~, for the vibrational coordinates p̂k = −i ∂
∂qk
, k = 1, . . . , D, while for the

rotational coordinates p̂k+D = −i ∂
∂αk

, k = 1, 2, 3. Next, let us utilize that in�nitesimal

rotations are generated [52] by the projection of the total angular momentum Ĵ onto the

rotational axis:

nĴ = −i ∂
∂φ
, (56)

where n has unit length, its direction gives the rotational axis, and φ is an angle associated

with the rotation.

According to Eq. (56), it is straightforward to identify the rotational p̂k+D quasi-

momenta as the components of the total angular momentum in the body-�xed frame.

After specifying three unique rotational axes, three successive rotations can be performed

in order to de�ne the transformation between the space-�xed and body-�xed frames. As

the αk rotational coordinate describes a rotation around the kth of these three rotational

axes, it is obvious that

p̂k+D = −i ∂

∂αk
= Ĵk, (57)

where Ĵk is the component of the total angular momentum vector along the kth rotational

axis. The three rotational axes have been chosen to coincide with the three axes of the body-
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�xed frame. Therefore, the Ĵk operators correspond to the angular momentum components

expressed in the body-�xed frame, and the αk rotational angles de�ne three successive

rotations around the three orthogonal axes of the body-�xed system. This work employs

these in�nitesimal rotational coordinates [58, 59] instead of the widely used Eulerian angles.

This choice has two signi�cant advantages: (a) one can directly insert the body-�xed

components of the total angular momentum into the rovibrational Hamiltonian by utilizing

Eq. (57), which greatly reduces the e�ort to construct T̂ ; and (b) the rotational and

rotational-vibrational blocks of g (and thus of G) can be computed trivially, as according

to Eqs. (51) and (54) one needs to evaluate the ek × xi cross products of the unit vectors

pointing along the body-�xed axes and the body-�xed atomic position vectors, which clearly

requires the choice of the embedding.

2.2.3 Reduced-dimensional computational models

If larger molecules are examined it is often a good approximation to introduce reduced di-

mensional models by constraining the motion along certain internal coordinates. Two pos-

sible choices of de�ning reduced-dimensional models [60] are (a) deleting rows and columns

of the g matrix, (b) deleting rows and columns of the G matrix. The �rst case, when the

ith row and ith column of g is deleted, corresponds to the q̇i = 0 constraint, while the

second one, when the ith row and ith column of G is omitted, gives rise to the pi = 0

relation. If orthogonal coordinates are applied, the two approaches lead to the same e�ec-

tive Hamiltonian. However, in general the two di�erent strategies provide di�erent reduced

models and numerical results, see Ref. [32] for numerical examples. Reduced-dimensional

results given in this thesis have been computed by using the �rst approach as its physical

meaning seems to be clearer than that of the second one.

2.2.4 Brief summary of the vibration-only algorithm

If the vibration-only problem is solved, one can introduce the e�ective vibrational Hamil-

tonian as

Ĥv = T̂ v + V̂ =
1

2

D∑
k=1

D∑
l=1

g̃−1/4p̂†kGklg̃
1/2p̂lg̃

−1/4 + V̂ (58)

for the D active vibrational degrees of freedom. The matrix representation of Ĥv, similarly

to that of the EW Hamiltonian, is set up in the basis of D-dimensional DVR vibrational
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basis functions:

Hv = Tv + V =
1

2

D∑
k=1

D∑
l=1

g̃−1/4p†kGklg̃
1/2plg̃

−1/4 + V, (59)

where �ve resolution of identities have been inserted amongst the operators present in T̂ v.

It is important to note the two possible forms of Ĥv outlined in Ref. [32]. As the rearranged

vibrational Hamiltonian is numerically less stable than the so-called Podolsky form of Ĥv

given in Eqs. (58) and (59), the use of the Podolsky form is preferable over the rearranged

form.

In the current implementation of GENIUSH, DVRs based on Hermite [51], Legendre

[51], Laguerre [51], and sinc [61] functions are available. Besides the primitive DVR func-

tions it is also possible to employ potential optimized (PO) DVR [49] functions. The

basic idea behind PO-DVR is the optimization of the DVR grid points and basis functions

by solving the eigenproblem of suitable one-dimensional model Hamiltonians. The main

virtue of PO-DVR is its compactness as it is possible to maintain the same computational

accuracy with less PO DVR functions than primitive DVR ones.

As a result of applying DVR vibrational basis functions, matrix representation of the

coordinate-dependent operators g̃−1/4, Gkl, g̃1/2, and V̂ are diagonal and the diagonal

matrix elements are equal to the values of these operators at the DVR grid points (see

Section 2.1.2 for further details). As a direct consequence, the t-vectors (see Eq. (43) for

their de�nition) needed for the construction of g̃−1/4, Gkl, and g̃1/2 are to be evaluated only

at the grid points, which can be done either numerically or analytically for arbitrary internal

coordinates and embeddings. This is the fact which makes the numerical representation

of the kinetic energy operator possible; thus, no analytical kinetic energy operators are

needed within the GENIUSH algorithm. Matrix elements of the vibrational p̂k operators

are proportional to matrix elements of the ∂
∂qk

di�erential operators and can be constructed

according to the considerations of Ref. [32].

2.2.5 Solution of the rotational-vibrational problem

In order to compute rovibrational states variationally the matrix representation of the Ĥ

rovibrational Hamiltonian is needed. It is advantageous to split T̂ into three terms:

Ĥ = T̂ + V̂ = T̂ v + T̂ r + T̂ rv + V̂ , (60)
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where

T̂ v =
1

2

D∑
k=1

D∑
l=1

g̃−1/4p̂†kGklg̃
1/2p̂lg̃

−1/4, (61)

T̂ r =
1

2

3∑
k=1

Gk+D,k+D Ĵ
2
k +

1

2

3∑
k=1

3∑
l>k

Gk+D,l+D [Ĵk, Ĵl]+, (62)

and

T̂ rv =
1

2

3∑
l=1

D∑
k=1

(
g̃−1/4p̂†kGk,l+D g̃

1/4 + g̃1/4Gk,l+D p̂kg̃
−1/4

)
Ĵl, (63)

where T̂ v is the vibrational and T̂ r is the rotational kinetic energy operator and T̂ rv describes

the coupling between vibrations and rotations. In Eq. (62), Ĵk is the kth body-�xed

component of Ĵ and [Ĵk, Ĵl]+ refers to the anticommutator of the operators Ĵk and Ĵl.

As the Ĵk angular momentum components correspond to the body-�xed frame, they

satisfy the anomalous commutation relations [52]

[Ĵk, Ĵl] = −i
∑
m

εklmĴm, (64)

where k, l,m = x, y, z. For a given rotational angular momentum quantum number J (the

molecular system is isolated and no external �elds are present), the set of 2J+1 orthonormal

|JKM〉 symmetric rigid rotor eigenfunctions serves as a suitable basis to set up the matrix

representation of Ĥ. According to Eqs. (62) and (63), the matrix representation of Ĵk, Ĵ2
k

and [Ĵk, Ĵl]+ is required to solve the rovibrational problem. The complete set of nonzero

Ĵk matrix elements is given [52] by

〈JKM |Ĵx|J(K ± 1)M〉 =
1

2

√
J(J + 1)−K(K ± 1)

〈JKM |Ĵy|J(K ± 1)M〉 = ∓ i
2

√
J(J + 1)−K(K ± 1) (65)

〈JKM |Ĵz|JKM〉 = K,

where K = −J, . . . , J corresponds to the body-�xed z, while M = −J, . . . , J to the space-

�xed Z components of the angular momentum. Matrix representations of the Ĵ2
k and

[Ĵk, Ĵl]+ operators can be constructed by simple matrix multiplication, by inserting the
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resolution of identity between Ĵk and Ĵl, and thus

〈JKM |ĴkĴl|JK ′M〉 =
J∑

K′′=−J

〈JKM |Ĵk|JK ′′M〉〈JK ′′M |Ĵl|JK ′M〉. (66)

It is important to emphasize that Eq. (66) does not utilize any approximations as it has

been shown in Eqs. (36) and (37).

As a next step, a more sophisticated rotational basis of 2J + 1 orthonormal Wang

functions [52] is introduced by the following combinations,

1√
2

(|JKM〉+ |J −KM〉) , where K is even

1√
2

(|JKM〉 − |J −KM〉) , where K is odd (67)

i√
2

(|JKM〉 − |J −KM〉) , where K is even

i√
2

(|JKM〉+ |J −KM〉) , where K is odd.

This basis has two advantages over the simple |JKM〉 functions: (a) after some trivial

algebra and a careful choice of the vibrational basis it becomes transparent that the matrix

representation of Ĥ, H, lacks complex matrix elements; and (b) as shown in the previous

four equations, one can separate the Wang functions into four (only three for J = 1)

sets according to the irreducible representations of the D2 rotational group, which helps

exploiting molecular symmetry during the rovibrational computations.

Construction of H requires the introduction of a rovibrational basis, chosen here as

a direct product of the set of vibrational basis functions and the 2J + 1 Wang functions

(details concerning the vibrational basis and the necessary matrix elements can be found

in Ref. [32]). Using Eqs. (60), (61), (62), and (63), H takes the form

H = T + V = Tv + Tr + Trv + V, (68)

where

Tv =
1

2
E2J+1 ⊗

D∑
k=1

D∑
l=1

g̃−1/4p†kGklg̃
1/2plg̃

−1/4 (69)
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Tr =
1

2

3∑
k=1

J2
k ⊗Gk+D,k+D +

1

2

3∑
k=1

3∑
l>k

[Jk,Jl]+ ⊗Gk+D,l+D (70)

and

Trv =
1

2

3∑
l=1

Jl ⊗
D∑
k=1

(
g̃−1/4p†kGk,l+D g̃1/4 + g̃1/4Gk,l+D pkg̃

−1/4
)
, (71)

E2J+1 is the identity matrix of dimension 2J + 1, and ⊗ refers to the direct product

operation.
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2.3 Symmetry-adapted Lanczos method (SAL)

This section addresses the problem of assigning symmetry labels to computed rovibrational

energy levels and wave functions. As DEWE and GENIUSH employs the iterative Lanczos

eigensolver, it seemed to be a good choice to adopt the symmetry-adapted Lanczos method

(SAL). During the SAL process Lanczos vectors are projected onto the di�erent irreducible

representations of the molecular symmetry (MS) group. This procedure results in rovibra-

tional states belonging to the ith irreducible representation of the MS group if the Lanczos

vectors are projected onto the ith irreducible representation.

After a brief review of the Lanczos algorithm and the general theory of the SAL method I

describe my own SAL implementation which currently works for the DEWE code employing

normal coordinates and Hermite-DVR vibrational basis functions. Though the current

implementation applies to Abelian MS groups having ±1 characters (for the D2h(M) MS

group and its subgroups), the last section only covers the special case of the C2v(M) group.

2.3.1 Iterative Lanczos eigensolver

As the dimension of the rovibrational Hamiltonian equals n(2J + 1), where n is the num-

ber of vibrational basis functions, and n grows rapidly with the number of vibrational

degrees of freedom, it is not feasible to employ explicit eigensolvers [62] for computing the

eigenvalues and eigenvectors of the rovibrational Hamiltonian. The original DEWE and

GENIUSH codes employ the iterative Lanczos method [44, 63] to solve the eigenproblem

of the Hamiltonian, which needs the evaluation of matrix-vector products. As the rovi-

brational Hamiltonian has a very special and sparse structure, an e�ective matrix-vector

product algorithm has been implemented, which does not need the Hamiltonian, of rapidly

growing dimension, to be stored explicitly.

The shift-fold procedure of the family of polynomial spectral transformation techniques

[64, 65] was employed during the Lanczos iterations to obtain the lowest eigenstates cor-

responding to the chosen Hamiltonian. Semi-orthogonality of the Lanczos vectors was

maintained by using the periodic reorthogonalization algorithm [66], whereby every second

Lanczos vector is reorthogonalized against all the previous ones. The more sophisticated

partial reorthogonalization technique [67, 68] resulted in a similar frequency of reorthogo-

nalization steps as the periodic reorthogonalization, and thus the simpler periodic version

was employed [21]. The thick-restart Lanczos method [68, 69] was used to compact the

ever-growing Krylov subspace periodically.
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2.3.2 Theory of the SAL method

A possible way of exploiting molecular symmetry during variational rovibrational computa-

tions is to adopt the symmetry-adapted Lanczos (SAL) technique [70, 71, 72]. Within this

procedure the Lanczos vectors are projected onto the required irreducible representation of

the molecular symmetry (MS) group [73]. These projections, carried out during the course

of the Lanczos iterations regularly, assure that the Lanczos algorithm will result in energy

levels and wave functions of the given irreducible representation. This scheme does not

decrease the size of the Hamiltonian matrix to be treated. Nevertheless, a considerable

advantage of SAL is that the eigenvalues to be determined become considerably sparser

resulting in a much improved convergence of the Lanczos procedure. Furthermore, sym-

metry labels are distributed automatically to the computed rovibrational energy levels and

wave functions. The SAL method can be understood as follows.

Each Â element of the MS group can be constructed as the product of a B̂ point-group

(PG) and a Ĉ rotational-group (RG) symmetry element [73]:

Â = B̂Ĉ. (72)

These relations are explored when the projector [74] onto the ith irreducible representation

is constructed by considering

P̂i =
1

h

∑
Â∈G

χi(Â)Â, (73)

where G is the molecular symmetry group, h is the order of G, and χi(Â) is the character

of the MS group element Â associated with the ith irreducible representation. The e�ect

of P̂i on the original Lanczos vector x is

xi = Pix, (74)

where xi is the projected Lanczos vector, and Pi is the matrix representation of the P̂i
projector in the rovibrational basis. Elements of the Pi matrix can be expressed as

(Pi)ab,cd = 〈FaRb|P̂i|FcRd〉 =
1

h

∑
Â∈G

χi(Â)〈FaRb|Â|FcRd〉 (75)
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with

〈FaRb|Â|FcRd〉 = 〈Fa|B̂|Fc〉〈Rb|Ĉ|Rd〉 (76)

in the direct product basis of the Fa vibrational and Rb rotational basis functions. Eq.

(76) utilizes the fact that B̂ and Ĉ act only on the vibrational and rotational coordinates,

respectively.

According to Eq. (76) the matrix representation of the Â = B̂Ĉ molecular symmetry

group element is given by the direct product of the matrix representations of Ĉ and B̂.

Once the matrix representations of the MS group symmetry elements are available, one can

construct the matrix of the P̂i projectors by taking appropriate linear combinations of the

matrix representations of the Â operators, see Eq. (75).

2.3.3 Considerations for the C2v(M) molecular symmetry group within DEWE

The implementation of the SAL method for Abelian groups having +1 and −1 characters

is summarized below for the special case of the C2v(M) MS group. The point group and

the rotational group needed by the considerations of the present section are C2v and D2,

respectively. Table I gives the character tables of the isomorphic C2v(M), C2v, and D2

groups.

If the C2v equilibrium structure of the molecule examined is placed into the yz plane and

z coincides with the C2 axis, the following equations relate the C2v(M) symmetry elements

to the C2v point-group and D2 rotation-group elements:

E(M) = E(P )E(R)

(12) = C2(z)Rz (77)

E∗ = σv(yz)Rx

(12)∗ = σv(xz)Ry.

In Eq. (77) the following notations are applied: E = identity, (12) = permutation of the

two identical nuclei, E∗ = inversion of the nuclear coordinates, (12)∗ = (12)E∗, C2(z) =

two-fold rotation about the z axis, Rα = two-fold rotation around the α coordinate axis

with α = x, y, z.

As the current implementation applies only to Abelian groups, having characters +1
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Table I. Character tables of the isomorphic groups C2v(M) (molecular symmetry group),
C2v (point group), and D2 (rotational group).

C2v(M) / C2v / D2 E(M) / E(P ) / E(R) (12) / C2(z) / Rz E∗ / σv(yz) / Rx (12)∗ / σv(xz) / Ry

A1 / A1 / A 1 1 1 1
A2 / A2 / Bz 1 1 -1 -1
B1 / B1 / By 1 -1 -1 1
B2 / B2 / Bx 1 -1 1 -1

and −1, the e�ect of a B̂ point-group symmetry element on the Qi normal coordinate is

B̂Qi = χj(B̂)Qi = ±Qi, (78)

where Qi forms the basis of the jth irreducible representation and the χj(B̂) character

refers to the jth irreducible representation. According to Eq. (78), one can deduce the

e�ect of B̂ on the fn(Qi) one-dimensional Hermite-DVR vibrational basis functions as

B̂fn(Qi) = fn(B̂−1Qi) = fn(Qi), if B̂Qi = Qi, or (79)

B̂fn(Qi) = fn(B̂−1Qi) = fn(−Qi) = f−n(Qi), if B̂Qi = −Qi,

where the fn(Qi) one-dimensional functions were given the n = −p, . . . ,−1, 1, . . . , p or n =

−p, . . . , 0, . . . , p indices for 2p even and 2p+1 odd numbers of basis functions, respectively;

thus, the fn(Qi) basis functions are enumerated according to the ascending order of the

Hermite-DVR grid points. Eq. (79) holds due to the fact that the set of Hermite-DVR

grid points is symmetric with respect to the origin and the qi grid points are transformed

to their mirror image q−i by B̂ if B̂Qi = −Qi. In light of these equations the following

relations hold:

〈fm(Qi)|B̂fn(Qi)〉 = 〈fm(Qi)|fn(Qi)〉 = δmn, if B̂Qi = Qi, or (80)

〈fm(Qi)|B̂fn(Qi)〉 = 〈fm(Qi)|f−n(Qi)〉 = δm,−n, if B̂Qi = −Qi.

According to Eq. (80), the matrix representation of B̂ in the basis of Hermite-DVR func-

tions is either an identity or an anti-diagonal matrix. Since the vibrational basis is con-

structed as the direct product of one-dimensional Hermite-DVR functions, the matrix rep-

resentation of B̂ is the direct product of the related matrices. This operation results in the
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matrix representation of B̂, which is a permutation matrix, and has the dimension of the

direct-product vibrational basis.

For the construction of the matrix representation of a Ĉ rotational-group (D2) symmetry

element it is important to know the symmetry properties of the Wang functions de�ned by

Eq. (67). The Wang functions are basis functions of the irreducible representations of the

Abelian D2 rotational group [73]. Thus, the matrix representation of Ĉ is diagonal and has

+1 or −1 in its main diagonal:

〈Wm(Ω)|ĈWn(Ω)〉 = χn(Ĉ)δmn, (81)

where Wn(Ω) refers to the 2J + 1 Wang functions for a given J , Ω stands for the three

rotational coordinates, and χn(Ĉ) is the character of Ĉ in the irreducible representation

spanned by Wn(Ω).

It is important to note that the method described in this section generally applies to

Abelian groups having ±1 characters (D2h(M) MS group and its subgroups). For MS

groups with ±1 characters other than C2v(M) the relations of Eq. (77) have to be derived.

As the P̂i projectors are represented by permutation matrices, an e�ective matrix-vector

multiplication subroutine can be developed for evaluating the necessary xi = Pix products

without having to construct and store the Pi matrix explicitly.
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2.4 Eckart embedding

In this section the theory of maintaing the rotational Eckart condition in a variational

rovibrational computation is discussed. As the DEWE code employs the Eckart�Watson

Hamiltonian, the rotational Eckart condition holds automatically in this case. However,

when GENIUSH is used, an additional procedure is needed to compute rovibrational energy

levels and wave functions with Eckart-embedded kinetic energy operators. After a brief

summary of the theory of the rotational Eckart condition, I describe my implementation

of the Eckart embedding within the GENIUSH algorithm.

2.4.1 Summary of the Eckart conditions and Eckart related applications

Choosing the frame which minimizes the coupling between the vibrations and rotations of

polyatomic molecules is an important topic in nuclear motion theory. It was Eckart [41]

who �rst formulated correctly the equations leading to an optimal separation of the two

motions (yielding zero coupling at a reference structure).

The translational Eckart condition (see also Eq. (2)) is

N∑
k=1

mkrk = 0, (82)

where mk and rk stand for the masses and position vectors of the N nuclei under examina-

tion, and it is trivial to satisfy it for arbitrary values of N . However, the rotational Eckart

condition (see also Eq. (4)),
N∑
k=1

mk(rk × ak) = 0, (83)

where ak gives the position of the kth particle in the reference con�guration chosen, results

in a set of more complex equations. Ful�llment of the rotational Eckart condition, Eq. (83),

can be interpreted as �nding a T pseudorotation matrix which transforms the rk initial

coordinates into the r′k = Trk coordinates corresponding to the Eckart frame.

How to construct such a transformation was proposed by Eckart in his groundbreaking

paper from 1935 [41]. Later, Pickett and Strauss [75] derived a procedure for �nding the

T transformation matrix. An important shortcoming of the methods proposed is the need

for computing the inverse of an intermediate matrix which can be singular for some initial

geometries. A new method, free of previous limitations, has recently been published by
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Dymarsky and Kudin [76].

As the Eckart frame minimizes the rotational-vibrational coupling, several authors at-

tempted to derive Eckart-embedded Hamiltonians for use in computational molecular spec-

troscopy. For rectilinear vibrational coordinates (including normal coordinates), the form

of the operator is well established [18, 19], and the Eckart�Watson operator has been

successfully applied for N -atomic molecules. However, this operator is only suitable for

semirigid molecules. For curvilinear internal coordinates, analytic Eckart formulae and

Eckart-embedded kinetic energy operators have been derived for triatomic [77, 78, 79, 80]

as well as more general planar molecules [81]. These Hamiltonians are well suited to

treat molecules exhibiting arbitrary motions. Nevertheless, drawbacks of Eckart-embedded

Hamiltonians expressed in internal coordinates are as follows: (a) the resulting expressions

are rather complex, which makes their implementation less desirable, and (b) analytical

Eckart expressions are derived only for special cases.

Thus, it is left as a challenge to construct a general Eckart-embedded kinetic energy

operator (KEO) expressed in arbitrary curvilinear coordinates. One way forward is to

construct the KEO numerically, for which the GENIUSH algorithm [32, 33] provides the

starting point. As in GENIUSH the kinetic energy operator is constructed numerically and

represented on a DVR grid, it is su�cient to transform the nuclear geometries corresponding

to each di�erent grid point into the Eckart frame.

This new approach exhibits the following signi�cant advantages: (a) it applies to arbi-

trary internal coordinates and molecular compositions, and (b) no complicated analytical

derivations are required.

2.4.2 Theory of maintaining the rotational Eckart condition

The initial step in the method derived by Dymarsky and Kudin [76] is the de�nition of a

matrix A,

Aij =
N∑
k=1

mk(rk)i(ak)j, i, j = 1, 2, 3 (84)

computed with the rk initial and ak reference position vectors, where i and j denote Carte-

sian indices. If a T pseudorotation matrix (TT = T−1) acts on the initial coordinates rk
and transforms them into the r′k = Trk Eckart coordinates, we can compute the elements
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of the symmetric S matrix,

Sij =
N∑
k=1

mk(r
′
k)i(ak)j = (TA)ij. (85)

The symmetric nature of S is assured by the rotational Eckart condition, Eq. (83).

The next step is the introduction of theA1 = ATA andA2 = AAT symmetric matrices,

and the solution of the

A1ui = λiui, (86)

A2vi = λivi

eigenproblems for i = 1, 2, 3. One can easily prove that the eigenvalue sets of A1 and A2

coincide. After considering the

S2 = STS = ATTTTA = A1 (87)

and

S2 = SST = TAATTT = TA2T
T (88)

relations, we get

A1T = TA2, (89)

so the T transformation matrix can be constructed according to the

T =
3∑
i=1

ui ◦ vi (90)

formula, where ui and vi share the same λi eigenvalues for i = 1, 2, 3. There are eight

possible T transformations di�ering in the relative signs of the ui and vi eigenvectors.

Dymarsky and Kudin [76] suggested the use of the

ui · vi ≥ 0, (91)

with i = 1, 2, 3, and

u3 = u1 × u2 (92)

v3 = v1 × v2
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conditions to �nd the T transformation matrix which is closest to the identity matrix and

represents a pure rotation (detT = 1).

The kinetic energy operator expressed in internal coordinates needs the

gij =
N∑
k=1

mk
∂rk
∂qi

∂rk
∂qj

(93)

matrix elements of the well-known g matrix [54] expressed in terms of the 3N − 3 qi

generalized (3N − 6 vibrational and 3 rotational) coordinates. Within the framework of

GENIUSH, the g matrix is evaluated by the numerical computation of the so-called t-

vectors, ∂rk
∂qi

, by the method of �nite di�erences. This needs the generation of the rk

body-�xed Cartesian coordinates for a given set of the qi generalized coordinates which is

done by the following algorithm: (a) Cartesian coordinate computation with respect to an

arbitrary inital embedding, and (b) rotation of the initial Cartesian coordinates into the

Eckart frame by the previously described method and maintaining the criteria given by

Eqs. (91) and (92).
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2.5 Labelling of rovibrational states

Labelling the computed rovibrational energy levels and wave functions with zeroth-order

harmonic oscillator and rigid rotor quantum numbers is of great importance as these labels

are widely used in the �eld of experimental spectroscopy. This task can be solved by the

normal mode decomposition (NMD) and rigid-rotor decomposition (RRD) procedures [42].

After the concise summary of the NMD procedure I discuss the implementation of the RRD

algorithm I used extensively for the interpretation of computed rovibrational states.

2.5.1 Normal mode decomposition (NMD)

The NMD algorithm [42] was developed to facilitate the assignment of zeroth-order har-

monic oscillator (HO) quantum numbers to computed variational (ro)vibrational eigen-

states. In the case of the NMD, overlaps between the Φj variational vibrational and the

ΦHO
i harmonic oscillator basis functions are computed. An NMD coe�cient is de�ned as

cji = |〈ΦHO
i |Φj〉|2. (94)

Labelling of the Φj variational vibrational wave functions with approximate HO quantum

numbers can be accomplished by �nding the dominant NMD coe�cient given by Eq. (94).

After �nding the dominant cji contribution (if possible) in Φj it is straightforward to assign

Φj with the HO labels of ΦHO
i .

2.5.2 Rigid rotor decomposition (RRD)

The RRD algorithm [42] was developed to assign zeroth-order rigid rotor (RR) quantum

numbers to computed variational rovibrational eigenstates.

Let us consider the nJth rovibrational wave function ΨJ
nJ

(Q, φ, θ, χ) (for a given value

of the J rotational quantum number) expressed in terms of the Q vibrational and (φ, θ, χ)

rotational coordinates as a linear combination of rotational-vibrational basis functions:

ΨJ
nJ

(Q, φ, θ, χ) =
n∑
i=1

2J+1∑
k=1

cJnJ ,ikFi(Q)RJ
k (φ, θ, χ), (95)

where

Fi(Q) =
3N−6∏
k=1

fik(Qk), ik = 1, 2 . . . , nk, (96)
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and nk stands for the number of vibrational basis functions on the kth vibrational coordi-

nate, n = n1n2 ·. . .·n3N−6 is the total size of the vibrational basis, and RJ
k (φ, θ, χ) stands for

the Wang-transformed symmetric top basis functions de�ned by Eq. (38). In the present

subsection orthonormal vibrational basis functions and real linear combination coe�cients

are assumed.

For the eigenstates of the �eld-free rovibrational Hamiltonian the J rotational quantum

number is exact and serves as one of the input parameters of the rovibrational compu-

tations, while the widely used Ka and Kc labels are approximate and correspond to |K|
for the prolate and oblate symmetric-top limits of the rigid rotor [52], respectively. In the

present subsection a two-step algorithm based on overlap integrals is proposed to match

the computed rovibrational states with pure vibrational states and then generate the Ka

and Kc labels.

By rearranging Eq. (95), one obtains

ΨJ
nJ

(Q, φ, θ, χ) =
2J+1∑
k=1

RJ
k (φ, θ, χ)

(
n∑
i=1

cJnJ ,ikFi(Q)

)
=

2J+1∑
k=1

RJ
k (φ, θ, χ)ψJnJk(Q). (97)

From now on, ψJnJk(Q) will be referred to as the kth vibrational part of ΨJ
nJ

(Q, φ, θ, χ).

Because the eigenfunctions of the rotational-vibrational Hamiltonian are orthonormal, the

overlap of a vibration-only wave function,

Φm(Q) =
n∑
j=1

Cm,jFj(Q), (98)

and a rovibrational wave function, ΨJ
nJ

(Q, φ, θ, χ) (J > 0), is always zero, and thus not

useful for making assignments. A way to circumvent this problem is to introduce the

overlap of the kth vibrational part of ΨJ
nJ

(Q, φ, θ, χ) and the vibration-only Φm(Q) as

SJnJk,m = 〈ψJnJk(Q)|Φm(Q)〉Q =
n∑
i=1

n∑
j=1

cJnJ ,ikCm,j〈Fi(Q)|Fj(Q)〉Q =
n∑
i=1

cJnJ ,ikCm,i , (99)

where the integration is carried out over the 3N−6 vibrational coordinates. SJnJk,m provides

a measure of the similarity of ψJnJk(Q) and Φm(Q): the larger the magnitude of SJnJk,m the

more similar the vibrational parts of the two functions are. The next step is to sum the
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absolute squares of the SJnJk,m quantities with respect to k:

P J
nJ ,m

=
2J+1∑
k=1

∣∣SJnJk,m∣∣2 =
2J+1∑
k=1

∣∣∣∣ n∑
i=1

cJnJ ,ikCm,i

∣∣∣∣2. (100)

After converging M J = 0 and NJ J 6= 0 eigenstates by variational procedures, NJM

square-overlap sums are computed over all of the J = 0 and J 6= 0 pairs. The quantities

P J
nJ ,m

(nJ = 1, 2, . . . , NJ and m = 1, 2, . . . ,M) can be regarded as elements of a rectan-

gular matrix with NJ rows and M columns. For a given J , those 2J + 1 ΨJ
nJ

(Q, φ, θ, χ)

rovibrational states belong to a selected Φm(Q) pure vibrational state which give the 2J+1

largest P J
nJ ,m

values. This means of identi�cation is valuable because the rovibrational lev-

els belonging to a given vibrational state appear neither consecutively nor in a predictable

manner in the overall eigenspectrum.

It is important to emphasize the pronounced dependence of the quantities P J
nJ ,m

on the

embedding of the body-�xed frame, as exhibited in the previous equations. The Eckart

frame [41] is expected to be a trenchant choice for the overlap calculations due to a mini-

malized rovibrational coupling. Of course, this rotational labelling scheme can be generally

applied to variational rovibrational approaches employing arbitrary internal coordinates

and embeddings.

After assigning 2J + 1 rovibrational levels to a pure vibrational state, the next step

is to generate the Ka and Kc or τ = Ka − Kc labels. Such assignments could be naively

based on the canonical energy stacking of asymmetric-top JKaKc states, derived from the

symmetric-top limits, the symmetry labels of the states, and the noncrossing rule [52]. A

rigorous approach is to set up what we call rigid-rotor decomposition (RRD) tables. The

two approaches do not necessarily give the same labels. In order to compute the RRD

coe�cients it is necessary to evaluate the overlap integral

SJnJ ,m,mJ = 〈ΨJ
nJ

(Q, φ, θ, χ)|Φm(Q)ϕJmJ (φ, θ, χ)〉Q,φ,θ,χ =

=
n∑
i=1

2J+1∑
k=1

cJnJ ,ik

n∑
j=1

2J+1∑
l=1

Cm,j ·dJmJ ,l ·〈Fi(Q)|Fj(Q)〉Q ·〈RJ
k (φ, θ, χ)|RJ

l (φ, θ, χ)〉φ,θ,χ = (101)

=
n∑
i=1

2J+1∑
k=1

cJnJ ,ik · Cm,i · d
J
mJ ,k
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between the nJth rovibrational state and the product of the mth vibrational state and

mJth rigid-rotor eigenfunction. The rigid-rotor component of the product is given by a

linear combination of the Wang functions RJ
k (φ, θ, χ) with expansion coe�cients dJmJ ,k:

ϕJmJ (φ, θ, χ) =
2J+1∑
k=1

dJmJ ,kR
J
k (φ, θ, χ), (102)

where the dJmJ ,k coe�cients are the components of the eigenvectors of the rigid-rotor Hamil-

tonian matrix. Note that the notation employed does not restrict the summation by sym-

metry; thus, certain blocks of the dJmJ ,k coe�cients will necessarily be zero. Recognizing

that these coe�cients are elements of a unitary matrix, the quantities in Eqs. (100) and

(101) are connected by the condition

P J
nJ ,m

=
2J+1∑
mJ=1

|SJnJ ,m,mJ |
2. (103)

Because the Φm(Q)ϕJmJ (φ, θ, χ) functions form an orthonormal basis of dimension n(2J+1),

it is also obvious that
n∑

m=1

P J
nJ ,m

= 1. (104)

In light of these relationships, we de�ne the RRD coe�cients as the absolute square of the

overlaps, |SJnJ ,m,mJ |
2, and arrange them in a rectangular table whose rows are the exact

states under consideration, ΨJ
nJ

(Q, φ, θ, χ), and whose columns are the above-de�ned �basis�

states, Φm(Q)ϕJmJ (φ, θ, χ). During the labelling process of the ΨJ
nJ

(Q, φ, θ, χ) functions the

�basis� state giving the largest RRD coe�cient is selected �rst. Thereafter, ΨJ
nJ

(Q, φ, θ, χ)

is assigned with the zeroth-order quantum numbers of the dominant �basis� state.
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2.6 The vibrational subspace (VS) method

In this section an e�cient algorithm for the computation of highly-excited rovibrational

states is introduced. After describing the general theory of the VS procedure I discuss my

practical VS implementations within the DEWE and GENIUSH programs. Toward the end

of the theoretical section relations between the VS and RRD algorithms and generation of

symmetry labels are described.

2.6.1 General description

Determination of the large number of rovibrational energy levels and wave functions as-

sociated with large J values is computationally extremely demanding when traditional

procedures, described in Sec. 2.1, are used. Here a technique employing a vibrational

subspace (VS) is presented which can be used for the determination of a large number of

rovibrational states and is almost cost free.

The rotational-vibrational Hamiltonian can be partitioned as

Ĥ = T̂ v + T̂ r + T̂ rv + V̂ = Ĥv + T̂ r + T̂ rv, (105)

where T̂ v, T̂ r and T̂ rv denote the vibrational, rotational and rotational-vibrational coupling

terms of the kinetic energy operator, respectively, and

Ĥv = T̂ v + V̂ (106)

is the vibration-only Hamiltonian. It is important to note that Eqs. (105) and (106) hold

generally irrespective of the applied vibrational coordinates and embeddings and the form

of the Hamiltonian. After solving the

ĤvΦi = EiΦi (107)

vibrational Schrödinger equation and obtaining the Φi vibrational wave functions and the

corresponding Ei vibrational energy levels, a subset of the Φi functions can be employed

as a compact vibrational basis for the rotational-vibrational computations. In order to

construct a new and compact rovibrational basis, consider the direct product of the Φi
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vibrational states and some Rk rotational basis functions for a given J :

{ΦiRk}, where i = 1, . . . , n and k = 1, . . . , 2J + 1, (108)

in which the Ψα rovibrational wave functions are expanded as

Ψα =
n∑
i=1

2J+1∑
k=1

cαikΦiRk. (109)

The matrix representation of Ĥv is diagonal,

〈ΦiRj|Ĥv|ΦkRl〉 = Eiδikδjl. (110)

While the latter equation holds irrespective of the actual form of the Hamiltonian applied,

other necessary vibrational matrix elements can only be derived after specifying the rovi-

brational Hamiltonian. Formulae for the Eckart�Watson Hamiltonian of Eq. (10) (DEWE)

and for the general Hamiltonian of Eq. (60) (GENIUSH) are given in Sections 2.6.2 and

2.6.3, respectively.

There are several choices for de�ning the 2J+1 rotational basis functions for a given J :

(a) simple |JKM〉 symmetric top eigenfunctions, (b) Wang functions (see Eq. (38) for their

de�nition), and (c) rigid-rotor eigenfunctions. The third option was preferred during the VS

studies, namely the 2J + 1 rigid-rotor eigenfunctions computed with equilibrium rotational

constants were utilized as a rotational basis, as this choice gives rise to straightforward

computation of the RRD coe�cients.

The �rst step is to set up the HRR matrix representation in the basis of the Wi Wang

functions of the

ĤRR = AĴ2
x +BĴ2

y + CĴ2
z (111)

rigid-rotor Hamiltonian with A, B, C being the rotational constants of the molecule. After

�nding the di eigenvectors of HRR, the Ri rotational basis functions take the form

Ri =
2J+1∑
k=1

dikWk. (112)
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The 〈Ri|Ĵα|Rj〉 and 〈Ri|JαĴβ|Rj〉 matrix elements are

〈Ri|Ĵα|Rj〉 =
2J+1∑
k=1

2J+1∑
l=1

dikdjl〈Wk|Ĵα|Wl〉, (113)

and

〈Ri|ĴαĴβ|Rj〉 =
2J+1∑
k=1

2J+1∑
l=1

dikdjl〈Wk|ĴαĴβ|Wl〉 (114)

in terms of the Wang basis matrix elements.

This new contraction-like technique, denoted as VS, exhibits the following signi�cant

advantages over previous approaches: (a) the vibrational subspace is very compact (it con-

sists of typically the �rst few hundred vibrational eigenstates of the molecule), which results

in a Hamiltonian of modest size even for high J values; (b) the RRD analysis, which facil-

itates the labeling of the variationally computed rovibrational states, is especially simple,

as the RRD coe�cients are equal to the absolute squares of the components of the eigen-

vectors of the rotational-vibrational Hamiltonian; (c) the vibrational basis functions are

automatically symmetry adapted (as they are basis functions of the irreducible representa-

tions of the point group), which facilitates the exploitation of molecular symmetry during

the computation; (d) once the necessary vibrational matrix elements for the construction

of the representation of T̂ r and T̂ rv have been computed, they can be saved for later use,

which greatly reduces the cost of further computations; and (e) due to the modest size

of the �nal Hamiltonian one can use direct eigensolvers instead of the iterative Lanczos

algorithm; thus, the spectral density of the rovibrational energy levels does not a�ect the

convergence speed of the diagonalization (for larger matrices one can, of course, return to

Lanczos techniques). For this study a parallel eigensolver of the Math Kernel Library [82]

was chosen.

2.6.2 DEWE-VS matrix elements

According to Eq. (40), the µαβ and µαβπ̂β operators (α, β = x, y, z) appear in the T̂ r and

T̂ rv operators of the Eckart�Watson Hamiltonian. The forthcoming equations are based

on the following facts: (a) in DVR, matrix representations of operators depending only

on the internal coordinates are diagonal, (b) diagonal matrix elements of the coordinate

dependent operators are given by evaluating them at the DVR grid points, (c) components

of the variational vibrational eigenvectors are real.
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Elements of the µαβ matrix in the basis of the Φi variational vibrational wave functions

are given by

〈Φi|µαβ|Φj〉 =
n∑
k=1

n∑
l=1

cikc
j
l 〈Fk|µαβ|Fl〉 =

n∑
k=1

cikc
j
kµαβ(qk), (115)

where the 3N − 6-dimensional Fk DVR basis functions de�ned by Eq. (26) have been

applied and qk is the direct product grid point associated with Fk. The µαβπ̂β matrix

elements can be derived by inserting the approximate resolution of identity amongst the

µαβ and π̂β operators:

〈Φi|µαβπ̂β|Φj〉 =
n∑
k=1

n∑
l=1

n∑
m=1

cikc
j
l 〈Fk|µαβ|Fm〉〈Fm|π̂β|Fl〉 = (116)

=
n∑
k=1

n∑
l=1

cikc
j
lµαβ(qk)〈Fk|π̂β|Fl〉,

Further explanation of the 〈Fk|µαβ|Fl〉 and 〈Fm|π̂β|Fl〉 matrix elements has been outlined

in Section 2.1.2.

2.6.3 GENIUSH-VS matrix elements

In view of Eqs. (70) and (71), one has to consider the matrix representations of theGk+D,l+D

rotational (D is the number of the active vibrational degrees of freedom, k, l = 1, 2, 3), and

g̃−1/4p̂†kGk,l+D g̃
1/4 and g̃1/4Gk,l+D p̂kg̃

−1/4 rovibrational coupling operators (k = 1, . . . , D

and l = 1, 2, 3) in the basis spanned by the Φi variational vibrational wave functions. The

forthcoming equations are based on features described at the beginning of Section 2.6.2.

The rotational Gk+D,l+D matrix elements are expressed as

〈Φi|Gk+D,l+D|Φj〉 =
n∑
a=1

n∑
b=1

ciac
j
b〈Fa|Gk+D,l+D|Fb〉 =

n∑
a=1

ciac
j
aGk+D,l+D(qa), (117)

where Fa denotes the ath 3N−6-dimensional vibrational DVR basis function and qa is the

grid point associated with Fa. Matrix elements of the g̃−1/4p̂†kGk,l+D g̃
1/4 operator take the

form

〈Φi|g̃−1/4p̂†kGk,l+D g̃
1/4|Φj〉 =

n∑
a=1

n∑
b=1

ciac
j
b〈Fa|g̃

−1/4p̂†kGk,l+D g̃
1/4|Fb〉 =
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=
n∑
a=1

n∑
b=1

n∑
c=1

n∑
d=1

n∑
e=1

ciac
j
b〈Fa|g̃

−1/4|Fc〉〈Fc|p̂†k|Fd〉〈Fd|Gk,l+D |Fe〉〈Fe|g̃1/4|Fb〉 = (118)

=
n∑
a=1

n∑
b=1

ciac
j
b〈Fa|g̃

−1/4|Fa〉〈Fa|p̂†k|Fb〉〈Fb|Gk,l+D |Fb〉〈Fb|g̃1/4|Fb〉 =

=
n∑
a=1

n∑
b=1

ciac
j
bg̃
−1/4(qa)〈Fa|p̂†k|Fb〉Gk,l+D(qb)g̃

1/4(qb),

where three approximate resolutions of identity have been applied. The same technique

leads to the

〈Φi|g̃1/4Gk,l+D p̂kg̃
−1/4|Φj〉 =

n∑
a=1

n∑
b=1

ciac
j
b〈Fa|g̃

1/4Gk,l+D p̂kg̃
−1/4|Fb〉 = (119)

=
n∑
a=1

n∑
b=1

ciac
j
bg̃

1/4(qa)Gk,l+D(qa)〈Fa|p̂k|Fb〉g̃−1/4(qb)

matrix element expression of the g̃1/4Gk,l+D p̂kg̃
−1/4 operator. Section 2.2.4 gives the details

on the DVR matrix elements appearing in the previous equations.

2.6.4 Symmetry considerations

For Abelian groups the symmetry labels can be generated by simple analysis of the rotational-

vibrational wave functions expanded in the basis de�ned by Eq. (108). This analysis builds

upon the following: (a) only Abelian molecular symmetry groups are considered; (b) the

vibrational basis is built upon the vibrational states of the molecule which are basis func-

tions of the irreducible representations of the point group; (c) the rotational basis consists

rigid-rotor eigenfunctions which are basis functions of the irreducible representations of the

rotational group (D2 for asymmetric tops); and (d) symmetry elements of the molecular

symmetry group are products of point-group and rotational-group elements (see Sec. 2.3

for a more detailed description). If an arbitrary Â MS operator is given by

Â = B̂Ĉ, (120)
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where B̂ is a point-group (PG) and Ĉ is a rotational-group (RG) element, the e�ect of Â

on a ΦiRk basis function is the following:

Â(ΦiRk) = (B̂Φi)(ĈRk) = χPGb (B̂)χRGc (Ĉ)ΦiRk = χMS
a (Â)ΦiRk, (121)

where a, b, and c refer to the irreducible representations of the molecular symmetry, point

and rotational groups, respectively, and

B̂Φi = χPGb (B̂)Φi (122)

and

ĈRk = χRGc (Ĉ)Rk, (123)

as all the groups are Abelian. In view of these equations it is evident that the ΦiRk (where

i = 1, . . . , n and k = 1, . . . , 2J + 1) functions are basis functions of the one-dimensional

irreducible representations of the molecular symmetry group. After �nding the dominant

(or any other nonzero) ΦiRk contribution in the variational expansion of the rotational-

vibrational wave functions the characters of the irreducible representation spanned by this

ΦiRk product are to be computed, according to Eq. (121), for all the conjugacy classes.

The symmetry species of a given rovibrational state is obviously the same as that of the

examined ΦiRk contribution.
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3 Results and discussion

In this section a number of results are described which utilize the theory and codes I

developed and described in the theoretical section. Section 3.1 summarizes the varia-

tional rovibrational computations I have executed with GENIUSH for the four-atomic NH3

molecule. Besides the full-dimensional results, reduced-dimesional rovibrational models

have also been examined and their quality is determined by comparison with results ob-

tained from the full-dimensional treatment. Section 3.2 gives a detailed analysis of the

rovibrational spectroscopy of the �ve-atomic H2CCO (ketene) molecule. The variational

rovibrational results obtained with DEWE and DEWE-VS have been interpreted by the

NMD, RRD, and SAL procedures. New assignments in the experimental infrared spectrum

of H2CCO are proposed based on the results of variational and MARVEL [43] analyses.

Finally, Section 3.3 describes the validation of the labels of the MARVEL energy levels of

H 16
2 O, for which I have executed variatonal rovibrational computations for large values of

the J rotational quantum number with the GENIUSH-VS program.

3.1 Rovibrational states of NH3 computed by GENIUSH

The capabilities of the rovibrational GENIUSH algorithm were tested on the ammonia

(14NH3) molecule, exhibiting one large-amplitude motion usually called �umbrella motion�.

Rovibrational results from �ve reduced-dimensional models, with dimensions ranging from

1D to 4D, are compared to the full-dimensional treatment of coupled internal and rotational

motions of ammonia.

Table II. Z-matrix representation of the internal coordinates of NH3.

N
X N 1.0
H1 N r1 X θ
H2 N r2 X θ H1 β1
H3 N r3 X θ H1 −β2
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3.1.1 Computational details

The potential energy surface (PES) of 14NH3 was taken from Ref. 83. It corresponds to

the PES called �re�ned� in that study. Atomic masses, mH = 1.007 825 u and mN =

14.003 074 u, were employed throughout the nuclear motion computations. The set of

internal coordinates applied is summarized in Table II. The embedding of the rotational

axes was done as follows: (a) the origin of the body-�xed frame is placed on the �rst atom

(N); (b) the x axis is directed towards the second atom (X, a dummy atom); (c) the x− y
plane is de�ned by the �rst three atoms (N, X, H1); (d) the z axis is oriented according to

the right-hand rule; and (e) the origin is shifted to the center of mass of the nuclei. For

reference purposes, full-dimensional variational rovibrational computations employing the

complete rovibrational Hamiltonian without constraints on the coordinates were carried

out.

Besides the full-dimensional, 6-D, model, �ve reduced-dimensional models, henceforth

called 1-D, 2-D, 3-D, 4-D1, and 4-D2, were also implemented, where the number of dimen-

sions refers to the number of active vibrational coordinates. In all reduced-dimensional

models the coordinate θ, describing the inversion motion, was kept active. Di�erent sym-

metrized and nonsymmetrized stretching and bending coordinates were added to it in order

to investigate their e�ect on the rovibrational states. The models are shown in Table III,

detailing both the active and the constrained coordinates. The constrained coordinates

were �xed at their equilibrium values given by the PES, r1 = r2 = r3 = 1.010 31 Å and

β1 = β2 = 120o. Fixing these coordinates is equivalent to the deletion of rows and columns

corresponding to the constrained coordinates from the full-dimensional g matrix. An al-

ternative method had also been implemented for the 4-D1 model, whereby values of the

constrained β1 and β2 coordinates were allowed to relax at each grid point of the active co-

ordinates. For the lower-lying vibrational levels computed the �relaxed� and ��xed� results

show no signi�cant deviations. This result validates our choice of equilibrium values for

the constrained coordinates, at least for the lower-lying vibrational levels. Implementation

of all these di�erent models is straightforward within the GENIUSH protocol.

Potential-optimized (PO) [49, 84, 85] Hermite-DVR basis functions were utilized for

the vibrational degrees of freedom. The DVR intervals for the internal coordinates can be

summarized as follows: r1, r2, r3 ∈ [0.35, 2.5] Å, β1, β2 ∈ [20, 220]◦, and θ ∈ [5, 175]◦. For all

the present computations the Podolsky form [32] of the rovibrational Hamiltonian has been

applied. It requires the evaluation of only the �rst derivatives of the Cartesian coordinates

51



in the body-�xed frame with respect to the internal coordinates, unlike the �rearranged�

form [32] often used in (ro)vibrational computations [36, 38, 40], which requires not only

the �rst but also the second and third derivatives.

The customary ordering of the vibrational quantum numbers is employed for labeling

the computed J = 0 states: 1 = totally symmetric stretch, 2 = inversion mode, 3 = doubly

degenerate stretch, and 4 = doubly degenerate bend. The inversion-mode states are labeled,

however, not by v2 but by vinv, to account for the doubling of the levels. The molecular

symmetry (MS) [73, 86] group D3h(M) is used to provide labels for the symmetries of the

rotational-vibrational states of ammonia.

The pure electronic and e�ective one-dimensional, vibrationally averaged barriers to

inversion of 14NH3 are computed to be 1777 ± 10 and 2021 ± 20 cm−1, respectively [87, 88].

The latter value is in full agreement with a set of e�ective one-dimensional spectroscopic

results in the 2018 ± 10 cm−1 interval [89, 90, 91, 92]. This energy is smaller than all but

5 of the vibrational state energies of 14NH3. The vibrational band origins (VBO) of 14NH3

lower than this energy have quantum numbers vinv = 0, 1, 2, and 3, and v4 = 1. This

investigation focuses only on the rotational-vibrational states characterized by vinv = 0, 1,

2, 3, 4, and 5 and v4 = 1 while all other vibrational quantum numbers are kept at zero.

Ideally, each inversion state holds a set of 2J + 1 �rotational� energy levels which can

be characterized as symmetric top levels using the usual quantum numbers J and K [73].

To label the rovibrational states of ammonia further, two routes can be followed. The

clearest one is to use the vinv quantum number to distinguish between the inversion doublets

and employ the irreducible representations of the D3h(M) MS group. The less preferred

alternative is to designate the doublets with superscripted + and − symbols, indicating

the lower- and higher-energy member of the pairs, respectively. Note also that nuclear

spin statistics makes some of the computed rovibrational levels (those with species A
′
1 and

A
′′
1) �missing� [73]. Finally, we mention that for the {ν+2 , ν

−
2 } diad and especially for the

{2ν+2 , ν
+
4 , ν

−
4 } triad the energy order of the rotational-vibrational eigenstates does not

strictly follow the order of the VBOs (the J = 0 eigenstates). The rotational-vibrational

states were sorted according to the prescription of the RRD procedure.
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Table III. Characteristics of the reduced-dimensional models of NH3 employed in this
study.

model active coordinates constrained coordinates no. of BFs for the active DOFsa

1-D θ r1, r2, r3, β1, β2 40 (100)
2-D θ, 1√

3
(r1 + r2 + r3)

1√
6
(2r1 − r2 − r3), 1√

2
(r2 − r3),β1,β2 25 (80), 15 (80)

3-D θ, β1, β2 r1, r2, r3 25 (80), 15 (80), 15 (80)
4-D1 θ, r1, r2, r3 β1, β2 25 (80), 15 (80), 15 (80), 15 (80)
4-D2 θ, 1√

3
(r1 + r2 + r3), β1, β2

1√
6
(2r1 − r2 − r3), 1√

2
(r2 − r3) 25 (80), 15 (80), 15 (80), 15 (80)

a BF = PO DVR basis function. DOF = degree of freedom. The number of primitive DVR
vibrational basis functions are given in parentheses.

3.1.2 Full-dimensional results

The full (6-D)-dimensional VBOs obtained with the PES and the exact kinetic energy

operator employed for the present computations within the GENIUSH protocol have been

reported in Ref. [32]. A few of these results are reproduced in Table IV along with

the experimental values taken from Ref. 93. The basis set used here is large enough to

converge all the VBOs of interest to better than 0.01 cm−1. Thus, the computed full-

dimensional rotational-vibrational energy levels, some of which are reported in Table V,

serve as benchmark numbers.

As clear from Table V, the present PES [83], at least for the low J values investigated in

this study, provides rotational-vibrational energies in good agreement with the experimental

results. The agreement is not as outstanding as has been observed for the recent exceedingly

high quality ab initio and ab initio-based PESs of water [13, 95, 96], but the average

accuracy of the computed lines is down to the 0.1 cm−1 level.

It is interesting to compare the present benchmark energy values to those obtained

using the TROVE algorithm employing truncated kinetic and potential energy operators

[83, 94] during solution of the nuclear-motion problem. The appropriate vibrational and

rovibrational results are reported in Tables IV and V, respectively. In all cases the TROVE

energy values are higher than the GENIUSH ones. However, the di�erences are very small,

on the order of 0.01�0.03 cm−1, both for the pure vibrational and rovibrational states,

considerably smaller than the accuracy of the PES employed, on the order of 0.1 cm−1 for

the states considered. This proves the validity and utility of the approximations introduced

in the TROVE algorithm.

Finally, a few words about the rotational wavenumbers corresponding to the di�erent

rotational axes. The rotational energies at about 20 cm−1 for J = 1 are considerably larger
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Figure 1: Relative splittings between rovibrational states of 14NH3 sharing the same K
value for a given J for the vinv = 0/1 (v2 = 0) and vinv = 2/3 (v2 = 1) pairs, referenced
to the corresponding J = 0 values. Relative splittings for di�erent J values are denoted
according to the following pattern: rectangle: J = 1, circle: J = 2, triangle: J = 3, star:
J = 4.
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Table IV. Relevant full and reduced-dimensional zero-point vibrational energies (GS =
ground state) and vibrational band origins of 14NH3 relative to the vibrational ground state
energy, all in cm−1. The molecular symmetry group D3h(M) is used to label the rotational-
vibrational states of ammonia. The D3h(M) symmetry labels are given in parentheses.
The 1-D, 2-D, and 4-D1 models do not exhibit the ν+4 and ν−4 vibrations as the β1 and β2
vibrational coordinates are �xed in these cases.

1-D 2-D 3-D 4-D1 4-D2 6-D Expt.a

0+ (A
′
1, GS) 521.43 2256.74 2158.70 5828.91 3911.34 7436.82 �

0− (A
′′
2) 1.13 1.28 1.70 0.58 1.74 0.79 0.79

ν+2 (A
′
1) 930.57 900.48 904.48 945.65 881.01 932.41 932.43

ν−2 (A
′′
2) 979.80 952.80 970.68 973.89 946.02 968.15 968.12

2ν+2 (A
′
1) 1586.97 1537.6 1550.06 1626.11 1511.43 1597.26 1597.47

ν+4 (E
′
) � � 1659.43 � 1649.71 1625.62 1626.28

ν−4 (E
′′
) � � 1662.12 � 1652.08 1626.73 1627.37

2ν−2 (A
′′
2) 1918.86 1868.39 1917.98 1884.43 1867.66 1882.18 1882.18

a Experimental results are taken from Ref. 93 and have higher accuracy than indicated
here. The VBOs obtained with TROVE [83, 94], using the same PES and following the
same order, are 7436.82, 0.80, 932.42, 968.16, 1597.29, 1625.64, 1626.75, and 1882.20 cm−1.

than the splitting between the 0+ and 0− states, about 1 cm−1. Thus, resonance interactions

should be limited. One further expects that rotation about the principal symmetry axis

increases the inversion splitting and those about the perpendicular axes act in the opposite

direction. As shown in Figure 1, the splittings between the E ′ and E ′′ states can both

increase and decrease as a function of J and K, though these changes are rather small for

the small J values considered. The relative splittings change almost linearly as a function

of K. For each J , the relative splitting is positive only for the largest K pair.

3.1.3 Convergence of the rovibrational levels

Convergence of the rovibrational levels of NH3 was examined extensively with respect to the

size of the vibrational basis. Full-dimensional computations were carried out from J = 0

up to J = 4. The reported �converged� results were computed using 25 vibrational basis

functions for the inversion and 10 vibrational basis functions for the other �ve degrees of

freedom. For the approximate rovibrational levels a considerably smaller vibrational basis,

containing 14 functions for the inversion and 5 for the others, was utilized. The basis

functions mentioned refer to PO DVR functions for all degrees of freedom, each of them

were generated by employing 80 primitive DVR functions (see Table III for a summary
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about basis functions for the reduced-dimensional models).

A pictorial representation of the deviations between the �converged� and approximate

rovibrational levels is given in Figure 2, where the minimum unsigned, maximum unsigned,

and mean values of these deviations are plotted for six vibrational states.

As expected, deviations between the �converged� and the approximate rovibrational

levels increase with vibrational excitation. For the vibrational ground state the small vi-

brational basis is able to reproduce the exact rovibrational levels very well, while the biggest

deviations are present for the �fth VBO. These �ndings suggest that (a) the incomplete-

ness of the vibrational basis plays an important role in the error of the rovibrational levels

(unless they are referenced to the actual VBO); and (b) even small vibrational basis sets

are able to supply rovibrational levels of appropriate precision for some of the vibrational

band origins.
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Figure 2: Convergence of the rovibrational levels of 14NH3 from J = 1 up to J = 4. Maxi-
mum unsigned, minimum unsigned, and mean absolute deviations between the converged
(25 basis functions for the inversion and 10 for the other degrees of freedom, respectively)
and small (14 basis functions for the inversion and 5 for the other degrees of freedom,
respectively) vibrational basis sets are shown. Note that 1, 2, 3, 4, 5, and 6 on the x axis
refer to the 0+, 0−, ν+2 , ν

−
2 , 2ν+2 , and 2ν−2 vibrational states, in order.

Table V. Selected computed full-dimensional rotational-vibrational energy levels of
14NH3 for J = 1 − 4, in cm−1, referenced to the zero-point energy of the system (all

vibrational modes other than the umbrella motion remain in their ground state). See text

for the meaning of the labels {vinv J K} of the rotational-vibrational states. Symmetry

labels correspond to the D3h(M) molecular symmetry group.

J K vinv symm. label GENIUSH TROVE

1 0 0 A
′
2 19.907 19.907

1 1 0 E
′′

16.188 16.188

1 1 1 E
′

16.979 16.981
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1 0 2 A
′
2 952.558 952.570

1 1 2 E
′′

948.578 948.589

1 1 3 E
′

984.209 984.219

2 1 0 E
′′

55.988 55.988

2 2 0 E
′

44.838 44.838

2 0 1 A
′′
2 60.465 60.467

2 1 1 E
′

56.759 56.761

2 2 1 E
′′

45.630 45.632

2 1 2 E
′′

988.860 988.872

2 2 2 E
′

976.928 976.940

2 0 3 A
′′
2 1027.507 1027.517

2 1 3 E
′

1023.781 1023.792

2 2 3 E
′′

1012.596 1012.606

3 0 0 A
′
2 119.341 119.342

3 1 0 E
′′

115.637 115.638

3 2 0 E
′

104.516 104.516

3 3 0 A
′′
2 85.943 85.944

3 1 1 E
′

116.380 116.382

3 2 1 E
′′

105.278 105.280

3 3 1 A
′′
2 86.740 86.742

3 0 2 A
′
2 1053.171 1053.183

3 1 2 E
′′

1049.216 1049.228

3 2 2 E
′

1037.327 1037.340

3 3 2 A
′′
2 1017.453 1017.465

3 1 3 E
′

1083.098 1083.109

3 2 3 E
′′

1071.935 1071.946

3 3 3 A
′
2 1053.302 1053.313

4 1 0 E
′′

195.076 195.077

4 2 0 E
′

183.991 183.992

4 3 0 E
′′

165.482 165.482

4 4 0 E
′

139.492 139.492

4 0 1 A
′
2 199.466 199.469

4 1 1 E
′

195.781 195.784
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4 2 1 E
′′

184.716 184.719

4 3 1 A
′
2 166.239 166.242

4 4 1 E
′′

140.298 140.300

4 1 2 E
′′

1129.566 1129.579

4 2 2 E
′

1117.734 1117.747

4 3 2 A
′′
2 1097.956 1097.969

4 4 2 E
′

1070.140 1070.152

4 0 3 A
′′
2 1165.817 1165.829

4 1 3 E
′

1162.108 1162.121

4 2 3 E
′′

1150.975 1150.988

4 3 3 A
′
2 1132.390 1132.403

4 4 3 E
′′

1106.313 1106.324

3.1.4 Reduced-dimensional results

Five reduced-dimensional models of the 14NH3 molecule have been tested, ranging from

1-D to 4-D. Table IV gives the computed full and reduced-dimensional vibrational band

origins of interest for this study. All of the computed rovibrational levels were referenced to

the appropriate VBOs and the di�erences of these full and reduced-dimensional levels were

then computed. The maximum unsigned, minimum unsigned, and mean absolute (MAD)

deviations are summarized in Table VI for J = 1 and 4.

The ZPVE for the 1-D model is 521.4 cm−1. The considerable increase in the e�ective

one-dimensional barrier height mentioned before is due to the signi�cant tightening of

bonding at the transition state, as re�ected in the PES. In the 1-D model, similarly to

the full 6-D model, there are 4 vibrational states below the barrier, while the �fth state

(vinv = 4) is already slightly beyond it.

Though there is a considerable shift (see the MAD values of Table VI) of the rovi-

brational energy levels due to the incompleteness of the vibrational model for the ground

state, deviations from the MADs are considerably smaller, up to a factor of 6. Thus, the

computed reduced-dimensional rovibrational energies have considerable predictive power.

The deviations of the reduced-dimensional rovibrational results from the full rovibra-
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tional results show clearly the considerable approximations characterizing the 1-D vibra-

tional model. Interestingly, the 2-D model, having the two fully symmetric motions of

ammonia active, does not improve substantially the 1-D results, except for the 0+ and 0−

states. For example, the di�erence between the 2ν+2 (A
′
1) and 2ν−2 (A

′′
1) VBOs is 285 cm−1

experimentally, while the {1-D, 2-D} splittings are {332, 331} cm−1, a gross overestimation

in both cases. In fact, none of the reduced-dimensional models are successful in predicting

this splitting.

By far the best model for describing the inversion motion of ammonia is the 4-D1

model. This is a somewhat nonintuitive result and perhaps stems from a considerable

coupling between the umbrella mode and the overtones of the non-symmetric stretching

modes. Nevertheless, even this best reduced-dimensional model produces errors an order

of magnitude larger than the intrinsic accuracy of the PES. Even in the most favorable

cases the improvement in the maximum unsigned error is only about a factor of two. Thus,

it is surprisingly hard to improve upon the simplest 1-D model by the inclusion of further

degrees of freedom in the active set of coordinates. This is a serious warning when treating

larger, more complex systems and what can be expected from models including several

degrees of freedom in the active set designed to improve upon the physically simplest model.

However, in the many cases when the smallest reasonable treatment of the molecular system

does require the active treatment of several coordinates, the present procedure provides a

straightforward way for the interpretation of the measured rotational-vibrational spectra.

3.2 Rovibrational results for the C2H2O computed by DEWE

The semirigid �ve-atomic ketene (C2H2O) molecule has proven to be an ideal candidate for

variational rovibrational computations with DEWE as the following characteristics of its

rovibrational spectrum hinder perturbative treatments: (a) its three lowest fundamental

vibrations (ν5(B1) ≈ 587, ν6(B1) ≈ 526, and ν9(B2) ≈ 439 cm−1 in the Mulliken notation)

cluster in the narrow 430−590 cm−1 window; (b) the next two fundamentals, ν4(A1) ≈ 1116

and ν8(B2) ≈ 977 cm−1, occur next to each other at about twice the frequency of the three

bends; (c) complications also arise from the fact that there is a C2v to Cs bifurcation on the

ground-state PES of ketene, marking the advent of the out-of-plane bent (CI
s) dissociation

path when the C=C bond is elongated by just about 0.15 Å over its equilibrium value;

(d) there are a number of vibrational (Fermi and Darling�Dennison) and rovibrational
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Table VI. Maximum unsigned, minimum unsigned, and mean absolute (MAD) deviations
between the computed full and reduced-dimensional results, in cm−1, for the J = 1 and
J = 4 states of 14NH3. Both the full- and the reduced-dimensional rovibrational levels are
referenced to the appropriate vibrational band origins given in Table IV.

J = 1 J = 4
Label 1-D 2-D 3-D 4-D1 4-D2 1-D 2-D 3-D 4-D1 4-D2

0+ maximum 0.243 0.129 1.360 0.343 0.461 2.697 1.376 6.570 3.282 4.606
minimum 0.208 0.121 1.087 0.195 0.271 1.909 1.351 2.360 1.050 1.571
MAD 0.219 0.127 1.178 0.244 0.334 2.357 1.362 4.815 2.359 3.344

0− maximum 0.247 0.130 1.448 0.338 3.444 2.731 1.377 6.527 3.239 4.516
minimum 0.211 0.121 1.180 0.193 0.268 1.939 1.357 2.401 1.049 1.587
MAD 0.223 0.127 1.270 0.242 1.327 2.390 1.365 4.806 2.334 3.297

ν+2 maximum 0.440 0.491 2.542 0.125 0.698 4.742 5.114 9.500 4.755 7.790
minimum 0.254 0.290 2.163 0.075 0.351 1.450 1.716 1.243 0.438 1.441
MAD 0.316 0.357 2.416 0.092 0.467 3.351 3.685 5.263 1.645 4.930

ν−2 maximum 0.596 0.530 0.349 0.024 0.529 6.181 5.417 6.557 3.650 5.308
minimum 0.372 0.332 0.074 0.015 0.309 2.420 2.155 0.499 0.148 0.611
MAD 0.447 0.398 0.166 0.018 0.382 4.607 4.053 4.155 0.860 3.576

ν+4 maximum � � 1.063 � 0.932 � � 8.502 � 5.589
minimum � � 0.014 � 0.256 � � 1.386 � 0.065
MAD � � 0.622 � 0.552 � � 6.207 � 3.829

ν−4 maximum � � 1.079 � 0.942 � � 8.431 � 5.483
minimum � � 0.030 � 0.273 � � 1.384 � 0.097
MAD � � 0.587 � 0.508 � � 5.684 � 3.219

2ν+2 maximum 0.500 0.617 3.462 0.275 0.470 4.950 6.061 3.781 2.573 4.564
minimum 0.293 0.396 3.332 0.086 0.319 1.795 2.716 1.919 0.199 2.358
MAD 0.362 0.470 3.419 0.149 0.369 3.717 4.749 3.082 1.598 3.723

2ν−2 maximum 1.012 0.894 1.713 0.424 0.478 10.209 8.957 6.359 4.231 4.799
minimum 0.607 0.529 1.505 0.171 0.313 3.683 3.117 3.075 0.197 2.148
MAD 0.742 0.651 1.574 0.255 0.368 7.495 6.530 4.990 2.558 3.695
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(Coriolis) resonances in di�erent regions of the spectrum of ketene, occasionally causing

localized level crossings distorting the rotational structures of some of the bands.

Perturbation-based analyses of the spectroscopic features of ketene have been summa-

rized nicely by East et al. [98], who performed one of the most careful ab initio studies of

the spectral features of ketene, based on a quartic force �eld representation of the PES and

the traditional vibrational perturbation theory carried out to second order (VPT2) [99].

Understanding the various resonances, detecting and assigning their spectral signatures, in-

cluding irregular subband origins and unusual isotopic frequency shifts, and treating them

with perturbative theoretical techniques meant that spectroscopists encountered severe dif-

�culties while working on the measured spectra of ketene isotopologues and thus had to

leave a considerable number of spectral features unassigned even at the low energies con-

sidered. The most practical way out of the messy situation concerning the spectroscopy of

ketene is to employ variational nuclear motion techniques.

This section discusses the results of the variational rovibrational computations done for

C2H2O. Zeroth-order vibrational and rotational quantum numbers and symmetry labels

were evaluated by the NMD, RRD and SAL procedures. Rovibrational energy levels and

wave functions with high J rotational quantum numbers were computed by the DEWE-VS

program. Then, the MARVEL analysis based on the measured rovibrational transitions

of C2H2O is summarized. Finally, new experimental transitions are assigned based on the

variational and MARVEL results.

3.2.1 Model of the PES

The empirically adjusted ab initio quartic internal coordinate force �eld of Ref. [98] was

employed as a model of the PES of ketene around the equilibrium structure. This simple

representation of the ground-state PES of ketene was obtained by East et al. [98] as a result

of two cycles of re�nements. In the interior cycle A the harmonic (quadratic) part of the

force �eld was re�ned by scaling it according to the scaled quantum mechanical (SQM) force

�eld recipe [100, 101] to harmonized frequencies, obtained via the VPT2 protocol, while

keeping the reference (equilibrium) geometry �xed. In the exterior cycle B, corrections

to the rotational constants based on lowest-order vibration-rotation interaction constants

computed from the actual cubic force �eld, augmented with small centrifugal distortion and

electronic corrections, were applied to the experimental ground-state rotational constants

in order to get an improved estimate of the equilibrium molecular structure of ketene. The
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exterior and interior cycles were repeated until self-consistency was achieved, resulting in

a quartic force �eld which reproduced the available experimental fundamentals within the

VPT2 protocol by about 1 cm−1 on average.

In order to make the internal coordinate quartic force �eld of Ref. [98] optimal for use in

variational nuclear motion computations, the simple stretching coordinates were replaced

by Simons�Parr�Finlan coordinates [102]. The necessary nonlinear transformations were

performed analytically by employing the INTDER2000 program system [103, 104, 105].

The �nal quartic internal coordinate force �eld employed in this study is de�ned in the

Supplementary Material of Ref. [22].

3.2.2 Rovibrational energy levels and wave functions

All the nuclear motion computations utilized the DEWE program package. The atomic

masses employed for all the computations are m(H) = 1.007 825 u, m(12C) = 12.000 000 u,

and m(16O) = 15.994 910 u. The reference structure and the de�nition of the rectilinear

coordinates are given in the Supplementary Material of Ref. [22]. Following a considerable

number of test computations, the vibrational basis was chosen as follows for the results

reported hereby: 6, 8, and 10 basis functions for the four stretching motions, the two

highest bends, and the three lowest bends, respectively. The size of the corresponding

vibrational Hamiltonian thus became 82 944 000. This basis allowed execution of vibration-

only computations on a personal computer within a few weeks resulting in the lowest 100

eigenvalues and eigenfunctions.

The rotational-vibrational computations were performed in two di�erent ways. First,

the DEWE algorithm was employed up to J = 3 with a vibrational basis of 21 781 872

functions (7 basis functions for the �ve bends and 6 for the four stretching motions). Second,

the DEWE-VS procedure was applied for the computation of rotational-vibrational energy

levels up to J = 50 (for the full list of rovibrational states corresponding to the �rst four

VBOs, GS (ground state), ν9 = 91, ν6 = 61, and ν5 = 51, see the Supplementary Material

of Ref. [22]). During the DEWE-VS computations the previously mentioned lowest 100

vibrational wave functions de�ned the vibrational subspace employed.

The NMD and RRD analyses of the computed rovibrational wave functions were per-

formed according to the recipes of Section 2.5.
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3.2.3 MARVEL analysis

The MARVEL [43] analysis of the measured rovibrational transitions resulted in a set of

�experimental� energy levels. In order to keep the experimental sources of the measured

transition data searchable, each experimental source received a tag (see Table VII). Table

VII contains the intervals characterizing the measured transitions as well as the number of

the available (A) and validated (V) transitions present in a given source.

We could not use the several hundred assigned transitions in 87DuFeHaToa [106], as

not the individual transitions but the e�ective spectroscopic constants deduced from them

were reported in the paper. We did, however, employ many previously assigned but so far

unpublished high-resolution mid-infrared transitions [107], which became part of Ref. [22]

and thus received the tag 11FaMaFuNe (see Table VII). There are many pure rotational

transitions reported in the Cologne Database for Molecular Spectroscopy (CDMS) [108],

which come from several known sources [109, 110, 112, 113, 114, 115]. Thanks to the kind

help of Dr. Müller, maintaining the CDMS, these transitions received their original tag and

at the end no explicit reference is made in the MARVEL input to the CDMS. Transitions

reported in Ref. [112] are also listed under their original sources in the MARVEL input

�le.

Due to the symmetry of the molecule, the rotational-vibrational energy levels of ketene

form two spectroscopic networks (SN) [116], called ortho and para. There are no ortho-para

transitions measured.

Since the MARVEL energy levels determined do not have the same dependability (the

uncertainties resulting from the least-squares �t can not always be trusted, especially when

the energy level is determined by a single transition), we attached quality classi�cations to

the levels, distributing them into three categories: A (best), B, and C (worst). A MARVEL

energy level is of A quality if it is determined by at least 5 transitions coming from at least

3 di�erent data sources. Energy levels of B quality participate in at least 4 transitions

coming from at least 2 data sources. All other MARVEL energy levels, in fact the majority

of the MARVEL levels, are tagged as C.
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Table VII. Data sources for line information and their characteristics for

H 12
2 C=12C=16O employed during the present MARVEL analysis.

Tag Range (cm−1)a Trans. (A / V)b

77FaKrMu [114] 0.013 � 0.038 2 / 2

03GuHu [112] 0.076 � 10.882 97 / 65

52JoSt [109] 0.264 � 2.041 29 / 24c

72JoStWi [117] 0.264 � 6.123 53 / 45

01SuDr [110] 0.674 � 0.674 1 / 1

63CoEs [111] 0.674 � 1.361 15 / 9

90BrGoMcPi [113] 0.674 � 12.140 37 / 20

92JoNeYaWa [115] 0.692 � 24.445 146 / 77

96HiZeDoGu [122] 1.337 � 5.445 130 / 89

11FaMaFuNe [22] 332.638 � 1021.930 2345 / 1945

94EsDoCaOr [118] 3049. 661 � 3089.528 276 / 175

03StNeGr [121] 4269.605 � 6271.494 851 / 742

a Note that (a) the range indicated does not mean the actual spectral range covered by the

experiment but simply the lowest- and highest-energy transition present in the database and

(b) the ranges are not always indicative of the vibrational states covered by the experiment.
b Trans. = transitions, A = available in the original data source, V = validated by MARVEL

during the present work.
c The 52JoSt.24 transition was removed manually from the database as it has the same

lower and upper level assignments in the original publication.

3.2.4 Vibrational band origins

The vibrational energy levels computed with the DEWE program package are collected in

Table VIII. Since the present quartic force �eld does not take into account the dissociation

path bifurcation occuring on the ground-state PES of ketene at about 4000 cm−1, we

report computed vibrational band origins (VBO) only up to about 2200 cm−1, i.e., up to

the neighborhood of the C=O stretch fundamental 21 = ν2(A1). The NMD tables of the

parent isotopologue of ketene, close to the same energy cut-o� value, are reported in Tables

IX-XII for the four irreducible representations of the C2v point group.
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The very strong mixing within some of the vibrational states of ketene is clearly evident

from the NMD data of Tables IX-XII. Therefore, the zeroth-order normal-mode labeling

given in Table VIII becomes rather approximate in certain cases even at the low energies

and low excitations considered. The most striking example concerns the A1-symmetry

states at 1402.3 and 1415.9 cm−1 (variational results), which have an almost perfect 50-

50 mixing of the ω3 and (ω8 + ω9) harmonic oscillator basis states. This means that

it is unclear, based on the present variational quantum chemical computations, whether

the 31 = ν3(A1) fundamental of parent ketene is at 1402 or at 1416 cm−1. The NMD

analysis prefers the higher assignment by NMD coe�cients 50 to 43. However, we prefer

the lower assignment, though clearly this is somewhat arbitrary and can be supported only

if comparison with experimental and harmonic results is considered. The strong Fermi

resonance behind this result has been noted before, for example by Duncan et al. [106].

The 41 = ν4(A1) fundamental of parent ketene at 1113 cm−1 also mixes strongly with

the 5161 combination state at 1169 cm−1, though for this fundamental the largest NMD

coe�cient is a much more indicative 61. Nevertheless, here there are also strong Fermi

resonance interactions as indicated by the mixing of the ω4, 2ω5, and (ω5 + ω6) basis

states. The mixing of the 2ω6 state, predicted by Duncan et al. [106], is weak and thus

could almost be neglected. It is also important to point out that 81 = ν8(B2) is not strongly

mixed with the other vibrational states. This is principally due to the fact that there are

no nearby B2-symmetry vibrational states. Finally, we note that the strict harmonic order

of the vibrational states changes in several instances. This happens, for example, for the

(ω6 + ω9) � ω8 and 2ω6 � (ω5 + ω9) pairs at about 970 and 1050 cm−1, respectively, in the

�rst case due to anharmonic corrections of di�erent sign.

The anharmonic corrections to the fundamentals 91, 61, 51, 81, 41, 31, 21 are +5.0,

+26.3, +7.1, �17.9, �29.7, �25.9, �44.4 and +3.5, +31.4, +21.6, �23.4, �32.8, �12.9, �43.5

cm−1 for VPT2 and DEWE, respectively. Clearly, in some cases the two approaches provide

considerably di�erent VBOs for this molecule; for example, VPT2 and DEWE di�er by a

factor of 3 and 2 for the anharmonic corrections to the fundamentals 51 and 31, respectively.

These large discrepancies should be compared to the ability of the re�ned quartic force

�eld employed to reproduce measured band origins by an average accuracy of 1 cm−1 based

on the VPT2 treatment [98]. This also points to the need of using variational results

when re�ning quartic force �elds for molecules exhibiting strong and extensive anharmonic

resonances. Another peculiar feature of the computed results is that there is a very large
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positive anharmonicity for the out-of-plane C=C=O bending fundamental, 61 = ν6(B1),

and its overtones, it is +31.4, +66.5, +99.4, +123.2 cm−1 for the VBOs 61, 62, 63, 64,

showing some irregularity.

As clear from Table VIII, the variationally computed VBOs deviate substantially from

the experimental MARVEL ones (discussion of the MARVEL levels is given in Section

3.2.6). Since the variational protocol employed uses an exact kinetic energy operator and

includes also the complete PES, these discrepancies are the result of slight problems with

the empirically adjusted ab initio quartic force �eld approximation of the PES employed.

Nevertheless, it is more important to emphasize that the discrepancies are only on the

order of a few cm−1, making all semi-quantitative conclusions of this study about the

rovibrational characteristics of the ketene molecule valid.

Of the four vibrational resonance interactions identi�ed in Table IX of Ref. [98], three

and one within the A1 and B2 irreducible representations, respectively, the two lower-energy

ones can be investigated here: the tetrad (ν4, 2ν5, 2ν6, ν5 + ν6) at 1100�1200 cm−1 and the

diad (ν3, ν8 + ν9) at about 1410 cm−1. Our NMD analysis presented in Table IX clearly

con�rms the existence of both resonance schemes.

For the Fermi resonance tetrad, the present variational and the previous VPT2 results

[98] show moderate agreement, perhaps somewhat worse than anticipated. For the lower

two states (2ν6 and ν4) the variational and the VPT2 eigenvalues agree well, within 8

cm−1. We clearly con�rm ν4 to be around 1113 cm−1. Otherwise, the variational and

VPT2 results disagree to some extent. In all cases the variational wave functions suggest

stronger interactions than those indicated in Ref. [98]. Furthermore, for the higher two

eigenvalues the disagreement between the two protocols is quite substantial, 23 cm−1 for

ψ11 and 48 cm−1 for ψ10.

As to the Fermi diad, the variational separation of the two states, 14 cm−1, is just half

as large as the separation computed via VPT2. Furthermore, while the VPT2 interaction

between the two states was labeled as �weak�, the variational results indicate a rather strong

interaction, whereby the NMD coe�cients are almost 50:50.

There are other moderate or strong resonance interactions identi�ed by our NMD anal-

ysis below a relative energy of about 2100 cm−1. Most notably, in the A1 block there is

the ψ38�ψ42 diad, in the A2 block the ψ45�ψ49�ψ53�ψ56 tetrad, in the B1 block the ψ37�ψ43

diad and the ψ21�ψ23�ψ25�ψ26�ψ28 pentad, and in the B2 block the ψ19�ψ22, ψ30�ψ32, and

ψ44�ψ48 diads. The number and extent of all the vibrational resonance interactions identi-
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�ed suggest that further analysis of the high-resolution rotational-vibrational spectrum of

ketene should be based on extensive and accurate variational computations.

Table VIII.Active database (MARVEL) and variational quantummechanical (DEWE)

vibrational band origins (VBO, cm−1) for H 12
2 C=12C=16O in order of increasing energy,

with zeroth-order normal-mode (NMD) assignments, symmetry labels (Sym.), and MAR-

VEL uncertainties (Unc., 10−6 cm−1). The number of validated rotational-vibrational levels

(RL) associated with the vibrational bands in the present database and traditional char-

acterization of the fundamentals are also given.

NMD label Sym. MARVEL Unc.a RL DEWEb Characterization

GS A1 0 0 329 6832.0 ground state

91 B2 439.386511 235 148 437.1 in-plane C=C=O bend

61 B1 526.070043 236 248 534.0 out-of-plane C=C=O bend

51 B1 587.428312 231 200 603.5 CH2 wag

92 A1 873.8

81 B2 234 972.6 CH2 rocking

6191 A2 975.0

5191 A2 1047.1

62 A1 1071.7

41 A1 1113.3

5161 A1 1169.1

52 A1 1211.4

93 B2 1310.1

31 A1 1402.3 CH2 scissorc

6192 B1 1412.4

8191 A1 1415.9

5192 B1 1490.5

6181 A2 1508.2

6291 B2 1516.2

4191 B2 1558.2

5181 A2 1567.3

63 B1 1607.2

516191 B2 1612.7
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4161 B1 1637.7

529 B2 1659.0

4151 B1 1702.3
d B1 1714.8

94 A1 1745.9
d B1 1784.2

53 B1 1808.0

8192 B2 1836.0 e

6193 A2 1847.0

3191 B2 1854.2 e

5193 A2 1933.6

82 A1 1940.9

618191 B1 1943.3

6292 A1 1953.2

3161 B1 1966.9

4192 A1 2001.0

518191 B1 2013.2

6281 B2 2044.9

6391 A2 2051.0

516192 A1 2052.1

3151 B1 2077.8

4181 B2 2080.1

416191 A2 2085.9

5292 A1 2108.1

64 A1 2133.6

516181 B2 2133.6
d A2 2147.5

21 A1 2153.7 C=O stretch

5281 B2 2161.5

4162 A1 2162.9
d A2 2166.9

95 B2 2178.1
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a The uncertainties (Unc.) are given in units of 10−6 cm−1. VBOs not determined by

the experimental data available are left blank in the MARVEL and Unc. columns. Two

further MARVEL VBOs have been determined as part of the present analysis: 12 (A1) =

6068.373106(50) and 72 (A1) = 6262.909106(50) cm−1, holding 130 and 59 RLs, respectively.

The 11, 81, 1171, and 22 VBOs could not be determined via the MARVEL analysis but in

the present database they hold 107, 234, 201, and 65 RLs, respectively.
b The vibrational basis was chosen as follows for the VBOs computed by DEWE: 6, 8, and

10 basis functions for the four stretching motions, the two highest bends, and the three

lowest bends, respectively.
c There is a very strong mixing between the 31 and 8191 states (see Table IX), in fact for

this state 31 and 8191 have NMD contributions of 43 and 50 %, respectively.
d No reasonable assignment can be given due to extremely heavy mixing of several states.
e Note the very strong mixing of the 8192 and 3191 states, see Table XII.
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Table IX. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for A1 point-group symmetry.
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Σ
6832.0 ψ0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 99
873.8 ψ4 0 94 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1071.7 ψ8 0 0 79 14 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
1113.3 ψ9 0 1 6 20 61 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
1169.1 ψ10 0 0 4 45 33 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1211.4 ψ11 0 0 1 12 0 76 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
1402.3 ψ13 0 0 1 1 0 0 43 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1415.9 ψ15 0 0 2 0 0 0 50 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
1745.9 ψ27 0 0 0 0 0 0 0 0 80 0 0 0 0 7 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 90
1940.9 ψ34 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1953.2 ψ36 0 0 0 0 0 0 0 0 0 80 0 0 1 1 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 … 91
2001.0 ψ38 0 0 0 0 0 0 0 0 6 1 22 0 0 58 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 93
2052.1 ψ42 0 0 0 0 0 0 0 0 2 0 58 0 0 23 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 90
2108.1 ψ46 0 0 0 0 0 0 0 0 1 0 0 0 0 1 81 0 0 0 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 90
2133.6 ψ47 0 0 0 0 0 0 0 0 0 1 0 0 63 0 0 7 0 0 0 0 0 0 0 0 0 0 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 92
2153.7 ψ50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
2162.9 ψ52 0 0 0 0 0 0 0 0 0 1 2 0 1 0 0 23 45 7 0 7 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 … 93
2209.4 ψ55 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 10 0 6 1 33 5 0 20 0 8 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 91
2252.4 ψ57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 31 3 1 1 1 0 11 0 2 0 5 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 … 92
2270.0 ψ59 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 0 0 0 35 1 44 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 … 90
2272.2 ψ60 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 6 31 1 2 3 1 37 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 … 92
2291.4 ψ62 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 45 0 34 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 … 91
2292.6 ψ63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 6 0 0 19 3 11 2 34 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 … 89
2347.3 ψ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 17 0 43 10 0 6 0 0 2 1 0 4 0 1 0 1 0 0 0 0 0 0 0 0 0 0 … 92
2381.3 ψ68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 35 0 0 0 17 14 0 0 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 … 80
2404.2 ψ71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 0 0 0 25 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 90
2481.8 ψ77 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 76 4 0 0 1 0 0 0 0 0 0 2 0 0 0 0 … 89
2510.4 ψ79 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 1 0 0 0 0 10 2 22 6 24 12 9 0 0 0 0 0 1 0 0 0 0 … 94
2529.5 ψ83 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 6 3 8 22 2 43 2 0 0 0 0 0 0 1 0 0 0 … 94
2545.2 ψ84 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 18 1 6 3 56 0 1 0 0 0 0 1 0 0 0 0 0 … 94
2573.8 ψ88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 49 1 30 1 3 0 0 0 0 1 0 0 0 0 … 88
2613.5 ψ92 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 1 0 0 0 0 0 13 1 … 81
2618.1 ψ95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 0 3 1 81 0 0 0 0 0 0 0 0 0 … 90
2634.5 ψ96 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 2 1 1 0 0 1 0 0 0 0 0 16 0 6 1 4 0 43 2 0 0 0 6 0 0 0 0 0 … 93

NMD(ν,ω)a,b

a Rows of variational vibrational wave functions (Ψi) with energy levels νi are decom-

posed in terms of columns of harmonic oscillator (HO) basis states with reference energy

levels ωi. NMD coe�cients in percent; energies in cm−1 relative to the corresponding vari-

ational or harmonic zero-point vibrational (ZPV) level appearing in row 1 or column 1,

respectively.
b The decomposition was extended to the �rst 92 A1 HO states in each row; Σ values denote

the corresponding sums of the NMD coe�cients over these states.
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Table X. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for A2 point-group symmetry.
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Σ
975.0 ψ6 94 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1047.1 ψ7 1 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 96
1508.2 ψ17 0 0 93 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 97
1567.3 ψ20 0 0 2 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 96
1847.0 ψ31 0 0 0 0 82 0 1 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 90
1933.6 ψ33 0 0 0 0 1 81 0 0 0 1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 91
2051.0 ψ41 0 0 0 0 1 0 74 2 2 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 91
2085.9 ψ45 0 0 0 0 3 1 0 28 56 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 … 93
2147.5 ψ49 0 0 0 0 1 2 0 26 12 7 33 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 … 89
2166.9 ψ53 0 0 0 0 0 3 0 21 20 22 23 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 … 94
2230.0 ψ56 0 0 0 0 0 1 0 0 0 49 29 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 … 88
2266.8 ψ58 0 0 0 0 0 1 0 0 0 1 5 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 89
2378.4 ψ67 0 0 0 0 1 0 0 1 0 0 0 0 5 75 4 0 0 0 1 0 0 0 0 0 0 0 0 … 90
2414.1 ψ72 0 0 0 0 0 0 5 0 0 0 0 0 52 8 24 1 0 0 0 0 0 0 0 0 0 0 0 … 94
2458.2 ψ74 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 81 0 0 0 0 0 2 1 0 0 0 0 … 90
2513.4 ψ80 0 0 0 0 0 0 2 4 0 1 0 0 19 0 58 1 0 0 0 0 0 0 0 0 0 0 0 … 90
2570.8 ψ87 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 72 0 1 0 0 0 0 0 0 0 9 … 85
2602.5 ψ91 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 38 45 2 0 1 0 0 0 0 0 … 91
2651.0 ψ98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13 7 21 0 37 3 0 0 0 1 … 87

NMD	  (ν,ω)a,b

a Rows of variational vibrational wave functions (Ψi) with energy levels νi are decom-

posed in terms of columns of harmonic oscillator (HO) basis states with reference energy

levels ωi. NMD coe�cients in percent; energies in cm−1 relative to the corresponding vari-

ational or harmonic zero-point vibrational (ZPV) level appearing in row 1 or column 1 of

Table IX, respectively.
b The decomposition was extended to the �rst 58 A2 HO states in each row; Σ values denote

the corresponding sums of the NMD coe�cients over these states.
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Table XI. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for B1 point-group symmetry.
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Σ
534.0 ψ2 91 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 99
603.5 ψ3 5 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
1412.4 ψ14 0 0 90 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 … 94
1490.5 ψ16 0 0 0 90 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
1607.2 ψ21 0 0 1 0 68 16 1 1 0 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … 96
1637.7 ψ23 0 0 1 1 7 16 55 7 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 … 96
1702.3 ψ25 0 0 0 1 1 15 0 12 50 8 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 … 93
1714.8 ψ26 0 0 0 0 2 30 35 19 1 1 3 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 … 96
1784.2 ψ28 0 0 0 0 0 4 1 39 36 4 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 … 93
1808.0 ψ29 0 0 0 0 0 0 0 7 2 74 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 … 87
1943.3 ψ35 0 0 0 0 1 1 0 0 0 0 7 77 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 95
1966.9 ψ37 0 0 0 0 5 0 0 0 0 0 47 14 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … 97
2013.2 ψ39 0 0 0 0 0 0 0 1 0 0 1 0 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
2077.8 ψ43 0 0 0 0 3 5 0 1 0 0 25 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … 96
2279.4 ψ61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 2 1 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 … 84
2376.2 ψ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 70 0 1 0 0 1 1 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 … 87
2475.9 ψ75 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 93
2481.7 ψ76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 61 0 1 1 5 0 0 0 0 0 1 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 0 … 82
2528.0 ψ81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
2529.2 ψ82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 26 0 0 41 0 2 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 … 88
2586.9 ψ90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 25 0 0 24 6 0 0 15 0 0 0 0 0 0 0 2 1 0 1 0 2 1 0 0 0 0 0 … 84
2615.4 ψ93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 15 0 0 9 18 0 0 32 0 0 1 0 1 1 0 1 0 0 1 0 0 2 1 1 0 0 0 … 89
2635.4 ψ97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 49 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 … 74

NMD(ν,ω)a,b

a See footnote a to Table X.
b The decomposition was extended to the �rst 71 B1 HO states in each row; Σ values denote

the corresponding sums of the NMD coe�cients over these states.
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Table XII. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for B2 point-group symmetry.
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Σ
437.1 ψ1 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
972.6 ψ5 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 98
1310.1 ψ12 0 0 88 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
1516.2 ψ18 0 0 0 85 4 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 … 95
1558.2 ψ19 0 0 3 0 23 65 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 96
1612.7 ψ22 0 0 1 2 60 27 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
1659.0 ψ24 0 0 0 0 1 1 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 92
1836.0 ψ30 0 0 0 1 1 0 0 40 48 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
1854.2 ψ32 0 0 0 2 0 0 0 50 41 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 95
2044.9 ψ40 0 0 0 0 0 0 0 0 0 84 5 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 96
2080.1 ψ44 0 0 0 0 0 0 0 0 1 1 33 54 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 96
2133.6 ψ48 0 0 0 0 0 0 0 0 0 1 51 36 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
2161.5 ψ51 0 0 0 0 0 0 0 0 0 0 0 4 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 93
2178.1 ψ54 0 0 0 0 0 0 0 0 0 0 0 0 0 71 1 0 0 0 0 10 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 … 86
2364.0 ψ65 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 50 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 94
2384.3 ψ69 0 0 0 0 0 0 0 0 0 1 0 0 0 0 20 0 28 37 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 … 92
2384.9 ψ70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 11 16 1 2 0 0 2 0 0 0 0 2 0 0 0 0 1 0 0 0 … 87
2442.0 ψ73 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2 19 0 0 0 48 0 0 1 0 0 2 0 0 5 1 0 0 0 0 0 0 … 89
2489.3 ψ78 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 50 0 0 0 21 2 1 0 0 0 2 1 0 2 0 0 0 0 0 0 0 … 85
2557.8 ψ85 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 2 69 0 0 1 0 1 1 0 0 0 5 3 0 0 0 0 … 87
2568.2 ψ86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 55 0 0 0 5 0 1 0 0 0 0 0 0 0 13 0 0 0 … 79
2585.5 ψ89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0 0 0 1 0 0 0 0 0 0 0 … 95
2615.8 ψ94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 5 0 0 32 37 0 0 0 0 0 0 0 0 0 0 1 3 0 … 87
2662.2 ψ99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 2 1 5 9 12 0 35 0 0 14 0 0 0 0 0 2 1 … 86

NMD(ν,ω)a,b

a See footnote a to Table X.
b The decomposition was extended to the �rst 69 B2 HO states in each row; Σ values denote

the corresponding sums of the NMD coe�cients over these states.
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3.2.5 Rovibrational energy levels

The ketene molecule is very nearly a prolate symmetric top, with (A0, B0, C0) rotational

constants close to (9.41, 0.34, 0.33) cm−1, in order. Thus, the pure rotational levels can

be approximated very well by the simple expression E(J,Ka) = 0.34J(J + 1) + 9.07K2
a .

Accordingly, a near double degeneracy for all values of Ka ≥ 1 can be expected and

this is seen in the rovibrational levels in Tables XIII and XIV, listing selected variational

(DEWE) and experimental (MARVEL) levels (the complete Table XIV can be found in

the Supplementary Material of Ref. [22]). Closing of the doubly-degenerate pairs becomes

more pronounced when one goes to higher energies and Ka values though occasionally

perturbations cause deviations from this trend. Figure 3 shows the deviations of the pure

rotational DEWE (panel A) and MARVEL (panel B) levels from the rigid-rotor (RR)

picture, based on the ground-state rotational constants [117] A0 = 9.409 209, B0 = 0.343

370, and C0 = 0.330 737 cm−1. Both the DEWE and the MARVEL levels show the expected

pronounced degeneracy (note, however, that the scales of panels A and B of Figure 3 are

very di�erent). The DEWE and the MARVEL results also show a clear J-independence

and Ka-dependence of the deviations.

The variational di�erences between the JKa,J+1−Ka and JKa,J−Ka pairs are often an

order of magnitude smaller than the �measured� ones (see Supplementary Material of Ref.

[22]). This is most likely due to de�ciencies of the force �eld used as a model of the PES

of ketene.

As to the performance of the VS method, it is worth comparing the energies obtained

from a computation with the complete vibrational space of size 8 · 107 (DEWE in Table

XIII), performed up to J = 3, to those obtained with a reduced vibrational space of

dimension 102 (DEWE-VS in Tables XIII and XIV). In spite of the 106-fold reduction of

the size of the rovibrational basis and the corresponding reduction in storage and other

resources required to perform the computations, the overall agreement of the �rst few

hundred rovibrational states is better than 1 cm−1. Thus, the error introduced due to this

truncation of the vibrational space is less than the uncertainty of the underlying PES. The

accuracy of the rovibrational energy levels obtained within the DEWE-VS protocol could

easily be increased further by including more vibrational eigenstates in the computation.

This would preferentially include all the fundamentals of the molecule and all states in

between. Naturally, by increasing the size of the vibrational subspace in the second stage

of the rovibrational computation the rovibrational limit corresponding to the complete set
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of the original primitive vibrational basis functions is approached.

  

  

Figure 3: Deviations of the variational DEWE and the MARVEL pure rotational energy
levels from those levels (RR) corresponding to a rigid rotor picture with rotational constants
A0 = 9.409209, B0 = 0.343370, and C0 = 0.330737 cm−1. Squares, circles, and triangles
correspond to J = 1, 2, and 3, respectively.
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3.2.6 MARVEL energy levels

In order to improve our understanding of the measured spectra and validate the experimen-

tal assignments proposed for ketene lines, we analyzed simultaneously all the experimental

line information available to us [109, 113, 117, 118, 119, 120, 121, 122], as indicated in

Table VII.

The MARVEL analysis employed proved to be successful for a similar analysis of

the rovibrational states of several water isotopologues [43, 123, 124, 125]. During the

present study we utilized altogether 3 982 measured and assigned rovibrational transitions

of H 12
2 C=12C=16O. Due to nuclear spin symmetry, these transitions form part of two main

spectroscopic networks (SN) [116], ortho and para. The selection rules governing the tran-

sitions are given in the Supplementary Material of Ref. [22].

We had two main di�culties with the measured data. First, in many of the original pub-

lications the uncertainties of the measured transitions were not given explicitly. Therefore,

we had to assign reasonable uncertainties to several transitions based on the best available

information deduced from the original sources. This, however, is not a serious problem

as MARVEL adjusts, via robust reweighting, the uncertainties attached to the transitions

until self-consistency within the database is achieved. Second, as almost always happens

with measured transitions, some of them are not part of the main networks but are part

of �oating spectroscopic networks (FSNs) or are orphans. Since orphan energy levels and

those taking part in FSNs cannot be validated, only 3 194 transitions could be validated

in this work. Transitions which could not be validated are indicated in Table VII source

by source.

The ortho and the para SNs contain 2 489 and 705 observed transitions and 1 251

and 471 MARVEL energy levels, respectively. The MARVEL energy levels of A and B

quality go up to J = 39 for the vibrational ground state and up to J = 8 for the other

states. Most highly excited rotational and rovibrational energy levels take part in only a

single measured transition. Thus, their accuracy remain uncertain even after the MARVEL

validation procedure.

Due to the sparsity of measurements for parent ketene, there are relatively few energy

levels of A quality for all but the ground vibrational state (see Tables XIII and XIV). Thus,

since in Tables XIII and XIV only MARVEL levels of A and B quality are given, for the ex-

cited vibrational states there are plenty of missing levels under the heading MARVEL. The

computed levels of C quality should be handled with special care: they may be inaccurate
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as they are determined by insu�cient experimental information, by just a single measured

and assigned transition. Thus, though they are given in the Supplementary Material of

Ref. [22], they should be used only with caution.

Figure 4 presents a comparison of absolute di�erences, given on a semi-logarithmic scale

and as a function of the energy of the levels, between the pure rotational MARVEL energy

levels of this study and those reported in the CDMS database [108] and determined via an

e�ective Hamiltonian based on �tted spectroscopic parameters. Note that energy values

having Ka larger than 5 are missing from the �gure as no validated experimental data, and

thus no MARVEL energy levels, are available for them. The �gure clearly shows deviations

between the two sets of results. Since the MARVEL energy levels involved in creation of

the �gure are not only of A and B quality, it cannot be concluded that they present better

representation for these levels. Only further experimental studies and a new list of relevant

assigned transitions would be able to solve this problem.

  

Figure 4: Absolute di�erences, on a semi-logarithmic scale, between the pure rotational
MARVEL energy levels obtained in this study and those levels reported in the CDMS
database [108] as a function of the energy of the level.
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3.2.7 New assignments

The apodized resolution in the mid-infrared high resolution IR gas-phase spectra of ketene

[107] was approximately 0.004 cm−1, and the relative frequency calibration accuracy was

better than 0.001 cm−1 as determined by comparison with extensive, known ground state

combination di�erences (CD) [126]. The absolute wavenumbers have errors smaller than

the apodized resolution, a conservative estimate is 0.001 cm−1. These spectra contain

several thousand lines, and a sizeable portion of these are di�cult to assign using ground-

state CDs, partly because of their low intensity or location in very congested spectral areas,

and partly as combination di�erences require additional transitions involving some of the

levels that are also involved in the transitions to be assigned. (The method of combination

di�erences makes use of the fact that some transitions share a common level). In addition,

there are localized resonances in the spectra that perturb regularity. Thus, there is a great

need of an independently determined set of rotation-vibration energy levels to facilitate

line identi�cation. Such levels of high quality have been obtained in this work using the

MARVEL technique validated via the variational nuclear motion DEWE-VS results. The

complete list of MARVEL energy levels is presented in the Supplementary Material of Ref.

[22]. The presently available energy levels allow a host of new assignments relative to those

obtained in previous works [127, 128, 129]. Note also that the vibration-rotation transitions

used in Refs. [127] and [128] were not published there explicitly.

We have searched the FTIR spectra [107] of ketene for regions that had previously

not been analyzed by the usual CD methods and thus were not used in perturbation

calculations by least-squares �ts. In what follows two speci�c series are given involving lines

of rovibrational branches of two fundamentals. The speci�c examples of newly assigned

sets of transitions are given in Table XV, which convincingly show the great utility of

experimental-quality MARVEL energy levels to make progress in assigning a high-resolution

spectrum.

The �rst branch is the rR1(J) series of the ν5 = 51 vibrational fundamental that extends

from 621.24 to 627.75 cm−1 for lines involving lower state J = 2 up to J = 11 (10 lines).

The assignment of this clearly visible series was not attempted earlier due to lack of CD

transition partners. These lines occur in a congested region but are clearly indenti�able

due to their narrow pro�les and no lines in their close neighbourhood. The di�erences

between the MARVEL and experimental lines are nowhere greater than a couple of times

10−4 cm−1; thus, the line identi�cations are unique. (Note also that although we give
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Table XV. New line identi�cations, based on MARVEL energy levels and associated tran-
sitions, of two series of lines (GS-J1J − 51-(J + 1)2J for ν5 and GS-J1J − 81-(J + 1)0(J+1) for
ν8) in the infrared spectrum of ketene, with line data in cm−1.

ν5 Expt. trans.a MARVEL pred. DEWE-VSb ν8 Expt. trans.a MARVEL pred. DEWE-VSd
rR1(2) 621.2357(20) 621.2354(2) 621.2353 pR1(5) 972.7856(10) 972.7855(4) 972.7862
rR1(3) 621.9312(20) 621.9312(2) 621.9311 pR1(8)c 974.9959(20) 974.9954(4) 974.9949
rR1(4) 622.6339(20) 622.6339(2) 622.6339 pR1(11)c 977.2859(20) 977.2858(4) 977.2866
rR1(5) 623.3436(20) 623.3435(2) 623.3436
rR1(6) 624.0602(20) 624.0600(2) 623.0603
rR1(7) 624.7835(20) 624.7836(2) 624.7838
rR1(8) 625.5141(20) 625.5150(4) 625.5143
rR1(9) 626.2517(20) 626.2519(4) 626.2518
rR1(10) 626.9962(20) 626.9962(4) 626.9962
rR1(11) 627.7478(20) 627.7474(3) 627.7473

a See beginning of Section 3.2.7 for the discussion of experimental uncertainties.
b Obtained from the directly computed �rst-principles results via the following quadratic
correction form �tted to all MARVEL � DEWE-VS di�erences: −16.013366 + 0.000759J +
0.000143J2.
c Slightly blended line.
d Obtained from the directly computed �rst-principles results via the following quadratic
correction form �tted to all (J = 5 to 13) MARVEL � DEWE-VS di�erences: −5.233293+
0.002764J − 0.001535J2.

in Table XV a comparison for all 10 lines, only a single MARVEL prediction su�ces for

de�nitive assignments using standard spectroscopic techniques based on series regularity

for all unperturbed lines in the series having su�cient intensity and no line blending.)

The next series is the pR1(J) branch of the fundamental vibration ν8 = 81. This branch

is located between 972.78 and 978.87 cm−1 and contains clearly resolved rotational features,

characterized with J values ranging from 5 to 13. Three new lines have been assigned and

all show outstanding agreement with the MARVEL predicted transitions. Other members

of this series (J = 5 to 13) have been identi�ed before and were included in the MARVEL

analysis.

3.3 GENIUSH-VS computations for H2
16O

The MARVEL procedure [43] is able to compute energy levels of experimental quality

provided an initial database of experimental transitions is available. The experimental

transitions present in the input database need to be assigned with unique labels describing
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the upper and lower energy levels. Usually the labels refer to the well-known zeroth-

order vibrational and rotational quantum numbers. The MARVEL energy levels, being

the output of the MARVEL analysis, can be used to predict a huge number of transitions

that are of experimental quality and can be utilized for the identi�cation of unassigned

experimental spectral lines. This is the main reason why validity of the labels of the

MARVEL energy levels is crucial. Therefore, we decided to validate the MARVEL energy

levels of the H2
16O isotopologue by comparing their approximate labels to those of the

energy levels computed by the GENIUSH-VS algorithm.

To facilitate the validation process the �rst 800 vibrational energy levels and wave func-

tions were computed by GENIUSH in a vibrational basis of dimension 45·352. 45 potential-

optimized Legendre-DVR and 35 potential-optimized Laguerre-DVR basis functions were

applied to the θ bending, and r1 and r2 stretching coordinates, respectively. Rovibra-

tional energy levels and wave functions up to J = 25 were computed by the GENIUSH-VS

procedure employing the �rst 800 vibrational states as a vibrational basis. During the

computations the Eckart frame, which has proven to be bene�cial for the accuracy of the

GENIUSH-VS results, was used. The resulting rovibrational energy levels and wave func-

tions were analyzed by the RRD procedure by evaluating J , Ka, Kc rigid rotor quantum

numbers and C2v(M) symmetry labels. NMD labels used for this examination were taken

from Ref. [9].

The results of the validation procedure form a part of an IUPAC Task Group e�ort to

describe the full spectroscopy of water vapor and are summarized in Table XVI. A cut-o�

value of 0.7 was chosen for the largest RRD coe�cient, i.e., only cases where the labelling is

unambiguously provided by the RRD scheme were investigated. Rovibrational states with

an energy larger than 25000 cm−1 were also not investigated since for them there appear

to be very few states which can clearly be labeled via an RRD table. This means that for a

large number of MARVEL energy levels no validation via the RRD scheme was attempted.

The extent of validated labels for the di�erent vibrational band origins (VBO) is given in

Table XVI, which also gives the Jmax values for a large number of VBOs. Clearly, it is

more problematic to provide unambiguous rotational labels for VBOs which contain a high

level of bending excitation (note that starting from the (0 10 0) VBO no rotational labels

on pure bending VBOs can be performed) and as the energy of excitation increases the

highest J value where RRD can be used to validate the MARVEL labels decreases.
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Table XVI. Validation of the rotational labels of the rovibrational levels determined

by the �nal MARVEL analysis via the RRD protocol. RRD labels have been determined

only for states with J less equal than 25. VBO = vibrational band origin. Jmax gives the

maximum J value for rovibrational MARVEL states determined on the particular VBO.

Jv is the maximum J value for wich all labels have been validated.

VBO Jmax Jv No. of val. labels No. of labels without val.

(000) 42 23 581 95

(010) 39 14 475 201

(020) 36 10 338 322

(100) 36 22 458 193

(001) 37 23 506 162

(030) 28 10 271 244

(110) 32 14 319 173

(011) 35 15 421 173

(040) 26 8 191 90

(120) 24 10 209 43

(021) 33 12 280 141

(200) 29 9 284 63

(101) 33 9 321 112

(002) 32 9 304 35

(050) 20 6 127 64

(130) 15 6 129 9

(031) 29 8 213 72

(210) 15 8 145 13

(111) 31 9 271 79

(060) 17 5 78 39

(012) 29 12 222 10

(140) 13 6 95 17

(041) 25 7 152 80

(070) 13 3 34 32

(220) 13 9 111 16

(121) 22 7 159 64

(022) 26 9 151 36
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(300) 25 7 186 68

(201) 32 7 210 58

(102) 27 6 209 23

(003) 26 10 209 15

(150) 10 5 6 11

(051) 24 6 73 48

(080) 11 3 7 24

(230) 14 7 88 16

(131) 22 7 126 27

(032) 19 8 104 22

(310) 22 7 128 33

(211) 27 7 168 56

(160) 12 4 5 17

(112) 16 8 128 13

(090) 10 4 3 9

(013) 15 8 131 7

(061) 19 5 30 33

(240) 13 4 77 30

(141) 14 4 88 29

(042) 16 5 79 9

(320) 14 6 81 32

(221) 14 6 94 37

(170) 10 6 4 6

(400) 20 6 108 31

(301) 24 7 120 40

(071) 11 6 11 7

(0 10 0) 7 6 0 3

(122) 12 6 80 12

(023) 14 9 99 6

(202) 14 7 107 13

(103) 23 8 137 11

(004) 22 22 124 2

(250) 8 6 0 11
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(151) 11 5 35 16

(052) 10 8 0 7

(180) 10 6 0 6

(081) 10 8 0 4

(330) 10 6 42 18

(231) 10 4 66 19

(0 11 0) 0 0 0 0

(410) 11 7 74 14

(311) 15 4 92 21

(132) 9 7 36 1
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4 Future plans

There are a few areas where the results obtained during my PhD research have not been

published. I include them in this section and I plan to publish the most important �ndings

in the near future.

4.1 Clustering of the highly-excited rovibrational states of CH4

The ability to compute highly-excited rovibrational states with the VS procedure of Section

2.6 means that a peculiar feature of rovibrational spectra, the clustering of highly-excited

rovibrational states of molecules can be studied. Such clustering was �rst predicted perhaps

by Dorney and Watson [130] for the case of spherical top molecules (e.g., CH4). The most

familiar and most widely studied rotational level clustering e�ects include asymmetric tops

[131] (for example, H2O, H2S, H2Se and H2Te) and those of XY3 symmetric tops, like PH3

[132, 133], BiH3 [134], and SbH3 [134].

Figures 5, 6, and 7 shows interesting clustering e�ects of the �ve-atomic CH4 molecule

for its lowest vibrational states ((00)(00) (A1), (00)(01) (ν = 1311.74 cm−1, F2), and

(00)(10) (ν = 1533.25 cm−1, E), respectively). The computations employed the PES of

Ref. [135] and the DEWE-VS program. First, the �rst 100 vibrational energy levels and

wave functions were computed by DEWE in a Hermite-DVR vibrational basis of dimension

75 · 64. Then, rovibrational energy levels and wave functions were computed by DEWE-VS

employing the previously obtained 100 vibrational states as a vibrational basis. In the

end, rovibrational states corresponding to the lowest vibrational states were selected by

the RRD procedure and assigned with Td(M) symmetry labels. The VS method allows the

accurate computation of highly excited rotational-vibrational eigenpairs, the fully quantum

mechanical determination of energy clusters, and thus the detailed analysis of the semi-

classical results of Dorney and Watson [130] and Sadovskii [136].
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Figure 5: Rotational clustering e�ects shown on two di�erent scales for the (00)(00) A1

vibrational ground state of the parent isotopologue of the methane molecule. EJ − Emax
J

di�erences, in cm−1, are plotted against the J rotational quantum number, where EJ and
Emax
J denote an arbitrary and the maximum energy level for a given value of J , respectively.

The computations are based on the PES of Ref. [135] and were obtained with the DEWE-
VS program.
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Figure 6: Rotational clustering e�ects shown on two di�erent scales for the (00)(01) F2

vibrational state (ν = 1311.74 cm−1) of the parent isotopologue of the methane molecule.
EJ − Emax

J di�erences, in cm−1, are plotted against the J rotational quantum number,
where EJ and Emax

J denote an arbitrary and the maximum energy level for a given value of
J , respectively. The computations are based on the PES of Ref. [135] and were obtained
with the DEWE-VS program.
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Figure 7: Rotational clustering e�ects shown on two di�erent scales for the (00)(10) E
vibrational state (ν = 1533.25 cm−1) of the parent isotopologue of the methane molecule.
EJ − Emax

J di�erences, in cm−1, are plotted against the J rotational quantum number,
where EJ and Emax

J denote an arbitrary and the maximum energy level for a given value of
J , respectively. The computations are based on the PES of Ref. [135] and were obtained
with the DEWE-VS program.
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4.2 Eckart embedding for the NH3 molecule

Rovibrational energy levels and wave functions for the �rst ten vibrational states of the

ammonia molecule were computed by GENIUSH for J = 1, 2, and 3 for the 6D full and

3D stretch-only models. The Eckart embedding was utilized with equilibrium (C3v) and

planar (D3h) point-group symmetry reference structures besides the embedding described

in Section 3.1, called the old frame henceforth. Results of the RRD computations were

compared for the three di�erent embedding choices.

For the 6D full model (active inversion), the largest RRD coe�cients were obtained

by the Eckart frame employing the D3h reference structure. The second largest RRD

coe�cients belong to the old frame, while the Eckart frame with C3v reference structure

had the worst performance. In case of the 3D stretch-only model (inactive inversion) the

following quality order of the RRD coe�cients were found: Eckart frame with C3v reference

structure, old frame, Eckart frame employing D3h reference structure.

My aim is to perform a deeper analysis of the RRD results, testing the GENIUSH-

VS algorithm for the three di�erent embeddings mentioned, and consider a special Eckart

reference structure following the large amplitude inversion motion of NH3.
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5 Summary

A considerable part of my research e�orts was dedicated to the DEWE (Discrete variable

representation of the Eckart�Watson Hamiltonian with a numerically Exact inclusion of

arbitrary potential energy surfaces) algorithm. DEWE employs the universal and exact

Eckart�Watson Hamiltonian and the iterative Lanczos eigensolver for obtaining the eigen-

values and eigenvectors of the Hamiltonian matrix. Though DEWE can be applied for

N -atomic systems it is limited to the case of semirigid molecules with a single well-de�ned

minimum structure. My contribution to DEWE was to add the capability of comput-

ing rotational-vibrational energy levels and wave functions to the original vibrational-only

code. Detailed description of the variational solution of the rotational-vibrational problem

within the framework of DEWE was discussed.

My program development e�orts also resulted in an improved GENIUSH (General rovi-

brational code with Numerical, Internal coordinate, User-Speci�ed Hamiltonians) algo-

rithm. The GENIUSH approach successfully circumvents the main drawback of DEWE

and thus can be applied to N -atomic molecules exhibiting multiple accessible PES minima

and large amplitude motions. The main idea behind GENIUSH is the numerical represen-

tation of the rovibrational kinetic energy operator which allows us to employ arbitrary sets

of internal coordinates and body-�xed frame embeddings during the rovibrational com-

putations. Another important characteristics of GENIUSH is the possibility to introduce

reduced-dimensional computational models in a straightforward manner. My task was to

formulate and add the rotational functionality to the original vibrational-only GENIUSH

code. Formulation of the general N -atomic rovibrational Hamiltonian and the variational

solution of the rovibrational problem were described.

During my research, I also addressed the problem of assigning symmetry labels to the

computed rovibrational energy levels and wave functions. For this purpose I adopted the

symmetry-adapted Lanczos (SAL) method. After a brief review of the Lanczos algorithm

and the general theory of the SAL method I described my own SAL implementation within

the DEWE program.

I also considered the problem how to maintain the rotational Eckart condition. After a

brief summary of the theory of the rotational Eckart condition I introduced my implemen-

tation of the Eckart embedding within the GENIUSH algorithm.

I solved the problem of labelling of the computed rovibrational energy levels and wave

functions with zeroth-order harmonic oscillator and rigid rotor quantum numbers. I gave
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an insight into the rigid-rotor decomposition (RRD) algorithm I used extensively for the

interpretation of the computed rovibrational states.

I proposed an e�cient algorithm for the computation of highly-excited rovibrational

states. I developed e�cient VS implementations within the DEWE and GENIUSH program

packages.

I computed rovibrational energy levels and wave functions for the four-atomic NH3 by

GENIUSH with a special emphasis on the quality of the results computed with the full-

dimensional and di�erent reduced-dimensional rovibrational models. Next, the rovibra-

tional spectroscopy of the �ve-atomic C2H2O (ketene) molecule was examined. Variational

computations (employing the DEWE, VS, NMD, RRD and SAL methods) and the MAR-

VEL procedure were applied to propose new assignments in the experimental spectrum of

C2H2O. Finally, labels of the MARVEL energy levels of H2
16O up to J = 25 were validated

by the VS procedure implemented within GENIUSH.

My future plans include rovibrational computations for CH4 in order to study the

rovibrational clustering of the energy levels corresponding to high J rotational quantum

number values. For NH3, rovibrational computations employing the Eckart frame have

been executed and the results with di�erent choices of the Eckart reference structure have

been analysed brie�y.

95



A Appendix

A.1 Angular momentum algebra

As angular momentum algebra is of great importance in the �eld of computational molecu-

lar spectroscopy, a brief summary of some of its elements is given here. A more detailed de-

scription can be found in the literature and in several textbooks [52, 74, 137, 138, 139, 140].

The starting point is that generalized angular momentum operators obey the

[Ĵ2, Ĵα] = 0 (124)

and

[Ĵα, Ĵβ] = −i
∑
γ

εαβγ Ĵγ (125)

commutation relations. In Eq. (125), α, β, γ = x, y, z, εαβγ denotes the Levi�Cività-

symbol. The so-called anomalous commutation relations of Eq. (125) apply to the angular

momentum components expressed in the molecule-�xed frame.

As [Ĵ2, Ĵz] = 0, the eigenfunction sets of Ĵ2 and Ĵz, denoted by |JKM〉, coincide:

Ĵ2|JKM〉 = J(J + 1)|JKM〉 (126)

and

Ĵz|JKM〉 = K|JKM〉. (127)

The |JKM〉 eigenfunctions can be parametrized with the φ, θ, and χ Euler angles:

|JKM〉 =

√
2J + 1

8π2
DJ∗
MK(φ, θ, χ), (128)

where DJ
MK(φ, θ, χ) stands for the Wigner rotation matrix. The |JKM〉 functions satisfy

the

〈JKM |J ′K ′M ′〉 = δJJ ′δKK′δMM ′ (129)

orthogonality relations.
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It is advantageous to introduce the Ĵ+ step-up and Ĵ− step-down ladder operators as

Ĵ± = Ĵx ± iĴy. (130)

The Ĵ± operators satisfy the

[Ĵ2, Ĵ±] = 0 (131)

and

[Ĵz, Ĵ±] = ±Ĵ± (132)

commutation relations. According to the previous equations,

Ĵ2Ĵ±|JKM〉 = Ĵ±Ĵ
2|JKM〉 = J(J + 1)Ĵ±|JKM〉 (133)

and

ĴzĴ±|JKM〉 = Ĵ±Ĵz|JKM〉 ± Ĵ±|JKM〉 = (K ± 1)Ĵ±|JKM〉. (134)

In view of Eq. (134), the e�ect of the ladder operators on the |JKM〉 functions can be

expressed as

Ĵ±|JKM〉 = C±|J(K ± 1)M〉. (135)

The absolute value of the C± coe�cients equals to

|C±|2 = 〈JKM |Ĵ∓Ĵ±|JKM〉 = 〈JKM |Ĵ2 − Ĵz(Ĵz ± 1)|JKM〉 = (136)

= J(J + 1)−K(K ± 1),

where the Ĵ†± = Ĵ∓ relation is used. If the phase of C± is chosen to be zero,

Ĵ±|JKM〉 =
√
J(J + 1)−K(K ± 1)|J(K ± 1)M〉. (137)

The next step is to give the matrix representations of the Ĵx and Ĵy operators in the

body-�xed frame. As

Ĵx =
Ĵ+ + Ĵ−

2
(138)
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and

Ĵy =
Ĵ+ − Ĵ−

2i
, (139)

nonzero elements of the Jx and Jy matrices are

〈JKM |Ĵx|J(K ± 1)M〉 =
1

2

√
J(J + 1)−K(K ± 1)

〈JKM |Ĵy|J(K ± 1)M〉 = ∓ i
2

√
J(J + 1)−K(K ± 1) (140)

〈JKM |Ĵz|JKM〉 = K.

A.2 Elements of the g matrix

The rotational g matrix elements are equal to

gk+D,l+D =
N∑
i=1

mi
∂XT

i

∂αk

∂Xi

∂αl
=

N∑
i=1

mix
T
i

∂CT

∂αk

∂C

∂αl
xi =

N∑
i=1

mix
T
i

∂CT

∂αk
CCT ∂C

∂αl
xi =

=
N∑
i=1

mi

(
CT ∂C

∂αk
xi

)T(
CT ∂C

∂αl
xi

)
=

N∑
i=1

mi(ek × xi)
T(el × xi), (141)

where αk is the kth rotational coordinate, ek is a unit vector giving the direction of the

rotational axis associated with αk, xi is the position vector of the ith nucleus expressed in

the body-�xed frame, and k, l = 1(x), 2(y), 3(z). In Eq. (141) the equalities

CCT = I, (142)

and

CT ∂C

∂αk
r = ek × r (143)

have been utilized. In these equations I is the identity matrix of dimension three and

the CT ∂C
∂αk

matrix in Eq. (143) is antisymmetric and its e�ect on an arbitrary r vector

corresponds to the ek × r cross product. See Section A.3 for the derivation of Eq. (143).
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The vibrational g matrix elements are given as

gkl =
N∑
i=1

mi
∂XT

i

∂qk

∂Xi

∂ql
=

N∑
i=1

mi
∂xTi
∂qk

CTC
∂xi
∂ql

=
N∑
i=1

mi
∂xTi
∂qk

∂xi
∂ql

, (144)

where qk is the kth internal coordinate.

The g matrix elements of the rovibrational coupling block have the form

gk,l+D =
N∑
i=1

mi
∂XT

i

∂qk

∂Xi

∂αl
=

N∑
i=1

mi
∂xTi
∂qk

CT ∂C

∂αl
xi =

N∑
i=1

mi
∂xTi
∂qk

(el × xi). (145)

A.3 Derivation of Eq. (143)

Let us consider a three-dimensional orthogonal matrix C describing a rotation around n,

where n is a unit vector specifying the axis of the rotation and φ is the rotation angle. The

antisymmetric property of CT dC
dφ

is a direct consequence of the

CTC = I (146)

relation, where I indicates the identity matrix of dimension three. After di�erentiating Eq.

(146) with respect to φ,
dCT

dφ
C + CTdC

dφ
= 0, (147)

where 0 is the three-dimensional zero matrix. Rearrangement of Eq. (147) yields

(
CTdC

dφ

)T

= −CTdC
dφ

, (148)

which demonstrates the antisymmetry of CT dC
dφ
.

The e�ect of C on an arbitrary r vector is given by the

r′ = Cr = r cosφ+ (n · r)n(1− cosφ) + (n× r) sinφ (149)

general rotation formula, where r′ is the result of the rotation. After expanding the vector
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operations in Eq. (149), C can be expressed as

C =


cosφ+(1−cosφ)·n2

x (1−cosφ)·nxny−sinφ·nz (1−cosφ)·nxnz+sinφ·ny

(1−cosφ)·nxny+sinφ·nz cosφ+(1−cosφ)·n2
y (1−cosφ)·nynz−sinφ·nx

(1−cosφ)·nxnz−sinφ·ny (1−cosφ)·nynz+sinφ·nx cosφ+(1−cosφ)·n2
z

 , (150)

where nx, ny and nz are the three components of n, and n2
x +n2

y +n2
z = 1. Since Eq. (150)

gives the rotation matrix of arbitrary axis and angle, one can generally derive the matrix

elements of CT dC
dφ

as

CTdC
dφ

=


0 −nz ny

nz 0 −nx
−ny nx 0

 . (151)

In light of Eq. (151) it becomes clear that the e�ect of CT dC
dφ

on an arbitrary r vector is

CTdC
dφ

r = n× r. (152)
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Abstract

During my doctoral work I have developed and implemented general algorithms for the

accurate and e�cient variational computation and interpretation of rotational-vibrational

energy levels and wave functions of N -atomic molecules.

First, I extended the original vibrational-only DEWE and GENIUSH programs, de-

veloped principally by Dr. Edit Mátyus, with the capability of variational computation

of rotational-vibrational energy levels and wave functions. The DEWE program employs

the exact and general N -atomic Eckart�Watson nuclear kinetic energy operator, thus it

is limited to semirigid molecules exhibiting a single well-de�ned minimum on their PES.

The GENIUSH program successfully circumvents the main drawback of DEWE and can be

applied to N -atomic molecules exhibiting multiple accessible PES minima and large am-

plitude motions. In GENIUSH arbitrary internal coordinates, molecule-�xed frames, and

either full- or reduced-dimensional rovibrational models can be employed during the com-

putations. The Eckart frame, giving a good separation between rotational and vibrational

motions, is also available within GENIUSH.

As a next step, the rigid rotor decomposition (RRD) and symmetry-adapted Lanczos

(SAL) procedures were implemented to facilitate the interpretation of the computed rovi-

brational states. The RRD and SAL algorithms are extremely helpful in the assignment

of the rovibrational states with zeroth-order quantum numbers and molecular symmetry

group symmetry labels, respectively.

Finally, I developed the vibrational subspace (VS) method allowing the variational

computation and assignment of rovibrational states for high values of the J rotational

quantum number. Practical VS implementations were done for the DEWE and GENIUSH

programs.

The power of the computational framework developed was demonstrated for the three-

atomic H2O, four-atomic NH3, and �ve-atomic C2H2O (ketene) and CH4 molecules.
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Összefoglalás

Doktori munkám során olyan általános módszereket fejlesztettem ki, melyek lehet®vé teszik

N -atomos molekulák rezgési-forgási energiaszintjeinek és hullámfüggvényeinek variációs

alapú számítását és értelmezését.

Els®ként a Dr. Mátyus Edit által fejlesztett, eredetileg csak rezgési számítások elvégzésére

alkalmas DEWE és GENIUSH programokat fejlesztettem tovább. Munkám eredményekép-

pen a DEWE és a GENIUSH programokkal variációs rezgési-forgási számításokat végezhetünk

N -atomos molekulákra. Mivel a DEWE azN -atomos molekulákra általánosan alkalmazható

Eckart�Watson Hamilton kinetikus energia operátoron alapul, úgynevezett félmerev molekulák

vizsgálatára alkalmazható, melyek potenciális energia felülete egy jól de�niált minimum-

mal rendelkezik. Ezt a problémát sikeresen orvosolja a GENIUSH eljárás, ugyanis a GE-

NIUSH segítségével olyan nagy amplitúdójú mozgásokkal rendelkez® �exibilis molekulákra

is sikerrel végezhetünk variációs rezgési-forgási számításokat, melyek potenciális energia

felületén több hozzáférhet® minimumot találunk. A GENIUSH programban tetsz®leges

bels® koordinátákat és molekulacetrált koordináta-rendszereket használhatunk a számítá-

sok során, többek között az Eckart-rendszert is, mely minimalizálja a rezgések és forgások

közti csatolást. A GENIUSH lehet®vé teszi redukált dimenziójú modellek használatát is.

Következ® lépésként a számítási eredmények értelmezését segít® RRD (rigid rotor de-

composition, merev pörgetty¶ felbontás) és SAL (symmetry adapted Lanczos, szimme-

tria adaptált Lánczos) eljárásokat vizsgáltam. Míg az RRD segítségével elvégezhetjük a

számított rezgési-forgási állapotok nulladrend¶ (harmonikus oszcillátor és merev pörgetty¶)

kvantumszámokkal való asszignációját, a SAL eljárás alkalmas a számított rezgési-forgási

állapotok szimmetriájának vizsgálatára.

Végül kifejlesztettem és beprogramoztam a VS (vibrational subspace, rezgési altér)

módszert, mely lehet®vé teszi a magas J forgási kvantumszám értékekhez tartozó rezgési-

forgási állapotok számítását és asszignációját. Mind a DEWE, mind pedig a GENIUSH

program alkalmas VS számítások elvégzésére.

A munkám során kifejlesztett pontos és hatékony elméleti molekulaspektroszkópiai mód-

szereket sikeresen alkalmaztam a háromatomos H2O, a négyatomos NH3, illetve az ötatomos

C2H2O (ketén) és CH4 molekulákra.
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