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1 Introduction

The Born—Oppenheimer (BO) approximation [1, 2|, being central to the definition of many
concepts of chemistry, separates adiabatically the motion of electrons and nuclei and thus
defines two important fields for computational quantum chemistry: electronic structure
theory and nuclear motion theory. This thesis is dedicated to the field of nuclear motion
theory and introduces methods for the effective variational solution of the time-independent
nuclear-motion Schrodinger equation.

Similarly to the field of electronic structure theory, the nuclear Hamiltonian is the sum
of the nuclear kinetic and potential energy operators. The potential energy operator, also
known as the potential energy surface (PES), contrary to electronic structure computations,
is never known in an exact and analytical form. The value of the PES at distinct nuclear
geometries can be obtained by the tools of electronic structure theory.

Also in contrast to electronic structure computations, the nuclear kinetic energy opera-
tor is not expressed in terms of Cartesian coordinates. Instead of the Cartesian formulation
it is common to utilize more specific coordinates which allow the introduction of different
types of motions, namely translations, rotations and vibrations. The three translational
degrees of freedom are described by three center-of-mass coordinates [3|, while the three
rotational degrees of freedom are usually characterized by the widely employed Euler an-
gles [3]. For the vibrational motions there are many possible coordinate sets and the actual
choice of the vibrational coordinates often depends on the semirigid or flexible nature and
on the bonding arrangement of the molecule under examination.

There are three main categories of the nuclear kinetic energy operators. The first one
is the so-called tailor-made nuclear kinetic energy operator [4, 5, 6|. These operators have
been successfully applied, also in our group [7, 8, 9, 10|, to molecules containing 3, 4, and
even 5 atoms [11, 12, 13, 14, 15, 16, 17]. An important drawback of the tailor-made Hamil-
tonians is their specificity: separate programs need to be developed for molecules with
different atom count and bonding arrangement. Within the second category this problem
is circumvented by employing the exact and general N-atomic Eckart-Watson [18, 19| nu-
clear kinetic energy operator expressed in rectilinear internal coordinates. Several programs
were implemented either in our laboratory, where it is called DEWE [20, 21, 22|, or by other
research groups [23, 24, 25, 26, 27, 28, 29, 30, 31|. Though these programs do apply to
N-atomic molecules, it is important to note that they are limited to semirigid molecules ex-

hibiting a well-defined single minimum on their PES. The third and most general approach



allows nuclear motion computations employing arbitrarily chosen internal coordinates and
body-fixed frame embeddings for N-atomic molecules. Besides the GENIUSH program
[32, 33] developed in our group, notable examples of this black-box-like approach can be
found in Refs. [34, 35, 36, 37, 38, 39, 40|.

During my doctoral research T extended the original vibrational-only DEWE and GE-
NIUSH programs, developed principally by Dr. Edit Matyus, with the capability of varia-
tional computation of rotational-vibrational energy levels and wave functions, as described
in Sections 2.1 and 2.2, respectively. Section 2.3 summarizes the symmetry-adapted Lanc-
zos method (SAL) allowing the assignment of molecular symmetry (MS) group symmetry
labels to the computed rovibrational energy levels and wave functions. After a general in-
troduction to SAL I give the details of my SAL implementation [22| within DEWE. Section
2.4 introduces how the rotational Eckart condition [41], leading to an optimal separation
of vibrations and rotations, can be maintained for the case of general N-atomic rovibra-
tional Hamiltonians expressed in arbitrary curvilinear internal coordinates. The practical
implementation of the Eckart frame within GENIUSH is also described. Section 2.5 is ded-
icated to the labelling of the computed rovibrational energy levels and wave functions with
zeroth-order harmonic oscillator and rigid rotor quantum numbers by the normal mode
decomposition (NMD) and rigid rotor decomposition (RRD) procedures [42], helping the
interpretation of the computed rovibrational states. Section 2.6 gives an insight into the
vibrational subspace (VS) method [22] allowing the computation of rovibrational states for
high values of the J rotational quantum number. Labelling of the computed rovibrational
states with symmetry labels, and zeroth-order harmonic oscillator and rigid rotor quantum
numbers within the framework of VS is also discussed.

My application-oriented results are summarized in Section 3. Section 3.1 focuses on the
rovibrational results for the four-atomic NH3 obtained by GENIUSH. Special emphasis is
put on the comparison of the full-dimensional and different reduced-dimensional rovibra-
tional models. In Section 3.2 the rovibrational spectroscopy of the five-atomic CyH,O
(ketene) molecule is examined. Variational computations (employing the DEWE, VS,
NMD, RRD and SAL methods) and the Measured Active Rotational-Vibrational Energy
Levels (MARVEL) [43]| procedure were applied to propose new assignments in the experi-
mental spectrum of CoH,0. In Section 3.3 labels of the MARVEL energy levels of Hy'%0
up to J = 25 are validated. The validation process has employed the VS procedure imple-
mented within GENIUSH.

10



Finally, in Section 4 I introduce my future plans concerning the CH, and NH3 molecules.
In case of CHy, rovibrational clustering of the energy levels corresponding to high J values
is examined. For NHj, rovibrational computations employing the Eckart frame have been
executed and the results with different choices of the Eckart reference structure are analysed

briefly.
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2 Variational rotational-vibrational computations for N-

atomic molecules

2.1 DEWE

This section is dedicated to the DEWE (Discrete variable representation of the Eckart—
Watson Hamiltonian with a numerically Exact inclusion of arbitrary potential energy sur-
faces) program developed by our research group. DEWE employs the universal and exact
Eckart—Watson (EW) Hamiltonian [18, 19| and the iterative Lanczos [44] eigensolver for
obtaining the eigenvalues and eigenvectors of the Hamiltonian matrix. Though DEWE can
be applied for N-atomic systems, it is limited to the case of semirigid molecules with a
single well-defined minimum structure. My contribution to DEWE was to add the capa-
bility of computing rotational-vibrational energy levels and wave functions to the original
vibrational-only code [20, 21]. After introducing the EW Hamiltonian and summarizing
the vibrational-only implementation I give a detailed description on the variational solution
of the rotational-vibrational problem [22] within the framework of DEWE.

2.1.1 The Eckart—Watson (EW) Hamiltonian for semirigid molecules

The formalism given in this section is restricted to molecules having nonlinear reference con-
figurations. Details concerning the special case of molecules with linear reference structure
are discussed in the literature [19].

Let us denote the position vectors of the nuclei of an N-atomic nonlinear molecule by
x; (i =1,---,N), expressed in the laboratory-fixed frame. In practice, it is preferable to

work with the body-fixed nuclear position vectors z;, defined as

In Eq. (1) X refers to the nuclear center of mass and C stands for the orthogonal direction
cosine matrix [3], which gives the orientation of the body-fixed frame with respect to the
laboratory-fixed one. It is important to note that only 3N — 6 coordinates are independent

out of the 3N body-fixed Cartesian coordinates.
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The translational motion of the molecule can be separated by employing the

N
Zm,—z,— =0 (2)
i=1

translational Eckart condition [41], where m; is the mass of the ith nucleus. The p, dis-

placement vectors are defined as

P; = Z; — Cy, (3)

where the ¢; (i = 1,---, N) vectors belong to the reference structure of the molecule. In
most of the applications the reference structure corresponds to a minimum of the potential
energy surface (PES). In terms of the ¢; and p, vectors the rotational Eckart condition [41]

reads as
N
Y mici x p; =0, (4)
i=1

defining the coordinate axes of the body-fixed frame.
Out of the many coordinate systems developed to describe the vibrational motion of

the nuclei, the present formalism employs the

N N
Qk = Z Z baikpozi = szTl;:pz7
i=1 « =1

Qr € (—00,+), k=1,2,....3N -6, a==x,y,z (5)

rectilinear vibrational coordinates constructed as the linear combinations of the p, displace-
ment vectors. In Eq. (5) b € R 3V*BN=0) ig 5 constant matrix whose elements were chosen

as
bir = v/mi Lk (6)

by Watson [18]. The rows and columns of the 1 matrix satisfy the

N N
DUk = b and DTIL =0 @
=1 k=1

orthogonality relations. In view of Eq. (6), the @y rectilinear vibrational coordinates are

13



given by
N
Qu=Y v lkp, k=12, 3N-6 ®)
=1

with regard to the elements of the 1 matrix.
If Eq. (8) is inverted, the p, displacement vectors can be expressed in terms of the Q.

vibrational coordinates:

3N—6
1

> Qi i=1,...,N. (9)
mi 3

p; = NG
In practical applications of DEWE, the reference configurations are usually chosen to be an
equilibrium (minimum) structure of the PES and the @, rectilinear vibrational coordinates
defined in Eq. (8) are chosen to be the 3N — 6 normal coordinates of the molecule under
examination.

The exact rotational-vibrational kinetic energy operator for an N-atomic nonlinear
molecule employing the Eckart embedding and rectilinear vibrational coordinates of Eq.
(8) was simplified by Watson in 1968 [18] and has the form

N AU | — R -
H = 2 Z 13+§Z(Ja_ﬂa)uaﬁ(Jﬂ_7Tﬂ)_gz#aa+v» (10)

k=1 a,f «
where a,0 = x,y, z. In Eq. (10), P, = —ih%, the jx, jy, and J, operators correspond to
the body-fixed components of the total angular momentum, and V is the potential energy
surface determining the motion of the nuclei. Definitions of the 7, vibrational angular

momentum and ji,3 generalized inverse inertia tensor operators are given by the

3N—6
foa= Y Ca@iD, (11)
k=1
Hap = (I,_l)a57 (12)
3N—6
op = lag — Z (i @i @1, (13)
k,l,m=1
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and
N
Co=  €apy Y Laiklyi (14)
B —1

relations. In the previous expressions €,3, stands for the Levi-Civita symbol and I refers
to the inertia tensor.

The g matrix can be decomposed as

o = (1 ey LT s, (15)
¥6
where
136
Ly=1+ 3 > 6", (16)
k=1
and
N
agﬁ =2 Z €ayv€Bsy Z V mic'yil&k? (17)
yév k=1

with I? being the inertia tensor corresponding to the reference structure. In order to
compute matrix elements corresponding to the Eckart-Watson Hamiltonian the integral

volume element is needed, which has the simple form
dV = sin 0dpdfdxdQ, - - - dQsn s, (18)
where ¢, 0, and x denote the well-known Euler angles |[3].

2.1.2 Summary of the vibration-only algorithm

The description of the vibrational DEWE algorithm given in this section follows closely the
work of Matyus and coworkers |20, 21]. For the J = 0 value of the J rotational quantum

number, the Eckart—Watson Hamiltonian takes the form

3N—6

A 1 ~ 1 . . h? N
HV:§ZPI€2+§Z7TQ/LQQ7T5—§ZMQQ+V. (19)
k=1 a,f a

The HY pure vibrational operator can be regarded as an effective nuclear-motion Hamilto-
nian yielding the J = 0 energy levels and wave functions of the molecule under examination.

In order to apply the linear variational method to the eigenproblem of HY a suitable

15



basis has to be found. As molecular vibrations are examined, a plausible choice is the set
of one-dimensional harmonic oscillator eigenfunctions [45],

"/Z Qi

Fi(Qu) = Hyy (i Qu)e 5 (20)

In Eq. (20) Qy is the kth rectilinear vibrational coordinate, v is the quadratic force
1

constant corresponding to @) and the H;, (v Qx)s denote the well-known normalized

Hermite polynomials. As a first attempt, one can define the 3N —6-dimensional vibrational

basis as the direct product of the f; (Qx) one-dimensional functions,

3N—6

{I] fil@Qubin e o (21)
k=1

As a result, 3N —6-dimensional integrals arise during the evaluation of the potential energy
matrix elements which can highly increase the computational cost. Our strategy to circum-
vent this problem employs the discrete variable representation (DVR) [14, 46, 47, 48, 49, 50],
which greatly reduces the numerical work needed for the evaluation of the potential energy
matrix elements. The DVR technique has proven to be a powerful tool for solving prob-
lems in the fields of computational molecular spectroscopy and molecular dynamics since
its introduction in these fields in 1965 [46].

The Hermite-DVR [51] applied by DEWE necessitates the matrix representation of the

Qi coordinate operators for k =1,...,3N — 6. These matrix elements are defined by the

(fio (Qn)| Q! f5,(Qr)) / Hi o k 1K) QrH;, 1 ( EQ )e W QAR dQ,, (22)

integrals, where the matrix representation of (); is of dimension ng. The only nonzero

values of Eq. (22) are given by

(fir (@) Qr S5 (@n)) = 4 Qi_vkk’ if jr =ir + 1, (23)

(fio (Qn)|Qrl f5,(Qr)) =

and

if jp =i, — 1. (24)
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The gy ;, quadrature points for the (); coordinate correspond to the eigenvalues of Qy,

while the DVR basis can be built according to the expression

Nk

Ek (Qk) = Z(Tk)imjkfjk (Qk)a (25)

Je=1

where the columns of T, contain the eigenvectors of Q. These one-dimensional DVR basis

functions are combined into the direct product basis according to the equation

3N—6

{TI P (@Yo o (26)
k=1

The Q, matrices become diagonal as a result of applying the DVR basis. Moreover,
the matrix representation of an arbitrary A operator depending only on the vibrational
coordinates can be approximated by a diagonal matrix and the diagonal elements equal to
the values of A at the DVR grid points. This statement applies to the 1% potential energy

surface whose matrix elements are simply

<F’L‘V(Q)‘F}> = V(ql,i17 q2,i27 AR 7QBN76,n3N_6)6i1,j15i2,j2 te 57"3N—67.j3N—67 (27)

where F; = F; (Q1)F;,(Q2) - -+ Fiyy_s(Qsn—6), and the i and j direct product indices can

be uniquely expressed in terms of the iy,1%s,...,i38v_¢ and ji, jo, ..., jsn_g indices:
i=mng...n3ny_6(t1 —1)+ng...n3y_g(ia — 1)+ +nsy_gelisy_7— 1) +isn_, (28)
and
J=ng...ngn_6(j1 — 1) +n3...n3n_6(Jo — 1) + -+ + n3n_6(Jsn—7 — 1) + Jan—s-
Matrix elements of the j,5 operators take the form
(Filtas(QNE)) = tas(qrins @iy - - - > B3N—6,i3y6)0i1,j1 0izja ** Oigny_gjan—60 (29)

where fas(q1iys iz - - @3N—6.i5y_g) 18 €valuated according to Eq. (15). Once the matrix
elements corresponding to the p.g operators are known it is easy to set up the matrix

representation of —% > o Maa, the so-called extrapotential term of the EW Hamiltonian.

17



DVR matrix elements of the 6‘9 and 2 aQQ differential operators needed for the 1 ZiN 6 P2
and %Zaﬁ TallapTs terms can be given by simple analytic expressions [51].

The last step in solving the vibrational problem is the construction of the matrix rep-

% Z ﬁaﬂaﬂﬁ-ﬁ
a3

Coriolis coupling operator. To move forward, two resolution of identities are to be inserted

resentation of the

amongst T, and pag, and g and wg. This step results in the matrix element expression
(F, |— > Fattasis|Fy) = Z Z (7o )ik (Bap) ik (T5)kj (30)
o.f a,B k=1

where n = nins - - - n3y_g is the size of the direct-product basis.

2.1.3 Solution of the rotational-vibrational problem

In order to derive formulae suitable for practical implementations, it is advantageous to
rewrite the Eckart—Watson Hamiltonian defined by Eq. (10) as

H=T"4+T"+TV+V, (31)
where
136
Z Pk TallasTp — o Zﬂaav (32)
7/8
(e oy jj:lzu P40 sl g (33)
9 aBJadp 9 aad o 9 af|Yas B+
o, a a B>a
where
[jow jﬁ]-l— = joa AB + Aﬁjom
and

TV 1 AT 1 ~ 7 ~ 7
™ = 3 ZﬂaﬁWﬂJa 3 ZMaBWanJ = - ZMaﬁTr[BJaa (34)
a,fB a,B o,
where the p.s = pgo relation is utilized. In the previous equations the 7V, T*, and Trv

operators denote the vibrational, rotational, and rotational-vibrational coupling parts of

the kinetic energy operator, respectively.

18



In order to set up the matrix representation of the rovibrational Hamiltonian of Eq.
(31) a suitable rotational basis has to be chosen. The simplest choice is the orthonormal set
of the |JK M) eigenfunctions of the symmetric-top rigid rotor [52], where K = —J,...,J
is the body-fixed and M = —J, ..., J is the space-fixed projection quantum number. Prop-
erties of the |JK M) functions and elements of the angular momentum algebra are briefly
summarized in Appendix A.1. The nonzero matrix elements of the .J, operators can be

given by the following simple analytic formulae [52]:

(JEM|J,|J(K £1)M) = %\/J(J +1) - K(K=+1)

(JKM|J,|J(K £1)M) = ¢%¢J(J+ 1) - K(K=+1) (35)
(JEM|J,|JKM) = K,

where ¢ is the imaginary unit.

Matrix elements of the J2 and [J,, Js]; operators present in Eqs. (33) and (34) can be
constructed by simple matrix multiplication, by inserting the resolution of identity between
J,, and jg, thus,

Jl
(JKM|JoJol JK'M) =" > " (JEM|Jo|J K" M)(J'K"M|Js|JK'M) =

J OK!M=—J

J
= Y (JKM|J|JK"M)(JK"M|Js| JK'M). (36)
J

K/ —=—

It is important to emphasize that Eq. (36) does not utilize any approximations, as
(JEM|Jo|J' K"M) = 6, (JKM|J,|JK"M). (37)

To facilitate symmetry considerations (see Sections 2.3 and 2.6.4) and to avoid complex
rovibrational matrix elements present in Eq. (35), it is worth combining the simple |JK M)

functions into the so-called Wang functions [52],

1

1. (|[JKM) +|J — KM)), where K is even

Sl

2
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(|JKM> |J — KM)), where K is odd (38)

(|JKM> |J — KM)), where K is even

o 5l

4~ (|JKM) + | — KM)), where K is odd.

V2
The four sets resulting from the use of the Wang functions correspond to the four irreducible
representations of the D, rotational group.
One can construct a rovibrational basis of dimension n(2J + 1) as a direct product of
the 2J + 1 Wang functions for a given J and the n vibrational basis functions defined in

Eq. (26). Thus, the rovibrational Hamiltonian can be represented by the
H=T" +T +T" +V (39)

rovibrational Hamiltonian matrix of dimension n(2.J + 1), where

3N—6

2
T =Eyj11 ® < Z P+ Zﬂ'all’aﬁﬂ'ﬁ - Z 'u’aa> J
ZJ2 Q oo + = ZZJOU']5+®MQB7 (40)

a fB>a

and

TI‘V — _ZJa ® (l’l’aﬂﬂﬁ) .
a,B8

In Eq. (40) Egy4 refers to the 2J + 1-dimensional identity matrix and ® denotes the
direct product operation. Matrix elements of the potential energy V can be computed by

the equation

(V)n'(K+J)+i7”'(K’+J)+j = V(qLi1 142jigy - - - 7Q3N_67i3N—6>6i17j1 5i27j2 T 5i3N76’j3N766KaK/7 (41)

where g, s are grid points of the kth vibrational degree of freedom and n is the size of
the vibrational basis.

According to the definitions of the 7, vibrational angular momentum operators and
vibrational basis functions, elements of the 7, matrices are purely imaginary. In order to

eliminate complex arithmetics, it is favorable to construct real Hamiltonian matrix elements

20



by employing imaginary J,, matrices. Thus, all the J2, [J,,, Jg], and J,® (MQBTFB) matrices
become real. The fact, that matrices of the Jo operators expressed in the Wang basis have

imaginary matrix elements, can be simply proven.

21



2.2 GENIUSH

In this section the theory of the GENIUSH (General rovibrational code with Numerical,
Internal coordinate, User-Specified Hamiltonians) approach |32, 33| is described. The GE-
NIUSH approach successfully circumvents the main drawbacks of DEWE and thus can
be applied to N-atomic molecules exhibiting multiple accessible PES minima and large
amplitude motions. The main idea behind GENIUSH is the numerical representation of
the rovibrational kinetic energy operator which allows us to employ arbitrary sets of inter-
nal coordinates and body-fixed frame embeddings during the rovibrational computations.
Another important characteristics of GENIUSH is the possibility to introduce reduced-
dimensional vibrational models in a straightforward manner. My task was to formulate and
add the rotational functionality to the original vibrational-only GENIUSH code. Before
the detailed description of the variational solution of the rovibrational problem is given,
formulation of the general N-atomic rovibrational Hamiltonian and the vibrational-only

implementation are discussed.

2.2.1 Formulation of the classical Hamiltonian in generalized internal coordi-

nates

The nonrelativistic Lagrangian of an isolated N-particle system with masses m;, ¢ =

1,..., N, can be written as
D+6 D+6

L= %ZZQHMZ -V, (42)

k=1 1=1
where D < 3N — 6 for reduced-dimensional models (D = 3N — 6 for the full problem), V'

is the potential energy depending on the generalized coordinates g, and

N N
Xl 90X,
=3 m T =Y mthta, ki=1,...,D+6. 43
Gkl i:lm 8% a‘fl i:1m e ! ( )

In Eq. (43), X; is the position vector of the ith atom in the space-fized reference frame

(X,Y,Z), and t;; is the t vector [53]| of the g, generalized coordinate on the ith atom.

After introducing the p, = g—qu (k=1,...,D + 6) generalized momenta conjugate to g,

22



the classical Hamiltonian takes the following simple form:

D+6 D+6

1
Hfull — 5 Z Z lepkpl + ‘/’ (44)
k=1 I=1
where
le = (g_l)kl 3 (45)

if g € RIPTOx(D+6) ig not singular.

To construct the g and G matrices, let us describe the configuration of the system by the
g, = qr active (k = 1,..., D) and constrained (k = D+1,...,3N —6) internal coordinates,
the three rotational ¢py; = o1, gp+2 = 2, gp+3 = a3, and the three center-of-mass

(qp+4 = X1, qp4s = X2, gpye = X3) coordinates. Then,
XZ‘IX—FCXZ‘, izl,...,N, (46)

where C is an orthogonal rotation matrix depending on the three rotational coordinates,
and the x; body-fized position vectors in the body-fixed frame (z,y, z) are functions of the
qx internal coordinates. Derivation of the g matrix elements is equivalent, see Eq. (43),
to giving the t;; vectors in terms of the generalized coordinates.
The translational t; k. pys (k= 1,2,3) vectors are simply
0X;

tik+D+3 - a—‘Xf: = 5ak7 a = 17 27 37 (47)

where a refers to the three components of the vector t.

By making use of Eq. (43), the translational g matrix elements can be expressed as
Gk+D+3,+D+3 = M - 6kla kvl = ]-a 27 37 (48)

where M is the total mass of the system; thus, these are constants.

For isolated systems, the rotational-translational and the vibrational-translational cou-
pling matrix elements of g are all equal to zero. Therefore, the motion of the center of mass
can be separated exactly from the rest of the coordinates. This allows the introduction of

the
D43 D+3

1
H:T+V:§ZZlepkpl+V (49)

k=1 l=1
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rovibrational Hamiltonian.

The rotational t; xp (k= 1,2,3) vectors take the form

. 0Xia = OCy

i,k+D — a— -

——Tip. 50
(673 b1 aOékxb ( )

Thus, the rotational g matrix elements are equal to

N

9k+D+D = Zmi(ek X Xi)T(el X Xz’), (51)
i=1

where the direction of the unit vector e coincides with the axis of rotation assigned to the

oy rotational coordinate [see Appendix A.2 for the derivation of Eq. (51)].

The vibrational t;, (k =1,..., D) vectors are
8XZ > &rib
a =N ", 52

Thus, the corresponding vibrational g matrix elements are given as

N

aX;r E)xi
gkl = Zmi D Oa, ) (53)

i=1

where k,l =1,..., D [see Appendix A.2 for the derivation of Eq. (53)]. To determine gy,

choice of the embedding of the molecule-fixed frame has to be established, which gives the

dependence of the x; body-fixed nuclear position vectors on the ¢; internal coordinates.
According to previous expressions, the g matrix elements of the rotational-vibrational

coupling block have the form

N oxT
Gearp = Y mi—— (e x x;), (54)
= O

where k = 1,...,D, l = 1,2,3, and g is a symmetric matrix [see Appendix A.2 for the
derivation of Eq. (54)].

The elements of G can be expressed in two different ways: (a) by inversion of g; and
(b) by introduction of the so-called sy; vectors [40, 53, 54|, s = Ot Jo — 1,...,D+6

X,
and ¢ = 1,..., N. In the present implementation of GENIUSH only the first approach is
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utilized to construct G.

2.2.2 Formulation of the quantum mechanical Hamiltonian in generalized co-

ordinates

In this subsection the rovibrational quantum Hamiltonian H is introduced in analogy with
the rovibrational classical Hamiltonian H. Within the Born-Oppenheimer approximation,
the potential energy acting on the nuclei, V, can be obtained by electronic structure com-
putations. Thus, we will focus on constructing the T rovibrational kinetic energy operator
in terms of the g, (k = 1,..., D) vibrational and the oy (k = 1,2, 3) rotational coordinates.

According to differential geometry [55, 56, 57|, T becomes

S
+

3 D+3
G VPG g PG, (55)

1

_l’_

T =

N | —
ES
I

11

where g = det(g), g is either the full or the rotational-vibrational g matrix, pj are the
quasi-momenta [35], and the volume element contains no extra factors.
In units of A, for the vibrational coordinates p, = —iaiqk, k=1,...,D, while for the

rotational coordinates pp.p = —i=2-, k = 1,2,3. Next, let us utilize that infinitesimal

Jay,?
rotations are generated [52| by the projection of the total angular momentum J onto the

rotational axis:

9
06’

where n has unit length, its direction gives the rotational axis, and ¢ is an angle associated

nJ =—g

(56)

with the rotation.

According to Eq. (56), it is straightforward to identify the rotational py.p quasi-
momenta as the components of the total angular momentum in the body-fixed frame.
After specifying three unique rotational axes, three successive rotations can be performed
in order to define the transformation between the space-fixed and body-fixed frames. As
the oy, rotational coordinate describes a rotation around the kth of these three rotational

axes, it is obvious that

0

Pk+D = _Zaﬁak = J, (57)

where J, is the component of the total angular momentum vector along the kth rotational

axis. The three rotational axes have been chosen to coincide with the three axes of the body-
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fixed frame. Therefore, the J operators correspond to the angular momentum components
expressed in the body-fixed frame, and the a; rotational angles define three successive
rotations around the three orthogonal axes of the body-fixed system. This work employs
these infinitesimal rotational coordinates [58, 59| instead of the widely used Eulerian angles.
This choice has two significant advantages: (a) one can directly insert the body-fixed
components of the total angular momentum into the rovibrational Hamiltonian by utilizing
Eq. (57), which greatly reduces the effort to construct T; and (b) the rotational and
rotational-vibrational blocks of g (and thus of G) can be computed trivially, as according
to Egs. (51) and (54) one needs to evaluate the e, x x; cross products of the unit vectors
pointing along the body-fixed axes and the body-fixed atomic position vectors, which clearly

requires the choice of the embedding.

2.2.3 Reduced-dimensional computational models

If larger molecules are examined it is often a good approximation to introduce reduced di-
mensional models by constraining the motion along certain internal coordinates. Two pos-
sible choices of defining reduced-dimensional models [60] are (a) deleting rows and columns
of the g matrix, (b) deleting rows and columns of the G matrix. The first case, when the
1th row and ith column of g is deleted, corresponds to the ¢; = 0 constraint, while the
second one, when the ith row and 7th column of G is omitted, gives rise to the p; = 0
relation. If orthogonal coordinates are applied, the two approaches lead to the same effec-
tive Hamiltonian. However, in general the two different strategies provide different reduced
models and numerical results, see Ref. [32] for numerical examples. Reduced-dimensional
results given in this thesis have been computed by using the first approach as its physical

meaning seems to be clearer than that of the second one.

2.2.4 Brief summary of the vibration-only algorithm

If the vibration-only problem is solved, one can introduce the effective vibrational Hamil-

tonian as

D D
v o v Y 1 ~—1/4t ~1/25 ~—1/4 | ¥,
H =T +V_§§ > gV PLGug g+ v (58)

for the D active vibrational degrees of freedom. The matrix representation of H, similarly
to that of the EW Hamiltonian, is set up in the basis of D-dimensional DVR vibrational



basis functions:

D D
1 _ 12 e
H' =T"+V =g ) &V plGug P pg T+ V, (59)
=1

k=1

where five resolution of identities have been inserted amongst the operators present in Tv.
It is important to note the two possible forms of H" outlined in Ref. [32]. As the rearranged
vibrational Hamiltonian is numerically less stable than the so-called Podolsky form of HY
given in Eqgs. (58) and (59), the use of the Podolsky form is preferable over the rearranged
form.

In the current implementation of GENIUSH, DVRs based on Hermite [51], Legendre
[51], Laguerre [51], and sinc [61] functions are available. Besides the primitive DVR func-
tions it is also possible to employ potential optimized (PO) DVR [49] functions. The
basic idea behind PO-DVR is the optimization of the DVR grid points and basis functions
by solving the eigenproblem of suitable one-dimensional model Hamiltonians. The main
virtue of PO-DVR is its compactness as it is possible to maintain the same computational
accuracy with less PO DVR functions than primitive DVR ones.

As a result of applying DVR vibrational basis functions, matrix representation of the
coordinate-dependent operators §~/4, Gy, Y2, and V are diagonal and the diagonal
matrix elements are equal to the values of these operators at the DVR grid points (see
Section 2.1.2 for further details). As a direct consequence, the t-vectors (see Eq. (43) for
their definition) needed for the construction of §~'/4, Gy, and §'/? are to be evaluated only
at the grid points, which can be done either numerically or analytically for arbitrary internal
coordinates and embeddings. This is the fact which makes the numerical representation
of the kinetic energy operator possible; thus, no analytical kinetic energy operators are
needed within the GENIUSH algorithm. Matrix elements of the vibrational p, operators
are proportional to matrix elements of the ai differential operators and can be constructed

dk
according to the considerations of Ref. [32].

2.2.5 Solution of the rotational-vibrational problem

In order to compute rovibrational states variationally the matrix representation of the H

rovibrational Hamiltonian is needed. It is advantageous to split T into three terms:

~

H=T+V=T"+T"+T"+V, (60)
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where

D
AV 1 ~— A ~ A A~
T = 5229 YAt Gug' P pig M, (61)
k=1 =1
R 1 3 . 1 3 3 o
T" — 5 Z Gk+D,k+D le + 5 Z Z Gk—i—D,l—i—D [Jk, Jl]+, (62)
k=1 k=1 >k
and
1 D
v o ~—1/4 1 ~1/4 | ~1/4 N~ 1/4\ %
TV = 5 lzl ; <g kak,l+D g + g Gk,l+D Prg ) Jl; (63)

where TV is the vibrational and 7™ is the rotational kinetic energy operator and T describes
the coupling between vibrations and rotations. In Eq. (62), Ji is the kth body-fixed
component of J and [jk, jl]+ refers to the anticommutator of the operators Ji and J,.

As the J, angular momentum components correspond to the body-fixed frame, they

satisfy the anomalous commutation relations [52]

[ D] = =1 ) €xtmTn, (64)

m
where k,l,m = z,y, z. For a given rotational angular momentum quantum number J (the
molecular system is isolated and no external fields are present), the set of 2J+1 orthonormal
|JK M) symmetric rigid rotor eigenfunctions serves as a suitable basis to set up the matrix
representation of H. According to Egs. (62) and (63), the matrix representation of J, j,f
and [jk, jl]+ is required to solve the rovibrational problem. The complete set of nonzero

J, matrix elements is given [52] by

(JEM|J,|J(K £1)M) = %\/J(J +1) - K(K=+1)

(JKM|J,|J(K £1)M) = ¢%\/J(J +1)—K(K=+1) (65)
(JEM|J,|JKM) = K,

where K = —J,...,J corresponds to the body-fixed z, while M = —J,...,.J to the space-
fixed Z components of the angular momentum. Matrix representations of the J2 and

[jk, jl]+ operators can be constructed by simple matrix multiplication, by inserting the

28



resolution of identity between Ji, and jl, and thus

J
(JEM|JJ|TK'M) = Y (JEM|J|JK"M){JK"M|J|JK'M). (66)
K'=—J

It is important to emphasize that Eq. (66) does not utilize any approximations as it has
been shown in Eqs. (36) and (37).
As a next step, a more sophisticated rotational basis of 2J + 1 orthonormal Wang

functions [52] is introduced by the following combinations,

1
(|[JKM) +|J — KM)), where K is even

Sl

1
2(\JKM>—|J—KM>),WhereKis odd (67)

5 (|[JKM) —|J — KM)), where K is even

Sl 5l

V2

This basis has two advantages over the simple |JK M) functions: (a) after some trivial

(|[JJKM) + |J — KM)), where K is odd.

algebra and a careful choice of the vibrational basis it becomes transparent that the matrix
representation of H , H, lacks complex matrix elements; and (b) as shown in the previous
four equations, one can separate the Wang functions into four (only three for J = 1)
sets according to the irreducible representations of the D, rotational group, which helps
exploiting molecular symmetry during the rovibrational computations.

Construction of H requires the introduction of a rovibrational basis, chosen here as
a direct product of the set of vibrational basis functions and the 2J + 1 Wang functions
(details concerning the vibrational basis and the necessary matrix elements can be found
in Ref. [32]). Using Egs. (60), (61), (62), and (63), H takes the form

H=T+V=T"+T"+TV+V, (68)
where
1 D D
T — _FE 5145t G5l 2, e 1/4 69
: 2J+1®;;g plGug'/*pig (69)
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3 3 3
1 Z 1
T = 2 k=1 J? © Gryppip + 2 ZE :[Jka Jil+ © Grypiin (70)

k=1 1>k

and

3 D
~ 1 ~1/4 1 ~1/4 | ~1/4 5—1/4
T = B lgl J® kgl <g P.GLi+p 8" + 8" GiirD P8 > ; (71)

Eoy.1 is the identity matrix of dimension 2J + 1, and ® refers to the direct product

operation.
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2.3 Symmetry-adapted Lanczos method (SAL)

This section addresses the problem of assigning symmetry labels to computed rovibrational
energy levels and wave functions. As DEWE and GENIUSH employs the iterative Lanczos
eigensolver, it seemed to be a good choice to adopt the symmetry-adapted Lanczos method
(SAL). During the SAL process Lanczos vectors are projected onto the different irreducible
representations of the molecular symmetry (MS) group. This procedure results in rovibra-
tional states belonging to the ith irreducible representation of the MS group if the Lanczos
vectors are projected onto the ith irreducible representation.

After a brief review of the Lanczos algorithm and the general theory of the SAL method I
describe my own SAL implementation which currently works for the DEWE code employing
normal coordinates and Hermite-DVR vibrational basis functions. Though the current
implementation applies to Abelian MS groups having +1 characters (for the Don(M) MS

group and its subgroups), the last section only covers the special case of the Cs, (M) group.

2.3.1 Tterative Lanczos eigensolver

As the dimension of the rovibrational Hamiltonian equals n(2J + 1), where n is the num-
ber of vibrational basis functions, and n grows rapidly with the number of vibrational
degrees of freedom, it is not feasible to employ explicit eigensolvers [62] for computing the
eigenvalues and eigenvectors of the rovibrational Hamiltonian. The original DEWE and
GENIUSH codes employ the iterative Lanczos method [44, 63| to solve the eigenproblem
of the Hamiltonian, which needs the evaluation of matrix-vector products. As the rovi-
brational Hamiltonian has a very special and sparse structure, an effective matrix-vector
product algorithm has been implemented, which does not need the Hamiltonian, of rapidly
growing dimension, to be stored explicitly.

The shift-fold procedure of the family of polynomial spectral transformation techniques
|64, 65] was employed during the Lanczos iterations to obtain the lowest eigenstates cor-
responding to the chosen Hamiltonian. Semi-orthogonality of the Lanczos vectors was
maintained by using the periodic reorthogonalization algorithm [66], whereby every second
Lanczos vector is reorthogonalized against all the previous ones. The more sophisticated
partial reorthogonalization technique [67, 68| resulted in a similar frequency of reorthogo-
nalization steps as the periodic reorthogonalization, and thus the simpler periodic version
was employed [21]. The thick-restart Lanczos method [68, 69] was used to compact the

ever-growing Krylov subspace periodically.
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2.3.2 Theory of the SAL method

A possible way of exploiting molecular symmetry during variational rovibrational computa-
tions is to adopt the symmetry-adapted Lanczos (SAL) technique |70, 71, 72]. Within this
procedure the Lanczos vectors are projected onto the required irreducible representation of
the molecular symmetry (MS) group [73]. These projections, carried out during the course
of the Lanczos iterations regularly, assure that the Lanczos algorithm will result in energy
levels and wave functions of the given irreducible representation. This scheme does not
decrease the size of the Hamiltonian matrix to be treated. Nevertheless, a considerable
advantage of SAL is that the eigenvalues to be determined become considerably sparser
resulting in a much improved convergence of the Lanczos procedure. Furthermore, sym-
metry labels are distributed automatically to the computed rovibrational energy levels and
wave functions. The SAL method can be understood as follows.

Each A element of the MS group can be constructed as the product of a B point-group
(PG) and a C rotational-group (RG) symmetry element [73]:

~

A=BC. (72)

These relations are explored when the projector [74] onto the ith irreducible representation

is constructed by considering
Pr=23 xil(A)A (73)

where G is the molecular symmetry group, h is the order of G, and Xi(fl) is the character
of the MS group element A associated with the ith irreducible representation. The effect

of P, on the original Lanczos vector x is
X; = PiX, (74)

where x; is the projected Lanczos vector, and P; is the matrix representation of the P,

projector in the rovibrational basis. Elements of the P; matrix can be expressed as

A 1 N A
(Pi)atca = (Fulto| DI FRa) = 3> xi(A)(FuRy| A|F.Ra) (75)
Aea
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with
(FyRy|A|F.Rg) = (F,| B|F.)(Ry|C|Ra) (76)

in the direct product basis of the F, vibrational and R, rotational basis functions. Eq.
(76) utilizes the fact that B and C act only on the vibrational and rotational coordinates,
respectively.

According to Eq. (76) the matrix representation of the A = BC' molecular symmetry
group element is given by the direct product of the matrix representations of C and B.
Once the matrix representations of the MS group symmetry elements are available, one can
construct the matrix of the P; projectors by taking appropriate linear combinations of the

matrix representations of the A operators, see Eq. (75).

2.3.3 Considerations for the Cs, (M) molecular symmetry group within DEWE

The implementation of the SAL method for Abelian groups having +1 and —1 characters
is summarized below for the special case of the Cy, (M) MS group. The point group and
the rotational group needed by the considerations of the present section are Cy, and Ds,
respectively. Table T gives the character tables of the isomorphic Cs, (M), Cy,, and Dy
groups.

If the C5, equilibrium structure of the molecule examined is placed into the yz plane and
z coincides with the Cy axis, the following equations relate the Cy, (M) symmetry elements

to the Cs, point-group and D, rotation-group elements:

(12) = C5(2)R- (77)
E* =0,(y2)R,
(12)" = o, (x2)R,,.

In Eq. (77) the following notations are applied: E = identity, (12) = permutation of the
two identical nuclei, E* = inversion of the nuclear coordinates, (12)* = (12)E*, Cy(z) =
two-fold rotation about the z axis, R, = two-fold rotation around the « coordinate axis
with a =z, 9, 2.

As the current implementation applies only to Abelian groups, having characters +1
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Table I. Character tables of the isomorphic groups Cs, (M) (molecular symmetry group),
Cyy (point group), and D, (rotational group).

Co(M) / Coy / Dy | E(M) | E(P) / E(R) | (12) / Ca(2) / R. | E* [ 0y(y2) / Rx | (12)* / ou(22) / Ry
A JA A 1 1 1 1
Ay | Ay | B, 1 1 1 -1
B,/ By | By 1 -1 -1 1
B, | By | By 1 1 1 1

and —1, the effect of a B point-group symmetry element on the (); normal coordinate is

A A

BQ; = Xj(B)Qi = 0@, (78)

where (); forms the basis of the jth irreducible representation and the Xj(B) character
refers to the jth irreducible representation. According to Eq. (78), one can deduce the

effect of B on the f,(Q;) one-dimensional Hermite-DVR vibrational basis functions as
Bfu(Q:) = fa(B7'Qi) = fu(Q0), if BQi = Qi or (79)

Bfu(Qi) = [o(B7'Q)) = fu(=Qs) = [-n(Qy), if BQ; = —Q;,

where the f,(Q;) one-dimensional functions were given the n = —p,...,—1,1,... ;porn =
—p,...,0,...,pindices for 2p even and 2p+ 1 odd numbers of basis functions, respectively;
thus, the f,(Q;) basis functions are enumerated according to the ascending order of the
Hermite-DVR grid points. Eq. (79) holds due to the fact that the set of Hermite-DVR
grid points is symmetric with respect to the origin and the ¢; grid points are transformed
to their mirror image q_; by B if BQ; = —Q;. In light of these equations the following

relations hold:
Q)| Bfo(Q0)) = Q) fu(Q)) = G, if BQi = @, or (80)

(F(Q)IBFa(Q)) = (fr Q) f=n(Q0)) = Oy if BQ; = —Q;.

According to Eq. (80), the matrix representation of B in the basis of Hermite-DVR func-
tions is either an identity or an anti-diagonal matrix. Since the vibrational basis is con-
structed as the direct product of one-dimensional Hermite-DVR, functions, the matrix rep-

resentation of B is the direct product of the related matrices. This operation results in the
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matrix representation of E, which is a permutation matrix, and has the dimension of the
direct-product vibrational basis.

For the construction of the matrix representation of a C rotational-group (D) symmetry
element it is important to know the symmetry properties of the Wang functions defined by
Eq. (67). The Wang functions are basis functions of the irreducible representations of the
Abelian D, rotational group [73]. Thus, the matrix representation of Cis diagonal and has

41 or —1 in its main diagonal:

~

(Wi (Q)[CW,(Q)) = Xn(é)5mna (81)

where W,,(Q) refers to the 2J + 1 Wang functions for a given J, 2 stands for the three
rotational coordinates, and Xn(é) is the character of C' in the irreducible representation
spanned by W, ().

It is important to note that the method described in this section generally applies to
Abelian groups having +1 characters (Don(M) MS group and its subgroups). For MS
groups with 1 characters other than Cs, (M) the relations of Eq. (77) have to be derived.
As the P, projectors are represented by permutation matrices, an effective matrix-vector
multiplication subroutine can be developed for evaluating the necessary x; = P;x products

without having to construct and store the P; matrix explicitly.
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2.4 Eckart embedding

In this section the theory of maintaing the rotational Eckart condition in a variational
rovibrational computation is discussed. As the DEWE code employs the Eckart—Watson
Hamiltonian, the rotational Eckart condition holds automatically in this case. However,
when GENIUSH is used, an additional procedure is needed to compute rovibrational energy
levels and wave functions with Eckart-embedded kinetic energy operators. After a brief
summary of the theory of the rotational Eckart condition, I describe my implementation
of the Eckart embedding within the GENIUSH algorithm.

2.4.1 Summary of the Eckart conditions and Eckart related applications

Choosing the frame which minimizes the coupling between the vibrations and rotations of
polyatomic molecules is an important topic in nuclear motion theory. It was Eckart [41]
who first formulated correctly the equations leading to an optimal separation of the two
motions (yielding zero coupling at a reference structure).

The translational Eckart condition (see also Eq. (2)) is

N
Z mrpXre — 0, (82)
k=1

where my, and r;, stand for the masses and position vectors of the N nuclei under examina-
tion, and it is trivial to satisfy it for arbitrary values of N. However, the rotational Eckart

condition (see also Eq. (4)),
N
> m(r x ag) =0, (83)
k=1

where ay, gives the position of the kth particle in the reference configuration chosen, results
in a set of more complex equations. Fulfillment of the rotational Eckart condition, Eq. (83),
can be interpreted as finding a T pseudorotation matrix which transforms the rj initial
coordinates into the rj, = Trj coordinates corresponding to the Eckart frame.

How to construct such a transformation was proposed by Eckart in his groundbreaking
paper from 1935 [41]. Later, Pickett and Strauss [75] derived a procedure for finding the
T transformation matrix. An important shortcoming of the methods proposed is the need
for computing the inverse of an intermediate matrix which can be singular for some initial

geometries. A new method, free of previous limitations, has recently been published by

36



Dymarsky and Kudin [76].

As the Eckart frame minimizes the rotational-vibrational coupling, several authors at-
tempted to derive Eckart-embedded Hamiltonians for use in computational molecular spec-
troscopy. For rectilinear vibrational coordinates (including normal coordinates), the form
of the operator is well established [18, 19|, and the Eckart-Watson operator has been
successfully applied for N-atomic molecules. However, this operator is only suitable for
semirigid molecules. For curvilinear internal coordinates, analytic Eckart formulae and
Eckart-embedded kinetic energy operators have been derived for triatomic |77, 78, 79, 80|
as well as more general planar molecules [81]. These Hamiltonians are well suited to
treat molecules exhibiting arbitrary motions. Nevertheless, drawbacks of Eckart-embedded
Hamiltonians expressed in internal coordinates are as follows: (a) the resulting expressions
are rather complex, which makes their implementation less desirable, and (b) analytical
Eckart expressions are derived only for special cases.

Thus, it is left as a challenge to construct a general Eckart-embedded kinetic energy
operator (KEO) expressed in arbitrary curvilinear coordinates. One way forward is to
construct the KEO numerically, for which the GENIUSH algorithm [32, 33| provides the
starting point. As in GENTIUSH the kinetic energy operator is constructed numerically and
represented on a DVR grid, it is sufficient to transform the nuclear geometries corresponding
to each different grid point into the Eckart frame.

This new approach exhibits the following significant advantages: (a) it applies to arbi-
trary internal coordinates and molecular compositions, and (b) no complicated analytical

derivations are required.

2.4.2 Theory of maintaining the rotational Eckart condition

The initial step in the method derived by Dymarsky and Kudin [76] is the definition of a

matrix A,
N

Ay = mi(re)iar);, i,j =123 (84)

k=1
computed with the ry initial and a;, reference position vectors, where ¢ and j denote Carte-
sian indices. If a T pseudorotation matrix (TT = T~!) acts on the initial coordinates ry

and transforms them into the rj = Trj Eckart coordinates, we can compute the elements
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of the symmetric S matrix,

N
Sy =Y mu(rh)i(ar); = (TA)j;. (85)
k=1
The symmetric nature of S is assured by the rotational Eckart condition, Eq. (83).
The next step is the introduction of the A; = ATA and A, = AA" symmetric matrices,
and the solution of the
Aju; = \u;, (86)

Aov, = v,

eigenproblems for ¢« = 1,2,3. One can easily prove that the eigenvalue sets of A; and Ay

coincide. After considering the

S? =S'S=A'T'TA = A, (87)
and
S? = SST = TAATT' = TA,T" (88)
relations, we get
AlT - TAQ, (89)

so the T transformation matrix can be constructed according to the
3
T = Z u; ov; (90)

=1

formula, where u; and v; share the same ); eigenvalues for ¢ = 1,2,3. There are eight
possible T transformations differing in the relative signs of the u; and v; eigenvectors.

Dymarsky and Kudin [76] suggested the use of the
u; - Vv; Z 07 (91)

with ¢ = 1,2, 3, and

Uz = u; X Us (92)

V3 = V] X Vg
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conditions to find the T transformation matrix which is closest to the identity matrix and
represents a pure rotation (detT = 1).

The kinetic energy operator expressed in internal coordinates needs the

N

E)rk 3I'k
1 0q; Jq;

matrix elements of the well-known g matrix [54| expressed in terms of the 3N — 3 ¢;
generalized (3N — 6 vibrational and 3 rotational) coordinates. Within the framework of
GENIUSH, the g matrix is evaluated by the numerical computation of the so-called t-
vectors, %’Z, by the method of finite differences. This needs the generation of the ry
body-fixed Cartesian coordinates for a given set of the ¢; generalized coordinates which is
done by the following algorithm: (a) Cartesian coordinate computation with respect to an
arbitrary inital embedding, and (b) rotation of the initial Cartesian coordinates into the
Eckart frame by the previously described method and maintaining the criteria given by

Eqs. (91) and (92).
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2.5 Labelling of rovibrational states

Labelling the computed rovibrational energy levels and wave functions with zeroth-order
harmonic oscillator and rigid rotor quantum numbers is of great importance as these labels
are widely used in the field of experimental spectroscopy. This task can be solved by the
normal mode decomposition (NMD) and rigid-rotor decomposition (RRD) procedures [42].
After the concise summary of the NMD procedure I discuss the implementation of the RRD

algorithm I used extensively for the interpretation of computed rovibrational states.

2.5.1 Normal mode decomposition (NMD)

The NMD algorithm [42] was developed to facilitate the assignment of zeroth-order har-
monic oscillator (HO) quantum numbers to computed variational (ro)vibrational eigen-
states. In the case of the NMD, overlaps between the ®; variational vibrational and the

®HO harmonic oscillator basis functions are computed. An NMD coefficient is defined as
cji = [(2;7]®;)[. (94)

Labelling of the ®; variational vibrational wave functions with approximate HO quantum
numbers can be accomplished by finding the dominant NMD coefficient given by Eq. (94).
After finding the dominant c;; contribution (if possible) in ®; it is straightforward to assign
®; with the HO labels of ®!1° .

2.5.2 Rigid rotor decomposition (RRD)

The RRD algorithm [42] was developed to assign zeroth-order rigid rotor (RR) quantum
numbers to computed variational rovibrational eigenstates.

Let us consider the nth rovibrational wave function ¥ (Q, ¢,0,x) (for a given value
of the J rotational quantum number) expressed in terms of the Q vibrational and (¢, 6, x)

rotational coordinates as a linear combination of rotational-vibrational basis functions:

n 2J+1
Q7 ¢a9 X Z Z Cn] sz Ri(¢a97X)7 (95)
=1 k=1
where
3N—6
= I[ £(@), ix=1.2...n (96)
k=1
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and n; stands for the number of vibrational basis functions on the kth vibrational coordi-
nate, n = niny-. .. -nzy_g is the total size of the vibrational basis, and R{ (¢, 6, x) stands for
the Wang-transformed symmetric top basis functions defined by Eq. (38). In the present
subsection orthonormal vibrational basis functions and real linear combination coefficients
are assumed.

For the eigenstates of the field-free rovibrational Hamiltonian the J rotational quantum
number is exact and serves as one of the input parameters of the rovibrational compu-
tations, while the widely used K, and K. labels are approximate and correspond to |K|
for the prolate and oblate symmetric-top limits of the rigid rotor [52|, respectively. In the
present subsection a two-step algorithm based on overlap integrals is proposed to match
the computed rovibrational states with pure vibrational states and then generate the K,
and K. labels.

By rearranging Eq. (95), one obtains

2J+1 n 2J+1
U (Q.6.0,x) =Y Ri(6,0,) (Z ch,ikE<Q>> = R{(6.0,X)¢] 4(Q).  (97)

k=1 i=1 k=1
From now on, w;{Jk(Q) will be referred to as the kth vibrational part of \Ifil](Q,gb, g, x).
Because the eigenfunctions of the rotational-vibrational Hamiltonian are orthonormal, the

overlap of a vibration-only wave function,
Pn(Q) = Y CuniFi(Q). (98)
j=1

and a rovibrational wave function, \IIZJ(Q, ®,0,x) (J > 0), is always zero, and thus not
useful for making assignments. A way to circumvent this problem is to introduce the
overlap of the kth vibrational part of \If;iJ(Q, ¢,0,x) and the vibration-only ®,,(Q) as

S om = W QPm(Q)a =D > e wConi(FAQ)IF;(Q)q =Y i, iComi » (99)
=1

i=1 j=1

J

nyk,m

a measure of the similarity of ¢; ,(Q) and ®,,(Q): the larger the magnitude of S;] ,  the

where the integration is carried out over the 3/N —6 vibrational coordinates. provides

more similar the vibrational parts of the two functions are. The next step is to sum the
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absolute squares of the S,{Ihm quantities with respect to k:

2J+1 2J4+1 n 2
J _Z J 2_2 J
}LJﬂn - ‘S%JhﬂJ - CnJJkCLnJ (100)
k=1 k=1 ' i=1

After converging M J = 0 and N; J # 0 eigenstates by variational procedures, N;M
square-overlap sums are computed over all of the J = 0 and J # 0 pairs. The quantities
P;{Jm (ny=1,2,...,N;and m = 1,2,..., M) can be regarded as elements of a rectan-
gular matrix with N; rows and M columns. For a given J, those 2J + 1 \I/iJ(Q, ®,0,x)
rovibrational states belong to a selected ®,,(Q) pure vibrational state which give the 2J+1
largest P/ . values. This means of identification is valuable because the rovibrational lev-
els belonging to a given vibrational state appear neither consecutively nor in a predictable
manner in the overall eigenspectrum.

It is important to emphasize the pronounced dependence of the quantities P;{J’m on the
embedding of the body-fixed frame, as exhibited in the previous equations. The Eckart
frame [41] is expected to be a trenchant choice for the overlap calculations due to a mini-
malized rovibrational coupling. Of course, this rotational labelling scheme can be generally
applied to variational rovibrational approaches employing arbitrary internal coordinates
and embeddings.

After assigning 2J + 1 rovibrational levels to a pure vibrational state, the next step
is to generate the K, and K. or 7 = K, — K, labels. Such assignments could be naively
based on the canonical energy stacking of asymmetric-top Jk, i, states, derived from the
symmetric-top limits, the symmetry labels of the states, and the noncrossing rule [52]. A
rigorous approach is to set up what we call rigid-rotor decomposition (RRD) tables. The
two approaches do not necessarily give the same labels. In order to compute the RRD

coeflicients it is necessary to evaluate the overlap integral

Syamany = (T, (Q, 6,0, )2 (Q) 5., (6, 0. X)) Qoo =

n 2J+1 n 2J+1
=Y el w > > Cogediy, - (FAQ)F;(Q))q- (B¢, 0,X) | R (6,0, X)) s.00 = (101)
i=1 k=1 j=1 I=1
n 2J+1
- Z Z C'I{J,ik ’ Cmﬂ» ’ di‘L],k
i=1 k=1
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between the njth rovibrational state and the product of the mth vibrational state and
mth rigid-rotor eigenfunction. The rigid-rotor component of the product is given by a

linear combination of the Wang functions R{(¢, 6, x) with expansion coefficients d/, .

2J+1

i, (6,6,%) Z dy,, 1R (6,0, %), (102)

where the d;), , coefficients are the components of the eigenvectors of the rigid-rotor Hamil-
tonian matrix. Note that the notation employed does not restrict the summation by sym-
metry; thus, certain blocks of the d;{mk coefficients will necessarily be zero. Recognizing
that these coefficients are elements of a unitary matrix, the quantities in Egs. (100) and
(101) are connected by the condition
2J+1
Bl =) 18 o, (103)

my=1

Because the ®,,,(Q)y;), (¢,6, x) functions form an orthonormal basis of dimension n(2.J+1),

Z ) = (104)

In light of these relationships, we define the RRD coefficients as the absolute square of the
2

it is also obvious that

overlaps, , and arrange them in a rectangular table whose rows are the exact

’ ny,m,m.j
states under consideration, \I/;{J (Q, 9,0, x), and whose columns are the above-defined “basis”
states, ®,,(Q)wr,, (¢, 6, x). During the labelling process of the U (Q, ¢, 6, x) functions the
“basis” state giving the largest RRD coefficient is selected first. Thereafter, \IJ,JU(Q, ®,0,x)

is assigned with the zeroth-order quantum numbers of the dominant “basis” state.
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2.6 The vibrational subspace (VS) method

In this section an efficient algorithm for the computation of highly-excited rovibrational
states is introduced. After describing the general theory of the VS procedure I discuss my
practical VS implementations within the DEWE and GENTUSH programs. Toward the end
of the theoretical section relations between the VS and RRD algorithms and generation of

symmetry labels are described.

2.6.1 General description

Determination of the large number of rovibrational energy levels and wave functions as-
sociated with large J values is computationally extremely demanding when traditional
procedures, described in Sec. 2.1, are used. Here a technique employing a vibrational
subspace (VS) is presented which can be used for the determination of a large number of
rovibrational states and is almost cost free.

The rotational-vibrational Hamiltonian can be partitioned as
H=T"+T"+TV+V=H 4+T"+T1v, (105)

where TV, T and 7™ denote the vibrational, rotational and rotational-vibrational coupling

terms of the kinetic energy operator, respectively, and
H =T'+V (106)

is the vibration-only Hamiltonian. It is important to note that Eqs. (105) and (106) hold
generally irrespective of the applied vibrational coordinates and embeddings and the form

of the Hamiltonian. After solving the
H'®, = E;®, (107)

vibrational Schrodinger equation and obtaining the ®; vibrational wave functions and the
corresponding F; vibrational energy levels, a subset of the ®; functions can be employed
as a compact vibrational basis for the rotational-vibrational computations. In order to

construct a new and compact rovibrational basis, consider the direct product of the ®,
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vibrational states and some Ry rotational basis functions for a given J:
{®;Ry}, wherei=1,...,.nand k=1,...,2J + 1, (108)

in which the ¥, rovibrational wave functions are expanded as

n 2J+1

Uo=> ) & PRy (109)

i=1 k=1

The matrix representation of HY is diagonal,
(®;R;|H | R)) = Fi0i10;1. (110)

While the latter equation holds irrespective of the actual form of the Hamiltonian applied,
other necessary vibrational matrix elements can only be derived after specifying the rovi-
brational Hamiltonian. Formulae for the Eckart—Watson Hamiltonian of Eq. (10) (DEWE)
and for the general Hamiltonian of Eq. (60) (GENIUSH) are given in Sections 2.6.2 and
2.6.3, respectively.

There are several choices for defining the 2.J 41 rotational basis functions for a given J:
(a) simple |JK M) symmetric top eigenfunctions, (b) Wang functions (see Eq. (38) for their
definition), and (c) rigid-rotor eigenfunctions. The third option was preferred during the VS
studies, namely the 2.J + 1 rigid-rotor eigenfunctions computed with equilibrium rotational
constants were utilized as a rotational basis, as this choice gives rise to straightforward
computation of the RRD coefficients.

The first step is to set up the Hgyr matrix representation in the basis of the W; Wang
functions of the

Hpp = AJ2 + BJ? + C.J? (111)

rigid-rotor Hamiltonian with A, B, C being the rotational constants of the molecule. After

finding the d; eigenvectors of Hgrg, the R; rotational basis functions take the form

2J+1

R= Y dgWy. (112)
k=1
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The (R;|J4|R;) and (R;|J,Js|R;) matrix elements are

) 2J+12J+1 .
(RilJalRj) = > > disd (Wil Ju| W), (113)
=1 =1
and
o 2J+12J+1 .
(Ril Jads| Ry) = Y Y dindi(Wi|JaJs|W7) (114)
k=1 =1

in terms of the Wang basis matrix elements.

This new contraction-like technique, denoted as VS, exhibits the following significant
advantages over previous approaches: (a) the vibrational subspace is very compact (it con-
sists of typically the first few hundred vibrational eigenstates of the molecule), which results
in a Hamiltonian of modest size even for high J values; (b) the RRD analysis, which facil-
itates the labeling of the variationally computed rovibrational states, is especially simple,
as the RRD coefficients are equal to the absolute squares of the components of the eigen-
vectors of the rotational-vibrational Hamiltonian; (c) the vibrational basis functions are
automatically symmetry adapted (as they are basis functions of the irreducible representa-
tions of the point group), which facilitates the exploitation of molecular symmetry during
the computation; (d) once the necessary vibrational matrix elements for the construction
of the representation of T and 7™ have been computed, they can be saved for later use,
which greatly reduces the cost of further computations; and (e) due to the modest size
of the final Hamiltonian one can use direct eigensolvers instead of the iterative Lanczos
algorithm; thus, the spectral density of the rovibrational energy levels does not affect the
convergence speed of the diagonalization (for larger matrices one can, of course, return to
Lanczos techniques). For this study a parallel eigensolver of the Math Kernel Library [82]

was chosen.

2.6.2 DEWE-VS matrix elements

According to Eq. (40), the pqp and p,p7s operators (o, 8 = x,y, z) appear in the Tr and
Trv operators of the Eckart—Watson Hamiltonian. The forthcoming equations are based
on the following facts: (a) in DVR, matrix representations of operators depending only
on the internal coordinates are diagonal, (b) diagonal matrix elements of the coordinate
dependent operators are given by evaluating them at the DVR grid points, (¢) components

of the variational vibrational eigenvectors are real.
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Elements of the p1,5 matrix in the basis of the ®; variational vibrational wave functions
are given by . .
(Bilpasl®;) = D > did (Filuasl i) =) chchitas(a), (115)
k=1 1=1 k=1
where the 3N — 6-dimensional Fy, DVR basis functions defined by Eq. (26) have been
applied and qj is the direct product grid point associated with Fj. The p,s7s matrix
elements can be derived by inserting the approximate resolution of identity amongst the

lap and gz operators:

(DiliapTpl®;) =Y Y > kel (Fulhas Fn) (Fnl s Fr) = (116)

k=1 l=1 m=1

=Y chd pas(ar) (Fil 7| F),

k=1 I=1
Further explanation of the (Fj|uag|F1) and (F),|Ts|F]) matrix elements has been outlined
in Section 2.1.2.

2.6.3 GENIUSH-VS matrix elements

In view of Egs. (70) and (71), one has to consider the matrix representations of the Gy4p 1+ p
rotational (D is the number of the active vibrational degrees of freedom, k,l = 1,2, 3), and
GV Grasp M4 and §Y*Glupp Peg/* rovibrational coupling operators (k = 1,...,D
and [ = 1,2,3) in the basis spanned by the ®; variational vibrational wave functions. The
forthcoming equations are based on features described at the beginning of Section 2.6.2.

The rotational G p;+p matrix elements are expressed as

(| Griparnl®) =D D e (FulGripisn|F) = chelGriniin(da), (117)
a=1 b=1 a=1
where F,, denotes the ath 3N — 6-dimensional vibrational DVR basis function and q, is the
grid point associated with F,. Matrix elements of the §~/4pL G}, p §"/* operator take the
form

(@ilg*PLGrisp 3 N®) =Y Y A (Falg *plGriin 3 F) =

a=1 b=1
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= el (Falg™ N F(FL|pL| Fa)(FalGropep |[Fe)(Fe| gV By = (118)
a=1 b=1 c=1 d=1 e=1
= el (Falg™ ) Falph | Fo) (Fy| Grap | Fo) (B3| G4 Fy) =
a=1 b=1
= 030257_1/4(%)<Fa\15;|Fb>Gk,l+D(Qb)§1/4(Qb),
a=1 b=1

where three approximate resolutions of identity have been applied. The same technique
leads to the

(@33 Crarp g |05) = Y A(Fulg Cripp heg M) = (119)
a=1 b=1
=3 Y " () Crarp(aa) (Falpe F) g/ *(ay)
a=1 b=1

matrix element expression of the /4Gy, p prg—/* operator. Section 2.2.4 gives the details

on the DVR matrix elements appearing in the previous equations.

2.6.4 Symmetry considerations

For Abelian groups the symmetry labels can be generated by simple analysis of the rotational-
vibrational wave functions expanded in the basis defined by Eq. (108). This analysis builds
upon the following: (a) only Abelian molecular symmetry groups are considered; (b) the
vibrational basis is built upon the vibrational states of the molecule which are basis func-
tions of the irreducible representations of the point group; (c) the rotational basis consists
rigid-rotor eigenfunctions which are basis functions of the irreducible representations of the
rotational group (D, for asymmetric tops); and (d) symmetry elements of the molecular
symmetry group are products of point-group and rotational-group elements (see Sec. 2.3

for a more detailed description). If an arbitrary A MS operator is given by

A=BC, (120)
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where B is a point-group (PG) and C is a rotational-group (RG) element, the effect of A

on a ®; Ry, basis function is the following:
A(®:Ry) = (BP)(CRy) = X “(B)XE4 (C)®i Ry = X3 (A)®i Ry, (121)

where a, b, and c refer to the irreducible representations of the molecular symmetry, point

and rotational groups, respectively, and
B, — P (B)a, (122)

and
CRy = X89(C)Ry, (123)

as all the groups are Abelian. In view of these equations it is evident that the ®;Rj (where
i=1,...,nand k = 1,...,2J + 1) functions are basis functions of the one-dimensional
irreducible representations of the molecular symmetry group. After finding the dominant
(or any other nonzero) ®;Rj contribution in the variational expansion of the rotational-
vibrational wave functions the characters of the irreducible representation spanned by this
®; R, product are to be computed, according to Eq. (121), for all the conjugacy classes.
The symmetry species of a given rovibrational state is obviously the same as that of the

examined ®; R, contribution.
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3 Results and discussion

In this section a number of results are described which utilize the theory and codes I
developed and described in the theoretical section. Section 3.1 summarizes the varia-
tional rovibrational computations I have executed with GENIUSH for the four-atomic NH;
molecule. Besides the full-dimensional results, reduced-dimesional rovibrational models
have also been examined and their quality is determined by comparison with results ob-
tained from the full-dimensional treatment. Section 3.2 gives a detailed analysis of the
rovibrational spectroscopy of the five-atomic HoCCO (ketene) molecule. The variational
rovibrational results obtained with DEWE and DEWE-VS have been interpreted by the
NMD, RRD, and SAL procedures. New assignments in the experimental infrared spectrum
of HyCCO are proposed based on the results of variational and MARVEL [43] analyses.
Finally, Section 3.3 describes the validation of the labels of the MARVEL energy levels of
H,'®0, for which I have executed variatonal rovibrational computations for large values of
the J rotational quantum number with the GENIUSH-VS program.

3.1 Rovibrational states of NH3; computed by GENIUSH

The capabilities of the rovibrational GENIUSH algorithm were tested on the ammonia
(*Y'NH;) molecule, exhibiting one large-amplitude motion usually called “umbrella motion”.
Rovibrational results from five reduced-dimensional models, with dimensions ranging from
1D to 4D, are compared to the full-dimensional treatment of coupled internal and rotational

motions of ammonia.

Table II. Z-matrix representation of the internal coordinates of NHj.

N

X N 1.0

H1 N (&} X 0

HQ N T9 X 0 H1 51
H3 N T3 X 0 H1 —/82
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3.1.1 Computational details

The potential energy surface (PES) of NHj; was taken from Ref. 83. It corresponds to
the PES called “refined” in that study. Atomic masses, my = 1.007 825 u and my =
14.003 074 u, were employed throughout the nuclear motion computations. The set of
internal coordinates applied is summarized in Table II. The embedding of the rotational
axes was done as follows: (a) the origin of the body-fixed frame is placed on the first atom
(N); (b) the z axis is directed towards the second atom (X, a dummy atom); (c¢) the z —y
plane is defined by the first three atoms (N, X, Hy); (d) the z axis is oriented according to
the right-hand rule; and (e) the origin is shifted to the center of mass of the nuclei. For
reference purposes, full-dimensional variational rovibrational computations employing the
complete rovibrational Hamiltonian without constraints on the coordinates were carried
out.

Besides the full-dimensional, 6-D, model, five reduced-dimensional models, henceforth
called 1-D, 2-D, 3-D, 4-D, and 4-D,, were also implemented, where the number of dimen-
sions refers to the number of active vibrational coordinates. In all reduced-dimensional
models the coordinate 6, describing the inversion motion, was kept active. Different sym-
metrized and nonsymmetrized stretching and bending coordinates were added to it in order
to investigate their effect on the rovibrational states. The models are shown in Table III,
detailing both the active and the constrained coordinates. The constrained coordinates
were fixed at their equilibrium values given by the PES, r1 = o = r5 = 1.010 31 A and
b1 = Py = 120°. Fixing these coordinates is equivalent to the deletion of rows and columns
corresponding to the constrained coordinates from the full-dimensional g matrix. An al-
ternative method had also been implemented for the 4-D; model, whereby values of the
constrained [; and (5 coordinates were allowed to relax at each grid point of the active co-
ordinates. For the lower-lying vibrational levels computed the “relaxed” and “fixed” results
show no significant deviations. This result validates our choice of equilibrium values for
the constrained coordinates, at least for the lower-lying vibrational levels. Implementation
of all these different models is straightforward within the GENIUSH protocol.

Potential-optimized (PO) [49, 84, 85| Hermite-DVR basis functions were utilized for
the vibrational degrees of freedom. The DVR intervals for the internal coordinates can be
summarized as follows: 1,759,735 € [0.35,2.5] A, f1, B, € [20,220]°, and 6 € [5,175]°. For all
the present computations the Podolsky form [32] of the rovibrational Hamiltonian has been

applied. It requires the evaluation of only the first derivatives of the Cartesian coordinates
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in the body-fixed frame with respect to the internal coordinates, unlike the “rearranged”
form [32] often used in (ro)vibrational computations [36, 38, 40], which requires not only
the first but also the second and third derivatives.

The customary ordering of the vibrational quantum numbers is employed for labeling
the computed J = 0 states: 1 = totally symmetric stretch, 2 = inversion mode, 3 = doubly
degenerate stretch, and 4 = doubly degenerate bend. The inversion-mode states are labeled,
however, not by vy but by vy, to account for the doubling of the levels. The molecular
symmetry (MS) [73, 86] group Ds,(M) is used to provide labels for the symmetries of the
rotational-vibrational states of ammonia.

The pure electronic and effective one-dimensional, vibrationally averaged barriers to
inversion of *NHj are computed to be 1777 & 10 and 2021 4 20 cm ™!, respectively [87, 88].
The latter value is in full agreement with a set of effective one-dimensional spectroscopic
results in the 2018 4+ 10 cm™! interval [89, 90, 91, 92|. This energy is smaller than all but
5 of the vibrational state energies of "*NHj. The vibrational band origins (VBO) of “NHj
lower than this energy have quantum numbers vy,, = 0, 1, 2, and 3, and vy = 1. This
investigation focuses only on the rotational-vibrational states characterized by vy,, = 0, 1,
2, 3, 4, and 5 and vy = 1 while all other vibrational quantum numbers are kept at zero.

Ideally, each inversion state holds a set of 2J 4+ 1 “rotational” energy levels which can
be characterized as symmetric top levels using the usual quantum numbers J and K [73].
To label the rovibrational states of ammonia further, two routes can be followed. The
clearest one is to use the vy,, quantum number to distinguish between the inversion doublets
and employ the irreducible representations of the Dg, (M) MS group. The less preferred
alternative is to designate the doublets with superscripted + and — symbols, indicating
the lower- and higher-energy member of the pairs, respectively. Note also that nuclear
spin statistics makes some of the computed rovibrational levels (those with species A} and
A7) “missing” [73]. Finally, we mention that for the {1y, v; } diad and especially for the
{2v5, v, v} triad the energy order of the rotational-vibrational eigenstates does not
strictly follow the order of the VBOs (the J = 0 eigenstates). The rotational-vibrational

states were sorted according to the prescription of the RRD procedure.
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Table ITI. Characteristics of the reduced-dimensional models of NH; employed in this
study.

model active coordinates constrained coordinates no. of BFs for the active DOFs®
1-D 0 T1,72,73, 51, B2 40 (100)

2-D 9,%(7“1 + 79+ 73) %(27”1 — Ty — 7“3);\%(7“2 —13),081,5 25 (80), 15 (80)

3-D 0, b1, Ba T1,7T2,73 25 (80), 15 (80), 15 (80)
4-Dy 0, ri,79,73 51, Pa 25 (80), 15 (80), 15 (80), 15 (80)

4Dy 0, L(ri ot BB (2r == rs), H(ra—rs) 25 (80), 15 (80), 15 (80), 15 (80)

¢ BF = PO DVR basis function. DOF = degree of freedom. The number of primitive DVR
vibrational basis functions are given in parentheses.

3.1.2 Full-dimensional results

The full (6-D)-dimensional VBOs obtained with the PES and the exact kinetic energy
operator employed for the present computations within the GENIUSH protocol have been
reported in Ref. [32]. A few of these results are reproduced in Table IV along with
the experimental values taken from Ref. 93. The basis set used here is large enough to
converge all the VBOs of interest to better than 0.01 ecm~!. Thus, the computed full-
dimensional rotational-vibrational energy levels, some of which are reported in Table V,
serve as benchmark numbers.

As clear from Table V, the present PES [83], at least for the low J values investigated in
this study, provides rotational-vibrational energies in good agreement with the experimental
results. The agreement is not as outstanding as has been observed for the recent exceedingly
high quality ab initio and ab initio-based PESs of water [13, 95, 96|, but the average
accuracy of the computed lines is down to the 0.1 cm™ level.

It is interesting to compare the present benchmark energy values to those obtained
using the TROVE algorithm employing truncated kinetic and potential energy operators
|83, 94] during solution of the nuclear-motion problem. The appropriate vibrational and
rovibrational results are reported in Tables IV and V, respectively. In all cases the TROVE
energy values are higher than the GENIUSH ones. However, the differences are very small,
on the order of 0.01-0.03 cm™!, both for the pure vibrational and rovibrational states,
considerably smaller than the accuracy of the PES employed, on the order of 0.1 cm™* for
the states considered. This proves the validity and utility of the approximations introduced
in the TROVE algorithm.

Finally, a few words about the rotational wavenumbers corresponding to the different

rotational axes. The rotational energies at about 20 cm~! for J = 1 are considerably larger
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Figure 1: Relative splittings between rovibrational states of NHj sharing the same K
value for a given J for the vy, = 0/1 (v = 0) and v,y = 2/3 (vo = 1) pairs, referenced
to the corresponding J = 0 values. Relative splittings for different J values are denoted
according to the following pattern: rectangle: J = 1, circle: J = 2, triangle: J = 3, star:

J = 4.
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Table IV. Relevant full and reduced-dimensional zero-point vibrational energies (GS =
ground state) and vibrational band origins of 1*NHj relative to the vibrational ground state
energy, all in cm~!. The molecular symmetry group Ds,(M) is used to label the rotational-
vibrational states of ammonia. The Ds,(M) symmetry labels are given in parentheses.
The 1-D, 2-D, and 4-D; models do not exhibit the v, and v, vibrations as the 3; and 3,
vibrational coordinates are fixed in these cases.

1-D 2-D 3-D 4-D, 4D, 6D  Expt.”
0t (A}, GS) 521.43 2256.74 2158.70 5828.91 3911.34 7436.82 -
0~ (A7) 1.13 1.28 1.70 0.58 1.74 0.79 0.79
vy (A) 930.57  900.48  904.48 945.65 881.01 932.41 93243
vy (A3) 979.80  952.80  970.68  973.89  946.02 968.15  968.12
2uy (A]) 1586.97  1537.6 1550.06 1626.11 1511.43 1597.26 1597.47
v (E) - ~ 1659.43 — 1649.71 1625.62 1626.28
vy (E” - —  1662.12 ~ 1652.08 1626.73 1627.37
2u5 (A7) 1918.86 1868.39 1917.98 1884.43 1867.66 1882.18 1882.18

@ Experimental results are taken from Ref. 93 and have higher accuracy than indicated
here. The VBOs obtained with TROVE |83, 94|, using the same PES and following the
same order, are 7436.82, 0.80, 932.42, 968.16, 1597.29, 1625.64, 1626.75, and 1882.20 cm ™.

than the splitting between the 0T and 0~ states, about 1 cm™!. Thus, resonance interactions
should be limited. One further expects that rotation about the principal symmetry axis
increases the inversion splitting and those about the perpendicular axes act in the opposite
direction. As shown in Figure 1, the splittings between the E’ and E” states can both
increase and decrease as a function of J and K, though these changes are rather small for
the small J values considered. The relative splittings change almost linearly as a function

of K. For each J, the relative splitting is positive only for the largest K pair.

3.1.3 Convergence of the rovibrational levels

Convergence of the rovibrational levels of NH3 was examined extensively with respect to the
size of the vibrational basis. Full-dimensional computations were carried out from J = 0
up to J = 4. The reported “converged” results were computed using 25 vibrational basis
functions for the inversion and 10 vibrational basis functions for the other five degrees of
freedom. For the approximate rovibrational levels a considerably smaller vibrational basis,
containing 14 functions for the inversion and 5 for the others, was utilized. The basis
functions mentioned refer to PO DVR functions for all degrees of freedom, each of them

were generated by employing 80 primitive DVR functions (see Table III for a summary
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about basis functions for the reduced-dimensional models).

A pictorial representation of the deviations between the “converged” and approximate
rovibrational levels is given in Figure 2, where the minimum unsigned, maximum unsigned,
and mean values of these deviations are plotted for six vibrational states.

As expected, deviations between the “converged” and the approximate rovibrational
levels increase with vibrational excitation. For the vibrational ground state the small vi-
brational basis is able to reproduce the exact rovibrational levels very well, while the biggest
deviations are present for the fifth VBO. These findings suggest that (a) the incomplete-
ness of the vibrational basis plays an important role in the error of the rovibrational levels
(unless they are referenced to the actual VBO); and (b) even small vibrational basis sets
are able to supply rovibrational levels of appropriate precision for some of the vibrational

band origins.
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Figure 2: Convergence of the rovibrational levels of “NHj; from J = 1 up to J = 4. Maxi-
mum unsigned, minimum unsigned, and mean absolute deviations between the converged
(25 basis functions for the inversion and 10 for the other degrees of freedom, respectively)
and small (14 basis functions for the inversion and 5 for the other degrees of freedom,
respectively) vibrational basis sets are shown. Note that 1, 2, 3, 4, 5, and 6 on the = axis
refer to the 07, 07, vy, vy, 2v57, and 2v, vibrational states, in order.

Table V. Selected computed full-dimensional rotational-vibrational energy levels of
UNH;3 for J = 1 — 4, in cm™!, referenced to the zero-point energy of the system (all
vibrational modes other than the umbrella motion remain in their ground state). See text
for the meaning of the labels {vy,, J K} of the rotational-vibrational states. Symmetry

labels correspond to the Dg, (M) molecular symmetry group.

J K vy, symm. label GENIUSH TROVE
1 0 0 A, 19.907  19.907
1 1 0 E" 16.188  16.188
1 1 1 E' 16.979  16.981
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952.558
948.578
984.209
95.988
44.838
60.465
56.759
45.630
988.860
976.928
1027.507
1023.781
1012.596
119.341
115.637
104.516
85.943
116.380
105.278
86.740
1053.171
1049.216
1037.327
1017.453
1083.098
1071.935
1053.302
195.076
183.991
165.482
139.492
199.466
195.781

952.570
948.589
984.219
95.988
44.838
60.467
56.761
45.632
988.872
976.940
1027.517
1023.792
1012.606
119.342
115.638
104.516
85.944
116.382
105.280
86.742
1053.183
1049.228
1037.340
1017.465
1083.109
1071.946
1053.313
195.077
183.992
165.482
139.492
199.469
195.784



4 2 1 E 184.716  184.719
4 3 1 A, 166.239  166.242
4 4 1 E" 140.298  140.300
4 1 2 E" 1129.566 1129.579
4 2 2 E' 1117.734 1117.747
4 3 2 ) 1097.956  1097.969
4 4 2 E' 1070.140 1070.152
4 0 3 A, 1165.817 1165.829
4 1 3 E' 1162.108 1162.121
4 2 3 E" 1150.975 1150.988
4 3 3 A, 1132.390 1132.403
4 4 3 E" 1106.313 1106.324

3.1.4 Reduced-dimensional results

Five reduced-dimensional models of the “NH; molecule have been tested, ranging from
1-D to 4-D. Table IV gives the computed full and reduced-dimensional vibrational band
origins of interest for this study. All of the computed rovibrational levels were referenced to
the appropriate VBOs and the differences of these full and reduced-dimensional levels were
then computed. The maximum unsigned, minimum unsigned, and mean absolute (MAD)
deviations are summarized in Table VI for J =1 and 4.

The ZPVE for the 1-D model is 521.4 cm~!. The considerable increase in the effective
one-dimensional barrier height mentioned before is due to the significant tightening of
bonding at the transition state, as reflected in the PES. In the 1-D model, similarly to
the full 6-D model, there are 4 vibrational states below the barrier, while the fifth state
(viny = 4) is already slightly beyond it.

Though there is a considerable shift (see the MAD values of Table VI) of the rovi-
brational energy levels due to the incompleteness of the vibrational model for the ground
state, deviations from the MADs are considerably smaller, up to a factor of 6. Thus, the
computed reduced-dimensional rovibrational energies have considerable predictive power.

The deviations of the reduced-dimensional rovibrational results from the full rovibra-
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tional results show clearly the considerable approximations characterizing the 1-D vibra-
tional model. Interestingly, the 2-D model, having the two fully symmetric motions of
ammonia active, does not improve substantially the 1-D results, except for the 0T and 0~
states. For example, the difference between the 2vy (A}) and 2uvy (A]) VBOs is 285 cm ™!
experimentally, while the {1-D, 2-D} splittings are {332, 331} cm™!, a gross overestimation
in both cases. In fact, none of the reduced-dimensional models are successful in predicting
this splitting.

By far the best model for describing the inversion motion of ammonia is the 4-D;
model. This is a somewhat nonintuitive result and perhaps stems from a considerable
coupling between the umbrella mode and the overtones of the non-symmetric stretching
modes. Nevertheless, even this best reduced-dimensional model produces errors an order
of magnitude larger than the intrinsic accuracy of the PES. Even in the most favorable
cases the improvement in the maximum unsigned error is only about a factor of two. Thus,
it is surprisingly hard to improve upon the simplest 1-D model by the inclusion of further
degrees of freedom in the active set of coordinates. This is a serious warning when treating
larger, more complex systems and what can be expected from models including several
degrees of freedom in the active set designed to improve upon the physically simplest model.
However, in the many cases when the smallest reasonable treatment of the molecular system
does require the active treatment of several coordinates, the present procedure provides a

straightforward way for the interpretation of the measured rotational-vibrational spectra.

3.2 Rovibrational results for the CsH,O computed by DEWE

The semirigid five-atomic ketene (CoH2O) molecule has proven to be an ideal candidate for
variational rovibrational computations with DEWE as the following characteristics of its
rovibrational spectrum hinder perturbative treatments: (a) its three lowest fundamental
vibrations (v5(Bj) & 587, vg(B;) ~ 526, and vg(Bs) &~ 439 ¢cm™"! in the Mulliken notation)
cluster in the narrow 430—590 cm™! window; (b) the next two fundamentals, v4(A;) ~ 1116
and vg(Bg) ~ 977 cm ™!, occur next to each other at about twice the frequency of the three
bends; (¢) complications also arise from the fact that there is a Cy, to Cy bifurcation on the
ground-state PES of ketene, marking the advent of the out-of-plane bent (CI) dissociation
path when the C=C bond is elongated by just about 0.15 A over its equilibrium value;

(d) there are a number of vibrational (Fermi and Darling-Dennison) and rovibrational

60



Table VI. Maximum unsigned, minimum unsigned, and mean absolute (MAD) deviations
between the computed full and reduced-dimensional results, in cm™!, for the J = 1 and
J = 4 states of “NH;. Both the full- and the reduced-dimensional rovibrational levels are
referenced to the appropriate vibrational band origins given in Table TV.

J=1 J=4
Label 1-D 2-D 3-D 4-D; 4-Dy 1-D 2D 3-D 4-D; 4-Dy
0t maximum 0.243 0.129 1.360 0.343 0.461 2,697 1.376 6.570 3.282 4.606
minimum 0.208 0.121 1.087 0.195 0.271 1.909 1.351 2.360 1.050 1.571
MAD 0.219 0.127 1.178 0.244 0.334 2357 1362 4.815 2.359 3.344
0 maximum 0.247 0.130 1.448 0.338 3.444 2731 1.377 6.527 3.239 4.516
minimum 0.211 0.121 1.180 0.193 0.268 1.939 1.357 2401 1.049 1.587
MAD 0.223 0.127 1.270 0.242 1.327 2390 1.365 4.806 2.334 3.297
vy  maximum 0.440 0.491 2.542 0.125 0.698 4.742  5.114 9.500 4.755 7.790
minimum 0.254 0.290 2.163 0.075 0.351 1.450 1.716 1.243 0.438 1.441
MAD 0.316 0.357 2.416 0.092 0.467 3.351  3.685 5.263 1.645 4.930
Vy maximum 0.596 0.530 0.349 0.024 0.529 6.181 5417 6.557 3.650 5.308
minimum 0.372 0.332 0.074 0.015 0.309 2420 2.155 0.499 0.148 0.611
MAD 0.447 0.398 0.166 0.018 0.382 4.607 4.053 4.155 0.860 3.576

v{  maximum 1.063 0.932 8.502 5.589
minimum - - 0.014 - 0.256 - - 1.386 - 0.065

MAD 0.622 0.552 6.207 3.829

vy maximum - - 1.079 - 0.942 - - 8.431 - 5.483
minimum — - 0.030 - 0.273 - - 1.384 - 0.097

MAD - - 0.587 - 0.508 - - 5.684 - 3.219

2vy  maximum 0.500 0.617 3.462 0.275 0.470 4.950 6.061 3.781 2.573 4.564
minimum 0.293 0.396 3.332 0.086 0.319 1.795 2.716 1.919 0.199 2.358
MAD 0.362 0.470 3.419 0.149 0.369 3.717 4.749 3.082 1.598 3.723
maximum 1.012 0.894 1.713 0.424 0.478 10.209 8.957 6.359 4.231 4.799
minimum 0.607 0.529 1.505 0.171 0.313 3.683 3.117 3.075 0.197 2.148
MAD 0.742 0.651 1.574 0.255 0.368 7.495 6.530 4.990 2.558 3.695

2v,
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(Coriolis) resonances in different regions of the spectrum of ketene, occasionally causing
localized level crossings distorting the rotational structures of some of the bands.

Perturbation-based analyses of the spectroscopic features of ketene have been summa-
rized nicely by East et al. [98], who performed one of the most careful ab initio studies of
the spectral features of ketene, based on a quartic force field representation of the PES and
the traditional vibrational perturbation theory carried out to second order (VPT2) [99].
Understanding the various resonances, detecting and assigning their spectral signatures, in-
cluding irregular subband origins and unusual isotopic frequency shifts, and treating them
with perturbative theoretical techniques meant that spectroscopists encountered severe dif-
ficulties while working on the measured spectra of ketene isotopologues and thus had to
leave a considerable number of spectral features unassigned even at the low energies con-
sidered. The most practical way out of the messy situation concerning the spectroscopy of
ketene is to employ variational nuclear motion techniques.

This section discusses the results of the variational rovibrational computations done for
CoH50. Zeroth-order vibrational and rotational quantum numbers and symmetry labels
were evaluated by the NMD, RRD and SAL procedures. Rovibrational energy levels and
wave functions with high J rotational quantum numbers were computed by the DEWE-VS
program. Then, the MARVEL analysis based on the measured rovibrational transitions

of CoH50 is summarized. Finally, new experimental transitions are assigned based on the
variational and MARVEL results.

3.2.1 Model of the PES

The empirically adjusted ab initio quartic internal coordinate force field of Ref. [98] was
employed as a model of the PES of ketene around the equilibrium structure. This simple
representation of the ground-state PES of ketene was obtained by East et al. [98] as a result
of two cycles of refinements. In the interior cycle A the harmonic (quadratic) part of the
force field was refined by scaling it according to the scaled quantum mechanical (SQM) force
field recipe [100, 101] to harmonized frequencies, obtained via the VPT2 protocol, while
keeping the reference (equilibrium) geometry fixed. In the exterior cycle B, corrections
to the rotational constants based on lowest-order vibration-rotation interaction constants
computed from the actual cubic force field, augmented with small centrifugal distortion and
electronic corrections, were applied to the experimental ground-state rotational constants

in order to get an improved estimate of the equilibrium molecular structure of ketene. The
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exterior and interior cycles were repeated until self-consistency was achieved, resulting in
a quartic force field which reproduced the available experimental fundamentals within the
VPT?2 protocol by about 1 cm™! on average.

In order to make the internal coordinate quartic force field of Ref. [98] optimal for use in
variational nuclear motion computations, the simple stretching coordinates were replaced
by Simons—Parr—Finlan coordinates [102]. The necessary nonlinear transformations were
performed analytically by employing the INTDER2000 program system [103, 104, 105]|.
The final quartic internal coordinate force field employed in this study is defined in the

Supplementary Material of Ref. [22].

3.2.2 Rovibrational energy levels and wave functions

All the nuclear motion computations utilized the DEWE program package. The atomic
masses employed for all the computations are m(H) = 1.007 825 u, m(*2C) = 12.000 000 u,
and m(*%0) = 15.994910 u. The reference structure and the definition of the rectilinear
coordinates are given in the Supplementary Material of Ref. [22|. Following a considerable
number of test computations, the vibrational basis was chosen as follows for the results
reported hereby: 6, 8 and 10 basis functions for the four stretching motions, the two
highest bends, and the three lowest bends, respectively. The size of the corresponding
vibrational Hamiltonian thus became 82944 000. This basis allowed execution of vibration-
only computations on a personal computer within a few weeks resulting in the lowest 100
eigenvalues and eigenfunctions.

The rotational-vibrational computations were performed in two different ways. First,
the DEWE algorithm was employed up to J = 3 with a vibrational basis of 21 781 872
functions (7 basis functions for the five bends and 6 for the four stretching motions). Second,
the DEWE-VS procedure was applied for the computation of rotational-vibrational energy
levels up to J = 50 (for the full list of rovibrational states corresponding to the first four
VBOs, GS (ground state), vy = 9!, 15 = 6!, and v5 = 5!, see the Supplementary Material
of Ref. [22]). During the DEWE-VS computations the previously mentioned lowest 100
vibrational wave functions defined the vibrational subspace employed.

The NMD and RRD analyses of the computed rovibrational wave functions were per-

formed according to the recipes of Section 2.5.
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3.2.3 MARVEL analysis

The MARVEL [43] analysis of the measured rovibrational transitions resulted in a set of
“experimental” energy levels. In order to keep the experimental sources of the measured
transition data searchable, each experimental source received a tag (see Table VII). Table
VII contains the intervals characterizing the measured transitions as well as the number of
the available (A) and validated (V) transitions present in a given source.

We could not use the several hundred assigned transitions in 87DuFeHaToa [106], as
not the individual transitions but the effective spectroscopic constants deduced from them
were reported in the paper. We did, however, employ many previously assigned but so far
unpublished high-resolution mid-infrared transitions [107], which became part of Ref. [22]
and thus received the tag 11FaMaFuNe (see Table VII). There are many pure rotational
transitions reported in the Cologne Database for Molecular Spectroscopy (CDMS) [108],
which come from several known sources [109, 110, 112, 113, 114, 115]. Thanks to the kind
help of Dr. Miiller, maintaining the CDMS, these transitions received their original tag and
at the end no explicit reference is made in the MARVEL input to the CDMS. Transitions
reported in Ref. [112] are also listed under their original sources in the MARVEL input
file.

Due to the symmetry of the molecule, the rotational-vibrational energy levels of ketene
form two spectroscopic networks (SN) [116], called ortho and para. There are no ortho-para
transitions measured.

Since the MARVEL energy levels determined do not have the same dependability (the
uncertainties resulting from the least-squares fit can not always be trusted, especially when
the energy level is determined by a single transition), we attached quality classifications to
the levels, distributing them into three categories: A (best), B, and C (worst). A MARVEL
energy level is of A quality if it is determined by at least 5 transitions coming from at least
3 different data sources. Energy levels of B quality participate in at least 4 transitions
coming from at least 2 data sources. All other MARVEL energy levels, in fact the majority
of the MARVEL levels, are tagged as C.
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Table VII. Data sources for line information and their characteristics for
H,2?C=12C=10 employed during the present MARVEL analysis.

Tag Range (cm™!)® Trans. (A / V)°
77FaKrMu [114] 0.013 - 0.038 2/2
03GuHu [112] 0.076 — 10.882 97 / 65
52J0St [109] 0.264 — 2.041 29 / 24°
72JoStWi [117] 0.264 - 6.123 53 / 45
01SuDr [110] 0.674 — 0.674 1/1
63CoEs [111] 0.674 — 1.361 15/9
90BrGoMcPi [113]  0.674 — 12.140 37 / 20
92JoNeYaWa [115]  0.692 — 24.445 146 / 77
96HiZeDoGu [122] 1.337 — 5.445 130 / 89

11FaMaFuNe [22] 332.638 — 1021.930 2345 / 1945
94EsDoCaOr [118] 3049. 661 — 3089.528 276 / 175
03StNeGr [121] 4269.605 — 6271.494 851 / 742

® Note that (a) the range indicated does not mean the actual spectral range covered by the
experiment but simply the lowest- and highest-energy transition present in the database and
(b) the ranges are not always indicative of the vibrational states covered by the experiment.
b Trans. = transitions, A = available in the original data source, V = validated by MARVEL
during the present work.

¢ The 52JoSt.24 transition was removed manually from the database as it has the same

lower and upper level assignments in the original publication.

3.2.4 Vibrational band origins

The vibrational energy levels computed with the DEWE program package are collected in
Table VIII. Since the present quartic force field does not take into account the dissociation

path bifurcation occuring on the ground-state PES of ketene at about 4000 cm™!, we

1 .
, L.e., up to

report computed vibrational band origins (VBO) only up to about 2200 cm™
the neighborhood of the C=0 stretch fundamental 2! = vy(A;). The NMD tables of the
parent isotopologue of ketene, close to the same energy cut-off value, are reported in Tables

[X-XII for the four irreducible representations of the Cs, point group.
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The very strong mixing within some of the vibrational states of ketene is clearly evident
from the NMD data of Tables IX-XII. Therefore, the zeroth-order normal-mode labeling
given in Table VIII becomes rather approximate in certain cases even at the low energies
and low excitations considered. The most striking example concerns the A;-symmetry
states at 1402.3 and 1415.9 cm~! (variational results), which have an almost perfect 50-
50 mixing of the w3 and (wg + wg) harmonic oscillator basis states. This means that
it is unclear, based on the present variational quantum chemical computations, whether
the 3! = 13(A4;) fundamental of parent ketene is at 1402 or at 1416 cm~'. The NMD
analysis prefers the higher assignment by NMD coefficients 50 to 43. However, we prefer
the lower assignment, though clearly this is somewhat arbitrary and can be supported only
if comparison with experimental and harmonic results is considered. The strong Fermi
resonance behind this result has been noted before, for example by Duncan et al. [106].
The 4' = 14(A;) fundamental of parent ketene at 1113 ¢m™! also mixes strongly with
the 5'6! combination state at 1169 cm™!, though for this fundamental the largest NMD
coefficient is a much more indicative 61. Nevertheless, here there are also strong Fermi
resonance interactions as indicated by the mixing of the wy, 2ws, and (ws + wg) basis
states. The mixing of the 2wg state, predicted by Duncan et al. [106], is weak and thus
could almost be neglected. It is also important to point out that 8' = vg(By) is not strongly
mixed with the other vibrational states. This is principally due to the fact that there are
no nearby Bs-symmetry vibrational states. Finally, we note that the strict harmonic order
of the vibrational states changes in several instances. This happens, for example, for the
(we + wy) — wg and 2wg — (w5 + wyg) pairs at about 970 and 1050 cm ™!, respectively, in the
first case due to anharmonic corrections of different sign.

The anharmonic corrections to the fundamentals 9, 6!, 5!, 8!, 4! 3% 2! are +5.0,
+26.3, +7.1, -17.9, -29.7, -25.9, -44.4 and +3.5, +31.4, +21.6, -23.4, -32.8, -12.9, -43.5
cm~! for VPT2 and DEWE, respectively. Clearly, in some cases the two approaches provide
considerably different VBOs for this molecule; for example, VPT2 and DEWE differ by a
factor of 3 and 2 for the anharmonic corrections to the fundamentals 5* and 3, respectively.
These large discrepancies should be compared to the ability of the refined quartic force
field employed to reproduce measured band origins by an average accuracy of 1 cm™! based
on the VPT2 treatment [98]. This also points to the need of using variational results
when refining quartic force fields for molecules exhibiting strong and extensive anharmonic

resonances. Another peculiar feature of the computed results is that there is a very large
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positive anharmonicity for the out-of-plane C=C=0 bending fundamental, 6! = v4(B;),
and its overtones, it is +31.4, +66.5, +99.4, +123.2 cm~! for the VBOs 6!, 62, 63, 6*,
showing some irregularity.

As clear from Table VIII, the variationally computed VBOs deviate substantially from
the experimental MARVEL ones (discussion of the MARVEL levels is given in Section
3.2.6). Since the variational protocol employed uses an exact kinetic energy operator and
includes also the complete PES, these discrepancies are the result of slight problems with
the empirically adjusted ab initio quartic force field approximation of the PES employed.
Nevertheless, it is more important to emphasize that the discrepancies are only on the

order of a few cm™!

, making all semi-quantitative conclusions of this study about the
rovibrational characteristics of the ketene molecule valid.

Of the four vibrational resonance interactions identified in Table IX of Ref. [98], three
and one within the A; and B, irreducible representations, respectively, the two lower-energy
ones can be investigated here: the tetrad (vy, 2vs, 2v6, V5 + 1) at 1100-1200 cm ™! and the
diad (3, vg + v9) at about 1410 cm™!. Our NMD analysis presented in Table IX clearly
confirms the existence of both resonance schemes.

For the Fermi resonance tetrad, the present variational and the previous VPT2 results
|98] show moderate agreement, perhaps somewhat worse than anticipated. For the lower
two states (2v and v4) the variational and the VPT2 eigenvalues agree well, within 8

ecm~!. We clearly confirm v4 to be around 1113 cm™1.

Otherwise, the variational and
VPT?2 results disagree to some extent. In all cases the variational wave functions suggest
stronger interactions than those indicated in Ref. [98]. Furthermore, for the higher two
eigenvalues the disagreement between the two protocols is quite substantial, 23 cm ™! for
Y11 and 48 cm™! for 1.

As to the Fermi diad, the variational separation of the two states, 14 cm ™!, is just half
as large as the separation computed via VPT2. Furthermore, while the VPT2 interaction
between the two states was labeled as “weak”, the variational results indicate a rather strong
interaction, whereby the NMD coefficients are almost 50:50.

There are other moderate or strong resonance interactions identified by our NMD anal-
ysis below a relative energy of about 2100 cm~!. Most notably, in the A; block there is
the 135140 diad, in the A, block the y5—149—153—156 tetrad, in the By block the 13,—1)43
diad and the 191 -193-1o5-196—19g pentad, and in the By block the ©i9—199, 130132, and

Y4u—yg diads. The number and extent of all the vibrational resonance interactions identi-
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fied suggest that further analysis of the high-resolution rotational-vibrational spectrum of

ketene should be based on extensive and accurate variational computations.

Table VIII. Active database (MARVEL) and variational quantum mechanical (DEWE)
vibrational band origins (VBO, cm™!) for H,?C="2C='%0 in order of increasing energy,
with zeroth-order normal-mode (NMD) assignments, symmetry labels (Sym.), and MAR-
VEL uncertainties (Unc., 1075 cm™!). The number of validated rotational-vibrational levels
(RL) associated with the vibrational bands in the present database and traditional char-

acterization of the fundamentals are also given.

NMD label Sym. MARVEL Unc.® RL DEWE? Characterization
GS Ay 0 0 329  6832.0 ground state
9! B, 439.386511 235 148  437.1 in-plane C=C—=0 bend
6! By 526.070043 236 248  534.0  out-of-plane C=C=0 bend
5! By 587428312 231 200 603.5 CH, wag
92 Ay 873.8
8! By 234 972.6 CH, rocking

619! As 975.0
519! Ag 1047.1
62 Ay 1071.7
41 Ay 1113.3
516! Ay 1169.1
52 Ay 1211.4
93 By 1310.1
31 Ay 1402.3 CH, scissor®
6192 By 1412.4
8iot Ay 1415.9
5192 By 1490.5
6'8! Ay 1508.2
629! By 1516.2
419! By 1558.2
518t As 1567.3
6 B, 1607.2
51619t By 1612.7
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416!
529
4151

94

53
8192
6193
319t
5193

61819!
6292
3l6!
4192

518191
6281
639!

516192
35t
4181

416191
5292

64

516181

21
528!

4162

95

1637.7
1659.0
1702.3
1714.8
1745.9
1784.2
1808.0
1836.0
1847.0
1854.2
1933.6
1940.9
1943.3
1953.2
1966.9
2001.0
2013.2
2044.9
2051.0
2052.1
2077.8
2080.1
2085.9
2108.1
2133.6
2133.6
2147.5
2153.7
2161.5
2162.9
2166.9
2178.1

C—=0 stretch
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¢ The uncertainties (Unc.) are given in units of 107% em™. VBOs not determined by
the experimental data available are left blank in the MARVEL and Unc. columns. Two
further MARVEL VBOs have been determined as part of the present analysis: 12 (A;) =
6068.373106(50) and 7% (A;) = 6262.909106(50) cm !, holding 130 and 59 RLs, respectively.
The 1%, 8!, 117!, and 22 VBOs could not be determined via the MARVEL analysis but in
the present database they hold 107, 234, 201, and 65 RLs, respectively.

b The vibrational basis was chosen as follows for the VBOs computed by DEWE: 6, 8, and
10 basis functions for the four stretching motions, the two highest bends, and the three
lowest bends, respectively.

¢ There is a very strong mixing between the 3! and 8'9! states (see Table IX), in fact for
this state 3! and 8'9! have NMD contributions of 43 and 50 %, respectively.

4 No reasonable assignment can be given due to extremely heavy mixing of several states.

¢ Note the very strong mixing of the 8192 and 3'9! states, see Table XII.
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Table IX. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for A; point-group symmetry.
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* Rows of variational vibrational wave functions (¥;) with energy levels v; are decom-

posed in terms of columns of harmonic oscillator (HO) basis states with reference energy

levels w;. NMD coefficients in percent; energies in cm ™! relative to the corresponding vari-

ational or harmonic zero-point vibrational (ZPV) level appearing in row 1 or column 1,

b The decomposition was extended to the first 92 A; HO states in each row; ¥ values denote

respectively.

the corresponding sums of the NMD coefficients over these states.
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Table X. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for A, point-group symmetry.
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“ Rows of variational vibrational wave functions (¥;) with energy levels v; are decom-

posed in terms of columns of harmonic oscillator (HO) basis states with reference energy

levels w;. NMD coefficients in percent; energies in cm ™! relative to the corresponding vari-

ational or harmonic zero-point vibrational (ZPV) level appearing in row 1 or column 1 of

Table IX, respectively.

® The decomposition was extended to the first 58 A, HO states in each row; ¥ values denote

the corresponding sums of the NMD coefficients over these states.
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Table XI. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for B; point-group symmetry.
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@ See footnote a to Table X.

Y values denote

)

b The decomposition was extended to the first 71 B; HO states in each row

the corresponding sums of the NMD coefficients over these states.
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Table XII. The lowest-energy part of the normal-mode decomposition (NMD) table of

ketene for B, point-group symmetry.
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% See footnote a to Table X.

b The decomposition was extended to the first 69 B, HO states in each row; ¥ values denote

the corresponding sums of the NMD coefficients over these states.

74



3.2.5 Rovibrational energy levels

The ketene molecule is very nearly a prolate symmetric top, with (Ag, By, Cp) rotational
constants close to (9.41, 0.34, 0.33) ¢cm™!, in order. Thus, the pure rotational levels can
be approximated very well by the simple expression F(J, K,) = 0.34J(J + 1) + 9.07K2.
Accordingly, a near double degeneracy for all values of K, > 1 can be expected and
this is seen in the rovibrational levels in Tables XIII and XIV, listing selected variational
(DEWE) and experimental (MARVEL) levels (the complete Table XIV can be found in
the Supplementary Material of Ref. [22]). Closing of the doubly-degenerate pairs becomes
more pronounced when one goes to higher energies and K, values though occasionally
perturbations cause deviations from this trend. Figure 3 shows the deviations of the pure
rotational DEWE (panel A) and MARVEL (panel B) levels from the rigid-rotor (RR)
picture, based on the ground-state rotational constants [117] Ag = 9.409 209, By = 0.343
370, and Cy — 0.330 737 cm~!. Both the DEWE and the MARVEL levels show the expected
pronounced degeneracy (note, however, that the scales of panels A and B of Figure 3 are
very different). The DEWE and the MARVEL results also show a clear J-independence
and K,-dependence of the deviations.

The variational differences between the Jg, 11—k, and Jg, j_k, pairs are often an
order of magnitude smaller than the “measured” ones (see Supplementary Material of Ref.
|22]). This is most likely due to deficiencies of the force field used as a model of the PES
of ketene.

As to the performance of the VS method, it is worth comparing the energies obtained
from a computation with the complete vibrational space of size 8 - 107 (DEWE in Table
XIII), performed up to J = 3, to those obtained with a reduced vibrational space of
dimension 10? (DEWE-VS in Tables XIIT and XIV). In spite of the 10-fold reduction of
the size of the rovibrational basis and the corresponding reduction in storage and other
resources required to perform the computations, the overall agreement of the first few
hundred rovibrational states is better than 1 cm™!. Thus, the error introduced due to this
truncation of the vibrational space is less than the uncertainty of the underlying PES. The
accuracy of the rovibrational energy levels obtained within the DEWE-VS protocol could
easily be increased further by including more vibrational eigenstates in the computation.
This would preferentially include all the fundamentals of the molecule and all states in
between. Naturally, by increasing the size of the vibrational subspace in the second stage

of the rovibrational computation the rovibrational limit corresponding to the complete set
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of the original primitive vibrational basis functions is approached.
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Figure 3: Deviations of the variational DEWE and the MARVEL pure rotational energy
levels from those levels (RR) corresponding to a rigid rotor picture with rotational constants
Ag = 9.409209, By = 0.343370, and Cy = 0.330737 cm~!. Squares, circles, and triangles
correspond to J = 1, 2, and 3, respectively.
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3.2.6 MARVEL energy levels

In order to improve our understanding of the measured spectra and validate the experimen-
tal assignments proposed for ketene lines, we analyzed simultaneously all the experimental
line information available to us [109, 113, 117, 118, 119, 120, 121, 122], as indicated in
Table VII.

The MARVEL analysis employed proved to be successful for a similar analysis of
the rovibrational states of several water isotopologues [43, 123, 124, 125|. During the
present study we utilized altogether 3 982 measured and assigned rovibrational transitions
of H,2C="2C=1%0. Due to nuclear spin symmetry, these transitions form part of two main
spectroscopic networks (SN) [116], ortho and para. The selection rules governing the tran-
sitions are given in the Supplementary Material of Ref. [22].

We had two main difficulties with the measured data. First, in many of the original pub-
lications the uncertainties of the measured transitions were not given explicitly. Therefore,
we had to assign reasonable uncertainties to several transitions based on the best available
information deduced from the original sources. This, however, is not a serious problem
as MARVEL adjusts, via robust reweighting, the uncertainties attached to the transitions
until self-consistency within the database is achieved. Second, as almost always happens
with measured transitions, some of them are not part of the main networks but are part
of floating spectroscopic networks (FSNs) or are orphans. Since orphan energy levels and
those taking part in FSNs cannot be validated, only 3 194 transitions could be validated
in this work. Transitions which could not be validated are indicated in Table VII source
by source.

The ortho and the para SNs contain 2 489 and 705 observed transitions and 1 251
and 471 MARVEL energy levels, respectively. The MARVEL energy levels of A and B
quality go up to J = 39 for the vibrational ground state and up to J = 8 for the other
states. Most highly excited rotational and rovibrational energy levels take part in only a
single measured transition. Thus, their accuracy remain uncertain even after the MARVEL
validation procedure.

Due to the sparsity of measurements for parent ketene, there are relatively few energy
levels of A quality for all but the ground vibrational state (see Tables XIII and XIV). Thus,
since in Tables XIII and XIV only MARVEL levels of A and B quality are given, for the ex-
cited vibrational states there are plenty of missing levels under the heading MARVEL. The

computed levels of C quality should be handled with special care: they may be inaccurate
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as they are determined by insufficient experimental information, by just a single measured
and assigned transition. Thus, though they are given in the Supplementary Material of
Ref. [22], they should be used only with caution.

Figure 4 presents a comparison of absolute differences, given on a semi-logarithmic scale
and as a function of the energy of the levels, between the pure rotational MARVEL energy
levels of this study and those reported in the CDMS database [108| and determined via an
effective Hamiltonian based on fitted spectroscopic parameters. Note that energy values
having K, larger than 5 are missing from the figure as no validated experimental data, and
thus no MARVEL energy levels, are available for them. The figure clearly shows deviations
between the two sets of results. Since the MARVEL energy levels involved in creation of
the figure are not only of A and B quality, it cannot be concluded that they present better
representation for these levels. Only further experimental studies and a new list of relevant

assigned transitions would be able to solve this problem.
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Figure 4: Absolute differences, on a semi-logarithmic scale, between the pure rotational
MARVEL energy levels obtained in this study and those levels reported in the CDMS
database [108] as a function of the energy of the level.
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3.2.7 New assignments

The apodized resolution in the mid-infrared high resolution IR gas-phase spectra of ketene

! and the relative frequency calibration accuracy was

|107| was approximately 0.004 cm™
better than 0.001 cm™! as determined by comparison with extensive, known ground state
combination differences (CD) [126]. The absolute wavenumbers have errors smaller than

the apodized resolution, a conservative estimate is 0.001 cm™1.

These spectra contain
several thousand lines, and a sizeable portion of these are difficult to assign using ground-
state CDs, partly because of their low intensity or location in very congested spectral areas,
and partly as combination differences require additional transitions involving some of the
levels that are also involved in the transitions to be assigned. (The method of combination
differences makes use of the fact that some transitions share a common level). In addition,
there are localized resonances in the spectra that perturb regularity. Thus, there is a great
need of an independently determined set of rotation-vibration energy levels to facilitate
line identification. Such levels of high quality have been obtained in this work using the
MARVEL technique validated via the variational nuclear motion DEWE-VS results. The
complete list of MARVEL energy levels is presented in the Supplementary Material of Ref.
[22]. The presently available energy levels allow a host of new assignments relative to those
obtained in previous works [127, 128, 129]|. Note also that the vibration-rotation transitions
used in Refs. |[127] and [128] were not published there explicitly.

We have searched the FTIR spectra [107] of ketene for regions that had previously
not been analyzed by the usual CD methods and thus were not used in perturbation
calculations by least-squares fits. In what follows two specific series are given involving lines
of rovibrational branches of two fundamentals. The specific examples of newly assigned
sets of transitions are given in Table XV, which convincingly show the great utility of
experimental-quality MARVEL energy levels to make progress in assigning a high-resolution
spectrum.

The first branch is the "Ry (.J) series of the v5 = 5! vibrational fundamental that extends
from 621.24 to 627.75 cm™! for lines involving lower state J = 2 up to J = 11 (10 lines).
The assignment of this clearly visible series was not attempted earlier due to lack of CD
transition partners. These lines occur in a congested region but are clearly indentifiable
due to their narrow profiles and no lines in their close neighbourhood. The differences
between the MARVEL and experimental lines are nowhere greater than a couple of times

107* cm™!; thus, the line identifications are unique. (Note also that although we give

33



Table XV. New line identifications, based on MARVEL energy levels and associated tran-
sitions, of two series of lines (GS-Jy; — 5'-(J + 1), for v5 and GS-J;; — 8'-(J 4 1)g(s41) for

vg) in the infrared spectrum of ketene, with line data in cm™

1

DEWE-VS®

Vs Expt. trans.* MARVEL pred. Uy Expt. trans.® MARVEL pred. DEWE-VS?
"Ri(2)  621.2357(20) 621.2354(2) 621.2353 PRi(5)  972.7856(10) 972.7855(4) 972.7862
"Ri(3) 621.9312(20) 621.9312(2) 621.9311 PR1(8)¢  974.9959(20) 974.9954(4) 974.9949
"Ri(4)  622.6339(20) 622.6339(2) 622.6339  PR;(11)¢ 977.2859(20) 977.2858(4) 977.2866
"Ri(5)  623.3436(20) 623.3435(2) 623.3436
"R1(6)  624.0602(20) 624.0600(2) 623.0603
"Ry (7) 624 7835(20) 624 7836(2) 624.7838
"R1(8) 25.5141(20) 25.5150(4) 625.5143
"R1(9) 626 2517(20) 626 2519(4) 626.2518
"Ry(10)  626.9962(20) 626.9962(4) 626.9962
"Ry(11)  627.7478(20) 627.7474(3) 627.7473

® See beginning of Section 3.2.7 for the discussion of experimental uncertainties.

b Obtained from the directly computed first-principles results via the following quadratic
correction form fitted to all MARVEL — DEWE-VS differences: —16.013366 + 0.000759.J +
0.000143.J2.

¢ Slightly blended line.

4 Obtained from the directly computed first-principles results via the following quadratic
correction form fitted to all (J = 5 to 13) MARVEL - DEWE-VS differences: —5.233293 +
0.002764J — 0.001535.J2.

in Table XV a comparison for all 10 lines, only a single MARVEL prediction suffices for
definitive assignments using standard spectroscopic techniques based on series regularity
for all unperturbed lines in the series having sufficient intensity and no line blending.)
The next series is the PRy (.J) branch of the fundamental vibration vg = 8'. This branch
is located between 972.78 and 978.87 cm ™!

characterized with J values ranging from 5 to 13. Three new lines have been assigned and

and contains clearly resolved rotational features,

all show outstanding agreement with the MARVEL predicted transitions. Other members
of this series (J = 5 to 13) have been identified before and were included in the MARVEL

analysis.

3.3 GENIUSH-VS computations for H5'°O

The MARVEL procedure [43] is able to compute energy levels of experimental quality
provided an initial database of experimental transitions is available. The experimental

transitions present in the input database need to be assigned with unique labels describing
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the upper and lower energy levels. Usually the labels refer to the well-known zeroth-
order vibrational and rotational quantum numbers. The MARVEL energy levels, being
the output of the MARVEL analysis, can be used to predict a huge number of transitions
that are of experimental quality and can be utilized for the identification of unassigned
experimental spectral lines. This is the main reason why validity of the labels of the
MARVEL energy levels is crucial. Therefore, we decided to validate the MARVEL energy
levels of the Hy'%O isotopologue by comparing their approximate labels to those of the
energy levels computed by the GENIUSH-VS algorithm.

To facilitate the validation process the first 800 vibrational energy levels and wave func-
tions were computed by GENIUSH in a vibrational basis of dimension 45-352. 45 potential-
optimized Legendre-DVR and 35 potential-optimized Laguerre-DVR basis functions were
applied to the 6 bending, and r; and 7y stretching coordinates, respectively. Rovibra-
tional energy levels and wave functions up to J = 25 were computed by the GENITUSH-VS
procedure employing the first 800 vibrational states as a vibrational basis. During the
computations the Eckart frame, which has proven to be beneficial for the accuracy of the
GENIUSH-VS results, was used. The resulting rovibrational energy levels and wave func-
tions were analyzed by the RRD procedure by evaluating J, K,, K, rigid rotor quantum
numbers and Cy, (M) symmetry labels. NMD labels used for this examination were taken
from Ref. [9].

The results of the validation procedure form a part of an ITUPAC Task Group effort to
describe the full spectroscopy of water vapor and are summarized in Table XVI. A cut-off
value of 0.7 was chosen for the largest RRD coeflicient, i.e., only cases where the labelling is
unambiguously provided by the RRD scheme were investigated. Rovibrational states with

I were also not investigated since for them there appear

an energy larger than 25000 cm™
to be very few states which can clearly be labeled via an RRD table. This means that for a
large number of MARVEL energy levels no validation via the RRD scheme was attempted.
The extent of validated labels for the different vibrational band origins (VBO) is given in
Table XVI, which also gives the Jy.x values for a large number of VBOs. Clearly, it is
more problematic to provide unambiguous rotational labels for VBOs which contain a high
level of bending excitation (note that starting from the (0 10 0) VBO no rotational labels
on pure bending VBOs can be performed) and as the energy of excitation increases the

highest J value where RRD can be used to validate the MARVEL labels decreases.
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Table XVI. Validation of the rotational labels of the rovibrational levels determined
by the final MARVEL analysis via the RRD protocol. RRD labels have been determined
only for states with J less equal than 25. VBO = vibrational band origin. Jy.x gives the
maximum J value for rovibrational MARVEL states determined on the particular VBO.

J, is the maximum J value for wich all labels have been validated.

VBO  Juax Jvy No. of val. labels No. of labels without val.

(000) 42 23 581 95
(010) 39 14 475 201
(020) 36 10 338 322
(100) 36 22 458 193
(001) 37 23 506 162
(030) 28 10 271 244
(110) 32 14 319 173
(011) 35 15 421 173
(040) 26 8 191 90
(120) 24 10 209 43
(021) 33 12 280 141
(200) 29 9 284 63
(101) 33 9 321 112
(002) 32 9 304 35
(050) 20 6 127 64
(130) 15 6 129 9
031) 29 8 213 72
(210) 15 8 145 13
(111) 31 9 271 79
060) 17 5 78 39
(012) 29 12 222 10
(140) 13 6 95 17
(041) 25 7 152 80
070) 13 3 34 32
(2200 13 9 111 16
(121) 22 7 159 64
022) 26 9 151 36
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4 Future plans

There are a few areas where the results obtained during my PhD research have not been
published. T include them in this section and I plan to publish the most important findings

in the near future.

4.1 Clustering of the highly-excited rovibrational states of CH,

The ability to compute highly-excited rovibrational states with the VS procedure of Section
2.6 means that a peculiar feature of rovibrational spectra, the clustering of highly-excited
rovibrational states of molecules can be studied. Such clustering was first predicted perhaps
by Dorney and Watson [130] for the case of spherical top molecules (e.g., CHy). The most
familiar and most widely studied rotational level clustering effects include asymmetric tops
[131] (for example, HyO, HyS, HoSe and HyTe) and those of XY3 symmetric tops, like PHs
[132, 133], BiH3 [134], and SbH3 [134].

Figures 5, 6, and 7 shows interesting clustering effects of the five-atomic CH4 molecule
for its lowest vibrational states ((00)(00) (A;), (00)(01) (v = 1311.74 em™!, F), and
(00)(10) (v = 1533.25 em™!, E), respectively). The computations employed the PES of
Ref. [135] and the DEWE-VS program. First, the first 100 vibrational energy levels and
wave functions were computed by DEWE in a Hermite-DVR . vibrational basis of dimension
75 -6*. Then, rovibrational energy levels and wave functions were computed by DEWE-VS
employing the previously obtained 100 vibrational states as a vibrational basis. In the
end, rovibrational states corresponding to the lowest vibrational states were selected by
the RRD procedure and assigned with T4(M) symmetry labels. The VS method allows the
accurate computation of highly excited rotational-vibrational eigenpairs, the fully quantum
mechanical determination of energy clusters, and thus the detailed analysis of the semi-
classical results of Dorney and Watson [130] and Sadovskii [136].
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Figure 5: Rotational clustering effects shown on two different scales for the (00)(00) A,
vibrational ground state of the parent isotopologue of the methane molecule. E; — ET?*
differences, in cm ™!, are plotted against the J rotational quantum number, where E; and
E7T* denote an arbitrary and the maximum energy level for a given value of .J, respectively.
The computations are based on the PES of Ref. [135] and were obtained with the DEWE-
VS program.
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Figure 6: Rotational clustering effects shown on two different scales for the (00)(01) Fy
vibrational state (v = 1311.74 cm™!) of the parent isotopologue of the methane molecule.
E; — E7* differences, in ¢cm™!, are plotted against the J rotational quantum number,
where E; and ET** denote an arbitrary and the maximum energy level for a given value of
J, respectively. The computations are based on the PES of Ref. [135| and were obtained
with the DEWE-VS program.
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Figure 7: Rotational clustering effects shown on two different scales for the (00)(10) E
vibrational state (v = 1533.25 cm™!) of the parent isotopologue of the methane molecule.
E; — E7* differences, in ¢cm™!, are plotted against the J rotational quantum number,
where E; and ET** denote an arbitrary and the maximum energy level for a given value of
J, respectively. The computations are based on the PES of Ref. [135| and were obtained
with the DEWE-VS program.
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4.2 Eckart embedding for the NH3; molecule

Rovibrational energy levels and wave functions for the first ten vibrational states of the
ammonia molecule were computed by GENIUSH for J = 1,2, and 3 for the 6D full and
3D stretch-only models. The Eckart embedding was utilized with equilibrium (Cs,) and
planar (Dsy) point-group symmetry reference structures besides the embedding described
in Section 3.1, called the old frame henceforth. Results of the RRD computations were
compared for the three different embedding choices.

For the 6D full model (active inversion), the largest RRD coefficients were obtained
by the Eckart frame employing the Ds, reference structure. The second largest RRD
coefficients belong to the old frame, while the Eckart frame with Cjs, reference structure
had the worst performance. In case of the 3D stretch-only model (inactive inversion) the
following quality order of the RRD coefficients were found: Eckart frame with C, reference
structure, old frame, Eckart frame employing Dsy, reference structure.

My aim is to perform a deeper analysis of the RRD results, testing the GENIUSH-
VS algorithm for the three different embeddings mentioned, and consider a special Eckart

reference structure following the large amplitude inversion motion of NHj.
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5 Summary

A considerable part of my research efforts was dedicated to the DEWE (Discrete variable
representation of the Eckart—-Watson Hamiltonian with a numerically Exact inclusion of
arbitrary potential energy surfaces) algorithm. DEWE employs the universal and exact
Eckart-Watson Hamiltonian and the iterative Lanczos eigensolver for obtaining the eigen-
values and eigenvectors of the Hamiltonian matrix. Though DEWE can be applied for
N-atomic systems it is limited to the case of semirigid molecules with a single well-defined
minimum structure. My contribution to DEWE was to add the capability of comput-
ing rotational-vibrational energy levels and wave functions to the original vibrational-only
code. Detailed description of the variational solution of the rotational-vibrational problem
within the framework of DEWE was discussed.

My program development efforts also resulted in an improved GENTUSH (General rovi-
brational code with Numerical, Internal coordinate, User-Specified Hamiltonians) algo-
rithm. The GENIUSH approach successfully circumvents the main drawback of DEWE
and thus can be applied to N-atomic molecules exhibiting multiple accessible PES minima
and large amplitude motions. The main idea behind GENIUSH is the numerical represen-
tation of the rovibrational kinetic energy operator which allows us to employ arbitrary sets
of internal coordinates and body-fixed frame embeddings during the rovibrational com-
putations. Another important characteristics of GENIUSH is the possibility to introduce
reduced-dimensional computational models in a straightforward manner. My task was to
formulate and add the rotational functionality to the original vibrational-only GENIUSH
code. Formulation of the general N-atomic rovibrational Hamiltonian and the variational
solution of the rovibrational problem were described.

During my research, I also addressed the problem of assigning symmetry labels to the
computed rovibrational energy levels and wave functions. For this purpose I adopted the
symmetry-adapted Lanczos (SAL) method. After a brief review of the Lanczos algorithm
and the general theory of the SAL method I described my own SAL implementation within
the DEWE program.

I also considered the problem how to maintain the rotational Eckart condition. After a
brief summary of the theory of the rotational Eckart condition I introduced my implemen-
tation of the Eckart embedding within the GENIUSH algorithm.

I solved the problem of labelling of the computed rovibrational energy levels and wave

functions with zeroth-order harmonic oscillator and rigid rotor quantum numbers. I gave
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an insight into the rigid-rotor decomposition (RRD) algorithm T used extensively for the
interpretation of the computed rovibrational states.

I proposed an efficient algorithm for the computation of highly-excited rovibrational
states. I developed efficient VS implementations within the DEWE and GENIUSH program
packages.

I computed rovibrational energy levels and wave functions for the four-atomic NH3 by
GENIUSH with a special emphasis on the quality of the results computed with the full-
dimensional and different reduced-dimensional rovibrational models. Next, the rovibra-
tional spectroscopy of the five-atomic CoHy0O (ketene) molecule was examined. Variational
computations (employing the DEWE, VS, NMD, RRD and SAL methods) and the MAR-
VEL procedure were applied to propose new assignments in the experimental spectrum of
CyH,0. Finally, labels of the MARVEL energy levels of Hy%0 up to J = 25 were validated
by the VS procedure implemented within GENTUSH.

My future plans include rovibrational computations for CH4 in order to study the
rovibrational clustering of the energy levels corresponding to high J rotational quantum
number values. For NHj, rovibrational computations employing the Eckart frame have
been executed and the results with different choices of the Eckart reference structure have

been analysed briefly.
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A Appendix

A.1 Angular momentum algebra

As angular momentum algebra is of great importance in the field of computational molecu-
lar spectroscopy, a brief summary of some of its elements is given here. A more detailed de-
scription can be found in the literature and in several textbooks [52, 74, 137, 138, 139, 140].

The starting point is that generalized angular momentum operators obey the
[J2,J,] =0 (124)

and
[jav jﬁ] = —1 Z Eaﬁ'yj“/ (125)
gl

commutation relations. In Eq. (125), o, 8,7 = ,y,2, €45, denotes the Levi-Civita-
symbol. The so-called anomalous commutation relations of Eq. (125) apply to the angular
momentum components expressed in the molecule-fixed frame.

As [J2,J.] = 0, the eigenfunction sets of J2 and J,, denoted by |JK M), coincide:

JHIKM) = J(J + 1)|JKM) (126)

and
J.|JKM) = K|JKM). (127)

The |JK M) eigenfunctions can be parametrized with the ¢, 0, and x Euler angles:

20T +1

872

where Dy, (4,0, x) stands for the Wigner rotation matrix. The |JK M) functions satisfy
the
<JKM|J/K/M/> :6JJ/5KK/5MM’ (129)

orthogonality relations.
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It is advantageous to introduce the j+ step-up and J_ step-down ladder operators as

Ji=J, i, (130)
The Jo. operators satisfy the
[J?, ] =0 (131)
and
[, Ju] =+ (132)

commutation relations. According to the previous equations,
J2I|JKMY = JoJ*JKM) = J(J +1)J.|JKM) (133)

and
JJLNJKM) = JoJ|JKM) £+ Jo|JKM) = (K +1)J.|JKM). (134)

In view of Eq. (134), the effect of the ladder operators on the |JK M) functions can be
expressed as
Je|JKM) = Cy|J(K £ 1)M). (135)

The absolute value of the Cy coefficients equals to
ICL> = (JKEM|JxJo|JKM) = (JKM|J? — J.(J, £ 1)|JKM) = (136)

—J(J+1) - K(K £1),

where the Jj[ = ij relation is used. If the phase of C';. is chosen to be zero,

Jo|JKM) = /J(J+1) — K(K £ 1)|J(K + 1) M). (137)

The next step is to give the matrix representations of the J, and jy operators in the
body-fixed frame. As
A Jy 4+ J-
Jp = 5

(138)
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and

Jy= (139)

nonzero elements of the J, and J, matrices are

(JKM|J,|J(K +£1)M) = %\/J(J +1) - K(K +1)

(T M|J,|J(K + 1) M) = ;%VJ(H D-K(K+1) (140)

(JEM|J,|JKM) = K.

A.2 Elements of the g matrix

The rotational g matrix elements are equal to

N N

OXT 09X, 10CTOC 0C" ,rIC
kD 14D = Z 80ék (9041 Zz_l:mle Gak 8@[ mel 80% cC aOél .

=

N

— i:: (CT FaX ) (CTg_SlXZ) = ;mi(ek x x;) " (e X X;), (141)

where oy is the kth rotational coordinate, e; is a unit vector giving the direction of the
rotational axis associated with oy, x; is the position vector of the ith nucleus expressed in
the body-fixed frame, and k,l = 1(x),2(y),3(z). In Eq. (141) the equalities

CcCT =1, (142)
and C
CTT%I' =epXT (143)

have been utilized. In these equations I is the identity matrix of dimension three and
the CT% matrix in Eq. (143) is antisymmetric and its effect on an arbitrary r vector

corresponds to the e, X r cross product. See Section A.3 for the derivation of Eq. (143).
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The vibrational g matrix elements are given as

N N

OXT 90X, OxI p 0% o~ Ox)Ox;
_ it _ 4 144
o ; dqe I Z " Iy dqi Z " 9q, Iq (144)

where g is the kth internal coordinate.

The g matrix elements of the rovibrational coupling block have the form

N N

oXT 0X,;
= i : i i CT_ i = i i 145
Gki+D izlm 9a. Do sz 9. 80le iZm 8% el X X;). (145)

A.3 Derivation of Eq. (143)

Let us consider a three-dimensional orthogonal matrix C describing a rotation around n,
where n is a unit vector specifying the axis of the rotation and ¢ is the rotation angle. The

antisymmetric property of CT— is a direct consequence of the
C'Cc =1 (146)

relation, where I indicates the identity matrix of dimension three. After differentiating Eq.
(146) with respect to ¢,

dC?t dC
C+C'—=0 14
oo (147)
where 0 is the three-dimensional zero matrix. Rearrangement of Eq. (147) yields
crdc . _crdC (148)
do ) do’
which demonstrates the antisymmetry of CT%.

The effect of C on an arbitrary r vector is given by the

r'=Cr=rcos¢+ (n-r)n(l —cosg) + (n x r)sin¢ (149)

general rotation formula, where r’ is the result of the rotation. After expanding the vector
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operations in Eq. (149), C can be expressed as

cos ¢+(1—cos ¢)-n2 (1—cos @) nzny—singn. (1—cos@)-ngn.+sinp-ny
C= (1—cos @) nzny+sin p-n. cos ¢+(1—cos ¢)-n2 (1—cos @) nyn.—singng | (150)
(1—cos @) ngn.—singny (1—cos¢)-nyn,+sin png cos ¢+(1—cos ¢)-n?

where n,, n, and n, are the three components of n, and n2 + nz +n? = 1. Since Eq. (150)
gives the rotation matrix of arbitrary axis and angle, one can generally derive the matrix

elements of CT4E a5

d¢
dc e
cl— = _ . 151
0 n, 0 Ny (151)
Ny Ny 0

In light of Eq. (151) it becomes clear that the effect of CT% on an arbitrary r vector is

dC
CT@r =n xTr. (152)
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Abstract

During my doctoral work I have developed and implemented general algorithms for the
accurate and efficient variational computation and interpretation of rotational-vibrational
energy levels and wave functions of N-atomic molecules.

First, I extended the original vibrational-only DEWE and GENIUSH programs, de-
veloped principally by Dr. Edit Matyus, with the capability of variational computation
of rotational-vibrational energy levels and wave functions. The DEWE program employs
the exact and general N-atomic Eckart—Watson nuclear kinetic energy operator, thus it
is limited to semirigid molecules exhibiting a single well-defined minimum on their PES.
The GENIUSH program successfully circumvents the main drawback of DEWE and can be
applied to N-atomic molecules exhibiting multiple accessible PES minima and large am-
plitude motions. In GENTUSH arbitrary internal coordinates, molecule-fixed frames, and
either full- or reduced-dimensional rovibrational models can be employed during the com-
putations. The Eckart frame, giving a good separation between rotational and vibrational
motions, is also available within GENTUSH.

As a next step, the rigid rotor decomposition (RRD) and symmetry-adapted Lanczos
(SAL) procedures were implemented to facilitate the interpretation of the computed rovi-
brational states. The RRD and SAL algorithms are extremely helpful in the assignment
of the rovibrational states with zeroth-order quantum numbers and molecular symmetry
group symmetry labels, respectively.

Finally, I developed the vibrational subspace (VS) method allowing the variational
computation and assignment of rovibrational states for high values of the J rotational
quantum number. Practical VS implementations were done for the DEWE and GENIUSH
programs.

The power of the computational framework developed was demonstrated for the three-

atomic HyO, four-atomic NHj, and five-atomic CoHy0 (ketene) and CH4 molecules.
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Osszefoglalas

Doktori munkam soran olyan altalanos modszereket fejlesztettem ki, melyek lehetGvé teszik
N-atomos molekuldk rezgési-forgasi energiaszintjeinek és hullamfiiggvényeinek variacios
alapi szamitasat és értelmezését.

Els6ként a Dr. Matyus Edit altal fejlesztett, eredetileg csak rezgési szamitasok elvégzésére
alkalmas DEWE és GENIUSH programokat fejlesztettem tovabb. Munkam eredményekép-
pen a DEWE és a GENIUSH programokkal varidcios rezgési-forgasi szamitasokat végezhetiink
N-atomos molekuldkra. Mivel a DEWE az N-atomos molekulakra altaldnosan alkalmazhato
Eckart—Watson Hamilton kinetikus energia operatoron alapul, dgynevezett félmerev molekulék
vizsgélatara alkalmazhaté, melyek potenciélis energia feliilete egy jol definialt minimum-
mal rendelkezik. Ezt a problémat sikeresen orvosolja a GENIUSH eljaras, ugyanis a GE-
NIUSH segitségével olyan nagy amplitid6ji mozgasokkal rendelkezé flexibilis molekuldkra
is sikerrel végezhetiink variacios rezgési-forgasi szamitasokat, melyek potencialis energia
feliiletén tobb hozzaférheté minimumot taldlunk. A GENIUSH programban tetszéleges
bels6é koordinatadkat és molekulacetralt koordinata-rendszereket hasznalhatunk a szamita-
sok soran, tobbek kozott az Eckart-rendszert is, mely minimalizalja a rezgések és forgésok
kozti csatolast. A GENIUSH lehetévé teszi redukalt dimenzidji modellek hasznalatat is.

Kovetkezd 1épésként a szamitéasi eredmények értelmezését segité RRD (rigid rotor de-
composition, merev pirgettyd felbontds) és SAL (symmetry adapted Lanczos, szimme-
tria adaptdlt Ldnczos) eljarasokat vizsgaltam. Mig az RRD segitségével elvégezhetjiik a
szamitott rezgési-forgasi allapotok nulladrendd (harmonikus oszcillator és merev porgettyt)
allapotok szimmetriajanak vizsgalatara.

Vegiil kifejlesztettem és beprogramoztam a VS (vibrational subspace, rezgési altér)
modszert, mely lehet6vé teszi a magas J forgési kvantumszam értékekhez tartozo rezgési-
program alkalmas VS szamitasok elvégzésére.

A munkam soran kifejlesztett pontos és hatékony elméleti molekulaspektroszkopiai mod-
szereket sikeresen alkalmaztam a haromatomos HyO, a négyatomos NHj, illetve az 6tatomos
CoH0O (ketén) és CH4 molekulékra.
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